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Tunneling currents through barriers containing one-dimensional potential wells with effective cross-
sectional areas are calculated by using the WKB connection formulas to extend the wave functions of the
incident free electrons to the other side of the barrier. The lifetime of electrons in the potential wells is
assumed to limit the rate at which electrons may tunnel through the barrier. It is proposed that the qualita-
tive features of this calculation may be applicable to tunneling currents through metal-insulator-metal
thin-film sandwiches when the insulating film contains defects capable of trapping electrons. It is found
that if the quasi-stable levels of the potential well lie near the Fermi level of the metal, for small voltages
applied across the insulator, then the current may be greatly increased by the presence of these potential
wells and most of the current will flow at energies near the quasi-level. A sample calculation was done to
demonstrate these features for a square well in a rectangular barrier. A possible extension of this model allows
the current to be proportional to the product of the densities of states in the metals on both sides of the

barrier.

I. INTRODUCTION

ECENTLY Fisher and Giaever' compared their
experimental results of tunneling currents through
metal-aluminum oxide-metal thin-film sandwiches with
Holm’s? theoretical calculations of tunneling currents
through single potential barriers. The current-voltage
characteristics, the dependence of the current on the
barrier thickness, and the weak temperature dependence
were concluded to be in agreement with the theory.
However, the experimental current values were found
to be much larger than the theory predicted. By using
an effective electron mass in the oxide equal to 1/9 the
free-electron mass, the experimental current values were
brought into agreement with the theory. Giaever and
Megerle? also found that the tunneling current was
proportional to the product of the densities of states of
the metals on both sides of the insulating oxide film.
This last result was obtained on samples which had
either one or both metals in the superconducting state.
In this paper the tunneling current through a one-
dimensional barrier containing a potential well is com-
puted and compared with the tunneling current through
a single barrier, which contains no potential well. A
number of investigators>*—® have made theoretical
studies of tunneling currents through thin films by
representing the thin film by a single one-dimensional
potential barrier. Sommerfeld-Bethe and Holm calcu-
lated the current through a thin film by assuming that
the tunneling current from metal 7 was proportional to
the transmission coefficient of the barrier multiplied by
the number of electrons which were available at the
barrier in metal ¢. The total current was then the dif-
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ference between the currents in both directions through
the film. Bardeen found the current by calculating the
transition rate from an eigenstate describing an electron
on one side of the barrier to an eigenstate describing
this electron on the other side of the barrier. It was
assumed that the perturbation of the eigenstates caused
by the barrier was such that the wave functions were
confined mostly to one side of the barrier and the
barrier region. In the case to be discussed the presence
of potential wells in the barrier gives rise to large trans-
mission coefficients, which allow the wave functions to
spread out appreciably to both sides of the barrier.
Consequently, the approach used by Sommerfeld-Bethe
and Holm is more suitable and will be used in this paper
to compute the tunneling current.

In Sec. II of this paper, the general formulation of the
tunneling current is shown and the current through a
single barrier is computed. In Sec. ITI, a model for the
potential well is introduced and the tunneling current
through a barrier containing this potential well is cal-
culated. A comparison of the results of Secs. IT and III
is made in Sec. IV showing that traps may increase the
tunneling current. Possible extensions of this model are
considered in Sec. V. The effect of energy changes
suffered by the electron has not been considered in this
investigation.

