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Measurements of the dispersion relations for waves propagating in the L0001] and L0110] directions in
beryllium have been made using the MTR phased-chopper slow-neutron velocity selector. In the $0110]
direction only one of the transverse modes was available for investigation, that having atom displacement
normal to the basal plane. Two distinct frequencies were .observed at the center:of the Brillouin zone for
the optical branches, and the corresponding branches are referred to as upper optical and lower optical.
For both symmetry directions, the upper optical branch corresponds to the mode of vibration having the
polarization vector parallel to the hexagonal axis. Pertinent frequencies in units of 10" sec ' are: (at the
center of the zone) upper optical, 1.99&0.07; lower optical, 1.33&0.04; (at the zone boundary in the I 0001]
direction) lower optical and transverse acoustical, 1.01&0.06; upper optical and longitudinal acoustical,
1.57&0.07; (at the zone boundary in the L0110] direction) upper optical, 1.69&0.09; lower optical, 1.63
&0.08; longitudinal acoustical, 1.54~0.08; transverse acoustical, 1.21&0.05. The mode of vibration for a
particular phonon was determined from the region of reciprocal space in which the transition was observed.
The initial slopes of the acoustical branches agree well with elastic constant data, except for the longitudinal
branch in the $0001]direction. Lattice dynamics models of Begbie and Born and of Slutslry and Garland, the
latter extended to include interactions with fourth and fifth nearest neighbors, giv'e limited agreement with
the present data only when the force constants in the models are evaluated from the neutron-scattering data.

I. INTRODUCTION bismuth" and pyrolytic graphite, " which have the
rhombohedral and graphite structures, respectively.

The dispersion relation of beryllium is a new contri-
bution to the knowledge of solid-state physics because
it represents a crystal symmetry class (hexagonal close
packed) which has not been investigated extensively
heretofore. Since beryllium has two atoms per primitive
unit cell, the dispersion relation will have six branches:
one longitudinal acoustical and two transverse acousti-
cal branches and one longitudinal optical and two
transverse optical branches. The optical branches do not
have just one intercept at the center of the Brillouin
zone as do monatomic cubic structures but two distinct
intercepts. Because of the small atomic spacing in
beryllium crystals and the comparatively large fre-
quency range of their vibration spectrum, the study of
the dispersion relation by neutron scattering is attain-
able with the present velocity selector resolution. In
addition beryllium has a low neutron absorption cross
section; it is a good coherent neutron scatterer, and a
large single crystal of beryllium was immediately
available for the experiment.

The scattering of slow neutrons by a material can be
completely described by the nuclear scattering lengths
and the solid sta, te properties (symmetry class, dis-
persion relations, and structure factors). The scattering
lengths" and the symmetry class" of beryllium are well
known, and the structure factor can be approximated
on the ba, sis of lattice dynamics models. Thus the
measurement of the dispersion relation is an important
contribution for describing the scattering of slow

'[SING the X'ITR phased-chopper slow-neutron
velocity selector, ' extensive measurements of the

normal modes of vibration of beryllium (hexagonal
close-packed structure) were made for waves traveling
in the [0001] and [0110] directions. These data are
compared with dispersion relations calculated from the
model of Begbie and Born' and from the model of
Slutsky and Garland. 3 Neither model is completely
successful in explaining the data.

The dispersion relation for phonons in a crystal can
be determined by measurements of the momentum
changes and the energy changes occurring when slow
neutrons are inelastically scattered from a single crystal.
Previous examinations have been devoted mainly to the
study of cubic crystal structures such as aluminum, ' '
sodium, ' sodium iodide, ' germanium, " silicon, ""and
lead. " Preliminary data have been reported also for
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neutrons by beryllium. Since beryllium is an important
reactor moderator and reflector, these descriptions are
important in understanding the moderation, thermali-
zation, and space distribution of the cruxes in a beryllium
reactor assembly.

Measurements of the dispersion relations v= v(q) by
neutron spectrometry are interpreted through the
energy and momentum conservation relations":

and
Q = kp —k'= 27r~ —q.

Here, E, Eo, and AE are the final and initial neutron
energies and the energy change, respectively; v is the
phonon frequency, a function of the phonon wave
vector q; kp and k' are the initial and final neutron wave
vectors, respectively; ~ is a translation vector of the
reciprocal lattice. In the experiment, the initial neutron
energy Eo and the crystal orientation relative to the
incident neutrons (or the orientation of kp relative to
the crystal lattice) were variable parameters. From a
given peak in the coherent inelastic neutron scattering
data, one determines F. and k', and hence, a single point
in the dispersion relation v = v(q) is obtained. By making
many measurements with different initial energies and
different orientations of the crystal, the complete
dispersion relation for all directions in the crystal can
be determined.

In mapping the v(q) relation from neutron scattering
data, it is important to maximize the cross section for
neutron-phonon interactions which one wishes to
observe and at the same time to remove competing
effects as much as possible. To this