II. TUNNELING CURRENT THROUGH
BARRIERS WITHOUT TRAPS
A. General Formulation of Tunneling Current
The general form of the Sommerfeld and Bethe

approach is now presented. The current flow from metal
i to metal 7 is assumed to be

Ji=e / T(E)N:(E)dE,, (1)

where 7'(E,) is the transmission coefficient for the
energy E.=p.?/2m associated with the electron mo-
mentum p, in the « direction; #» and e are the electron
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mass and charge, and N;(E.)dE., the supply function,
represents the number of electrons in the energy range
(E., E,+dE,) which are available for tunneling through
the barrier. The supply function is set equal to the
number of electrons which strike unit area of the
barrier per second from the free-electron gas in the
metal. This is found to be

.‘\'T{ (Ez)dE,———- 'de?x/ fq'gid??,dp;, (2)

where f; is the occupation probability of a state in
metal 7, g; is the density of states in momentum space
per unit volume in metal 7, and v, is the electron ve-
locity in the x direction. Using v,=dE./dp., we find the
difference between the currents in either direction to be

= / T(ENE. [ 8(/i= fipdp. ()

If both metals are assumed to be identical free electron
metals and if we assume that the applied voltage is
small, then the current becomes

J = (4rme*V / h?)
></T(Ez){1+6Xp[(Ern)/kT:|}‘ldEx, 4)

where 7 is the Fermi level and V' is the applied voltage.
We may also assume that the transmission coefficient
does not change appreciably with voltage and that the
only effect of a small applied voltage is to shift the
Fermi levels of the two metals. The current will then be
proportional to the voltage for small voltages.

B. Tunneling Current through
Rectangular Barriers

In this section Eq. (4) is used to compute the tunnel-
ing current through a rectangular barrier. Two different
methods, the WKB method and the matching of wave
functions at the classical turning points, were used to
find the transmission coefficient of this barrier. The
technique of matching wave functions is more appro-
priate for computing free-electron transmission through
rectangular barriers than the WKB method, but a com-
parison of the resulting currents indicates that the WKB
method is a reasonably good approximation. The trans-
mission coefficient found by the WKB method is

T(E.)=exp[—2aW (V— E,)"], (5)

where @ is the barrier thickness, V is the barrier height,
W= (2m)"?/%, and m is the electron mass. Using Eq. (4)
and setting the temperature to 0°K, we find the follow-
ing approximate value of the current:

T~[eV (2m$)2/ah?] exp(—2aWe'2),  (6)
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where ¢=V,—n. Equation (6) is the result obtained
by Sommerfeld and Bethe for small voltages and
rectangular barriers. It is also found to first order in
(3kT/¢) that the current through a rectangular barrier

is independent of temperature.

III. TUNNELING CURRENT THROUGH
BARRIERS WITH TRAPS

A. General Formulation of Tunneling Current

The current from metal 7 to metal j through a
barrier with traps is set equal to Eq. (1). However, the
presence of traps changes not only the transmission
coefficient but also the supply function. New expres-
sions for the transmission coefficient and the supply
function are found in this section. As before, the total
current is the difference between the currents in either
direction.

Let us consider what happens to the electronic wave
functions when there is a trap in the barrier. The
trapped electron’s wave function is large in the well and
decays in an exponential manner away from the well in
the classically inaccessible regions of the barrier. The
amplitude of this wave function in the region outside
the barrier depends on the “tunneling path length” to
the potential well; that is, those classically accessible
regions nearer the trap will have the larger wave
function amplitudes. Using this general picture, we find
the wave function of an electron with energy equal to
the trapping level, the quasi-level of the potential well,
to behave somewhat like this: The incoming wave
strikes the barrier, grows exponentially as it approaches
the trap, resonates with a large amplitude inside the
well, decays exponentially toward the other side of the
barrier, and then travels away from the barrier. By
moving the potential well to the middle of the barrier
the amplitude of the incoming wave can be made equal
to that of the outgoing wave. In such a manner traps
can introduce large transmission coefficients. The
resonance of the wave corresponds to the electron being
trapped for some time in the potential well. For electron
energies different than the trapping level, the wave
function will decay exponentially in the usual way in
passing through the barrier. This general behavior is
the same for a three- or a one-dimensional trap.

For simplicity, the three-dimensional potential well
will be replaced by a one-dimensional well. The resulting
treatment is then very similar to Bohm’s discussion of
the metastable states of nuclei which uses a one-
dimensional potential well for the nucleus.” It should be
emphasized that this approximation is an oversimpli-
fication of the actual situation. A more realistic calcula-
tion would use not only a three-dimensional model, but
also a more appropriate method of finding the wave
function in the barrier region. The WKB approximation

7 D. Bohm, Quantum Theory (Prentice-Hall, Inc., New York,
1951), pp. 283-295.



598 JAMES

u(x)

! |
il | |
[ | |
[ | |
1 12] 3 | 4 |
| 1 1 L
o b c d

F16. 1. Potential energy barrier with trap. The classical turning
points for energy E, are at a, b, ¢, and d.

is not really valid since the wavelength of the electron
is the same order of magnitude as the dimensions of the
trap. The possibility of additional reactions taking
place, such as thermal ionization of the trapped elec-
tron, has been completely neglected in this simple
treatment. However, it is hoped that the qualitative
behavior of this model will provide some insight into
the actual case.

For purposes of computation the total barrier will be
assumed to be composed of sections with and without
traps. The total current through this composite barrier
is then the sum of the current densities through the
average tunneling barrier of each region multiplied by
that region’s effective cross-sectional area.

In the regions without traps the transmission co-
efficient is

T(EI)=eXp<~2/ad |k’]dx>, 7

where Ek'a={2m[E,—U’'(x)]}'? and U’(x) is the
average potential barrier. For a free-electron metal, the
supply function given in Sec. II becomes

Ni(E.)dE,= (AxmkT/I¥)dE, In
X{1+exp[ (ni—Eo)/kTT}. (8)

For small voltages, we may use Eq. (4) to find the
current using the transmission coefficient given by
Eq. (7).

In the regions with traps the average barrier is
assumed to be that shown in Fig. 1. To replace the
actual potential barrier by the one shown in Fig. 1 is
equivalent to assuming that the “effective mass” ap-
proximation is valid. If the width of the well is much
larger than the crystal lattice spacing such that the
quasi-stable state allows the wave function to spread
over many lattice sites, then the use of the “‘effective
mass’’ approximation is probably justified. The trans-
mission coefficient of this barrier is found in Appendix A ;

T{(E.)=4{[S(4*+B*)/ABT+ (44 BCY}. (9)
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In order to find the supply function, we must consider
the lifetime of the trap. Since the supply function
represents the number of electrons which are available
for tunneling through the barrier per unit energy range
per second, it is easy to see that if the electron is delayed
in crossing the barrier then the supply function will
decrease. The potential well not only delays the electron
in crossing the barrier but also limits the number of
electrons which can pass through the well at any given
time. If the well is occupied, then no other electrons can
enter it until the well becomes empty again. For
example, a negative-ion vacancy in an alkali halide
crystal can trap either one electron (F center) or two
electrons (F’ center). However, if an F’ center is formed,
the negative-ion vacancy can not trap another electron
until it loses one of its trapped electrons. In this
example, the effective number of electrons which could
pass through the trap is somewhere between one and
two.

There are then two mechanisms which influence the
supply function, the supply of electrons from the metal
up to the barrier and the delay in crossing the barrier
caused by the lifetime of the trap. Only the former
mechanism has been considered in the previous deriva-
tions. If the supply of electrons from the metal were
infinite, the current would be limited only by the trap
lifetime. In such a case the rate at which electrons are
able to tunnel through a trap is assumed to be the
effective number of electrons which can cross the
barrier through one trap divided by the delay time in
crossing the barrier and by the cross sectional area of
the trap,

Ni(E.,7)dE,= (@P;/70)dE.. (10)

The probability for an electron which is able to tunnel
to have an energy in the range (E., E,~+dE,) is PdE.,
the effective cross sectional area of the trap is o, the
effective number of electrons which can pass through the
same trap at the same time is , and the delay time of
these electrons as they pass through the trap is 7. This
delay time is computed in Appendix B. For a free-
electron metal the supply function limited only by the
delay time in the trap is found to be

Nz(Ea:ﬂ')dEz: (1/Tﬂz)]\71(Ez)dEm (11)

where 8;=[32rmo (E.Er;)V?]/3ak® and E,is the height
of the Fermi level above the bottom of the conduction
band in metal . Now the conductivity is proportional
to the supply function multiplied by the transmission
coefficient. Since the conductivity limited by traps in
the barrier can be thought of as being in series with the
conductivity limited by the supply of electrons from the
metal to the barrier, we may write the effective supply
function as

Ni(eff)=N;(E:)N;(E=7)/[N(E)+Ni(Esr)].  (12)

If the metals on both sides of the barrier are identical,
then the difference between the currents in either direc-
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tion through one trap of cross section o is
7= ofe) [ KTEIE A48, (19

here K= (dwmaoe?V /i¥){1+exp[ (E,—n)/kT 1}~ When
N.(E,)=N(E,,7) the delay time will be denoted by
#=1/B;. For 7>7* the supply function is mainly
limited by the trap lifetime. For 7 <* the supply func-
tion is mainly limited by the supply of electrons from
the metal to the barrier.

The total current density through a barrier with
traps will depend upon the distribution as well as the
concentration of traps. If the concentration of traps is
not too large, then we may write

Jtot%]—F/C(x)J‘(l)dx, (14)

where C(x) is the number of traps per unit area of the
barrier in the range (x, x4dx) in the barrier and J is
the current density through the barrier in the regions
without traps.

In contrast to the temperature independence of
tunneling currents through rectangular barriers, there
are two possible ways in which tunneling currents
through traps may be temperature dependent: (1) Since
the concentration of potential wells or ionized traps may
be temperature dependent, the tunneling current in
Eq. (14) may also be temperature dependent. (2) In a
later section it is shown that if the quasi-levels of the
traps lie near the Fermi level then the majority of the
current may be due to electrons with energies around
these quasi-levels. Since the distribution of electrons
around the Fermi level is temperature dependent, the
tunneling current resulting from these electrons may
also be temperature dependent.

B. Total Tunneling Current through a Trap

An approximate expression for the total tunneling
current through one trap is found. As derived in Sec. IV
and demonstrated in Fig. 2, the current per unit energy
interval is much larger for energies near the quasi-levels
than for energies away from the quasi-levels. Con-
sequently, the majority of the current will flow at the
nth quasi-level energy if the nth quasi-level is near the
Fermi level. The total amount of current which flows
through such a trap will then be approximately the
maximum current per unit energy interval multiplied
by the half maximum width of the current peak AE,,

Tt(1,) z4KA2B2AEn|: (A2+B)

c ~—1
+442B23(42+B?) / dx/v:l ., (15)
b
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wherev={2[ E,— U () /m} 2. T8l b dx/ | v|,8f v° dx/v,
and (A42+B?)/AB are all small compared to (4B)Y2
then an approximate expression for the half maximum
width is

AE, =~ (ﬁ/AB)[ﬁ(A2+B2)]1/2[ /

b

c —1/2
dx/vi' . (16)

The right-hand sides of Eqgs. (15) and (16) are to be
evaluated at the nth quasi-level energy. The resulting
total current through one trap is then

Jt(1n)= (h;f}K/AB)I:(ALI—BZ)(Q/bc dx/v)sjrﬂ. @an)

IV. COMPARISON OF TUNNELING CURRENTS
THROUGH BARRIERS WITH AND
WITHOUT TRAPS

A. Current per Unit Energy Interval

To evaluate the effect of traps on the current, we
shall compare the integrands of Egs. (13) and (4). The
transmission coefficient in Eq. (4) is set equal to the
value given in Eq. (7) for barriers with no traps. One
finds

d]‘(l)/d].,-—‘T‘(Ex>(1+6r)_‘exp[2 / Ik'ldle, (18)

where dJ, is the current per unit energy interval
through a barrier of cross-sectional area ¢ which
contains no traps. If

d c
exp[Z/ |%| dx-—f |#| Lix]ZAB, (19)
a b

then we find for 7 <+* that

dJt(1)/dT > (1/4) exp|:2 /

b

g ]k';dx]. (20)

The current through traps is then larger than the
current through barriers without traps for = <7*. The
factor (1/4) results from the different methods used to
compute the transmission coefficients. If the trans-
mission coefficient used in Eq. (4) is set equal to the
transmission coefficient given in Appendix A for zero
size traps, then the factor becomes unity. Equation (19)
assumes that the barrier height does not increase when
a trap is added. This need not be the case. The positive
and negative changes in the work function of metals
when impurities are added to the surface indicate that
the barrier can be increased as well as decreased.®
When 7> 7% we find using Eq. (19) that

djtQ1)/dJj,> (T*(E,)/Br)AB exp[fc lk'[dx]. (21)
b

8 L. P. Smith, Handbook of Physics, edited by E. U. Condon
and H. Odishaw (McGraw-Hill Book Company, New York, 1958),

pp. 8-80.
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In order to estimate the value of this expression, we
shall assume that the trap is a square well such that

/e

/ da/v= (c—b) (m/2E) =1y, (22)

and that Q=0 (c—b), kr=WEF'*. Equation (21) then
becomes

4 )/dJ, c
Ban?/Qkp*) A2B? exp[Z[ 4 dx:I
Jo

- d

:‘12+B2+(1/to)[/12 / i/ 1o +5° / ,,dx/M]

c «

. (23)

The term ¢ is the classical time for the electron to
travel across the trap. The other two integrals in the
denominator of Eq. (23) are the classical times for an
electron to travel across the potential wells which would
result if the potential barrier were turned upside down.
These transit times are probably all of the same order
of magnitude so that the denominator of Eq. (23) is
approximately of magnitude (A24-B%. If we let
Q=20 A3 and Ep=35 eV, then the front coefficient of
Eq. (23) containing these terms is the order of 0.1.
However, since the term A42B%/(424B?) is sufficiently
large to dominate, we see that the current is enhanced
by the presence of traps for r>7*. As we may have
anticipated, the current through a barrier with a trap
is enhanced at least by the factor resulting from a re-
duction in the tunneling path length. When the energy
of the electron is near the quasi-levels of the trap, the
current is enhanced much more than for energies away
from the quasi-levels.

A sample calculation was done for a rectangular
barrier with a square well in its center. The height of
the barrier, as measured from the bottom of the con-
duction band of the metal, was 10 eV, the Fermi level
was 9 €V, the total tunneling path was 40 A, the trap
wiath was 3 A, the bottom of the trap well was 0.4 eV
below the bottom of the conduction band, the trap
cross section was 9 A2, and the effective number a was
1. There were two quasi-levels in the trap, at 0.64 and
at 8.94 eV. The current through one trap per unit
energy interval was plotted vs the electron energy as
curve 4 in Fig. 2. The width of the current peak at the
lower quasi-level is 3.2X107 eV and the width of the
current peak at the upper quasi-level is 1.3)X10~* eV,
The current per unit energy interval through a rec-
tangular barrier of height 10 eV, cross-sectional area
9 A% and tunneling path 43 A was plotted as curve B
in Fig. 2 for comparison. For this example the current
through a barrier with traps is increased by about
5X10% where S is the effective area of the traps per
unit area of the barrier, S=Cq/(area of the barrier).
The number of traps per unit area of the barrier is C,
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(3]

Ex (ELECTRON VOLTS) D

I'16. 2. Tunneling current per unit energy interval of tunneling
electrons. Curve A—rectangular barrier with square well trap,

total barrier thickness=43 A. Curve B—rectangular barrier with-
out trap, total barrier thickness=43 A.

There are usually high densities of defects in thin films
so that a value of §=10-% is not unreasonable. This
value for S produces a trap increased current, which is
one hundred times larger than the current through a
rectangular barrier of the same total width.

B. Total Current

A comparison between the total current through one
trap and the total current through a rectangular barrier
without a trap but of the same size indicates that the
current is greatly increased if the quasi-level of the trap
is near the Fermi level of the metal. The experimental
data of Fisher and Giaever is considered with respect
to this model and it is shown that their estimated effec-
tive mass needed for theoretical agreement is probably
too small.

A comparison of the total current through a rec-
tangular barrier containing a square well trap in the
center, from Eq. (17), with the total current through a
rectangular barrier of the same tunneling path length
and cross section, from Eq. (6), gives

JAm)/ T,
=G exp{ ZGI’V[(""Q*"‘EFV)X,2“ (3/4) (V()'”'lin)llzj}; (24)

where £, is the nth quasi-level energy and
o ~3/2
G= (2Er/¢)*(0a/ar?) W3EFE,,‘/2[B/ dx/v] .
b

When the quasi-level is near the Fermi level of the
metal, E,~ Ep, the trap will increase the total current
through the barrier by a substantial amount. In such a
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case the current density through a barrier with traps
becomes approximately

JH(n) =~ (SGV &/ al®) 2mep)'* exp[— (3a/2)W¢'*], (25)

where .S is the effective area of the traps per unit area
of the barrier. The term SG is usually not too small so
that by comparison with Eq. (6) we see that the current
will be approximately the same as a current through a
rectangular barrier of width (3a/4).

Fisher and Giaever could bring their data into agree-
ment with the theoretical tunneling currents through
rectangular barriers by using an effective mass equal to
(1/9)m. These same data can therefore be brought into
agreement with Eq. (25) by using an effective mass
equal to im. By considering the capacitance measure-
ments used by Fisher and Giaever to determine the
barrier thickness, the value of the effective mass needed
for agreement with theory may be further increased.
The capacitance measurements will give some average
of the barrier thickness which is larger than the mini-
mum thickness. But, since the current is exponentially
dependent on thickness, the minimum thickness will be
the barrier thickness for most of the current. Conse-
quently, the barrier thickness used by Fisher and
Giaever probably was too large and their estimate of the
effective mass was probably too small.

V. POSSIBLE EXTENSIONS
A. Current Proportional to the Density of States

If the quasi-levels of the traps are near the Fermi
levels of the metals and if the majority of the current
does result from the current peaks around the quasi-
levels, that is the supply function is limited by the trap
life time, then one may expect the current to be pro-
portional to the product of the density of states in the
two metals. This result can be contructed by using the
supply function

Ari (Px,T)dpzz Q (dﬁx/T) /f‘l(l - ff)Pindﬁz/sz; (26)

where Q is a constant and p; and p; are the densities of
states in the two metals on either side of the barrier.
The current resulting from a current peak through one
trap is then

JH(1,m) = QLT (p=) Apa/7]En / pp2(f1— fo)dp,dp.. (27)

In terms of the transition rate viewpoint of Bardeen,'
the transition rate is limited by the lifetime of the trap
and not the electron velocity. As Harrison® showed,
when the transition rate is limited by the electron ve-
locity, the reciprocal relationship between the density
of states and the velocity removes the current de-
pendence on the density of states. In the case of traps,
the transition rate may be set equal to a constant over

THIN FILMS WITH

TRAPS 601
the width of the sharp current peak around the quasi-
level. This current is then proportional to the product
of the densities of states. Since the quasi-levels near the
Fermi level may be broadened in an actual sample,
either by variations in the barrier shape or by phonon
interactions with the trap, this proportionality between
current and the density of states may hold over a range
of applied voltages corresponding to the broadening of
the quasi-levels in the sample. If the density of states
does not change very much within this short range, then
one may not see any structure in the current-voltage
characteristic. This result is in agreement with the
experiments of Giaever and Megerle.? The traps in the
aluminum oxide films used by Giaever may have been
either impurity ions from the metal or oxygen-ion
vacancies.

B. Photoconductivity

The presence of traps in the barrier region could
permit the tunneling process to be sensitive to light. By
irradiating the barrier with light capable of ionizing the
traps the lifetime of electrons in the traps could be re-
duced and the number of traps effective in the tunneling
process could be increased. An increase in current would
then result from irradiating the tunneling barrier.

VI. CONCLUSIONS

The model examined in this paper suggests that traps
in thin insulating films may increase the tunneling
current through these films and that this tunneling
current may be proportional to the product of the
density of states in the metals over a limited electron
energy range. The current increase is greatest when the
trapping level is near the Fermi level and when the
traps are near the center of the barrier if the applied
voltage is small. In this case the majority of the
electrons will tunnel through the barrier at the trapping
level energy.

It is felt, due to the oversimplified nature of this
model and the experimental difficulties involved in de-
termining the necessary parameters, that any correla-
tion between the results of this model and experime 1tal
data may be fortuitous. However, in view of the lirge
order of magnitude of the ‘resonance” effect in the
model, it is possible that an actual trap in a thin film
may display this type of behavior. It is hoped that this
paper may provide some insight into the influence of
traps in the thin insulating films used for tunneling
experiments.

APPENDIX A. TRANSMISSION COEFFICIENT OF
BARRIER WITH POTENTIAL WELL

The WKB method is applied to the barrier shown in
Fig. 1. The classical turning points for an electron of
energy E.=p*/2m are a, b, ¢, and d. Let the wave
function in region 1 be that for a running wave traveling
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Yr=piP2 exp[i/ kdx—iw/‘{l.

Using the WKB connection formulas this wave function
is extended into region 5,

to — oo,

(A1)

Ys= (1/2p1/2){F explii/x kdx—ir/él:l

d

+H exp[—i/x kdx+1l1r/4] ’, (A2)
a

where
F=S(B*—A%)/AB—iC(4AB+1/44B),

H=S(A*+B?)/AB—iC(4AB+1/44B),

A=exp[/ab|kldx:|, B=expl:/cd|k{dx],
C=cos[ fb c kdxil, S=sinl: fb c kdx],

k= {2m[ E,— U (x) T2,

The resulting transmission coefficient is

T{E.)=4/|H|* (A3)

APPENDIX B. TRAP LIFETIME

To find the lifetime of the trap, wave packets are con-
structed from the wave functions in regions 1 and 5.
The time lag of this packet in traversing the barrier is
then equal to the lifetime of the trap.” The incident
wave packet is

Y= /f(E-Eo)p—”ZdE

Xexp[—i / kdx+i7r/4—iEt/h:|, (B1)
d
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and the transmitted wave packet is

Y= /f(E—— Ey)p~'?dER

Xexp[i / kdx—ir/4+i¢—iEz/hJ, (B2)
where Re¢=2/H,
tang=[4A42B%/ (A2+B?)] tan<1r/ 2— / kdx).
b
The center of the wave packet is found where the phase
has an extremum. The time behavior of the center of the

incident wave packet is
d

t= f dx/v, (B3)
and the transmitted wave packet gives
t= / dx/v+1dg/dE. - (B4)

We see that the delay time in traveling from d to a is
#0¢/0E=r. This delay time r is found to be

= [1(E)/41) 404245

Xﬁcdx/v—ﬁl[A?/;d dx/|v| +B?
X/abdx/bl]sin[Z/:kdx:H. (B5)

The delay time is equal to the lifetime of electrons
trapped in the potential well in the barrier. We see that
at certain energies quasi-stable states are formed. This
is similar to the metastable states of certain nuclei.
We also see that 7 in Eq. (BS) can be negative. This
does not affect the results of this paper since = is always
positive around the quasi-levels where it is used.



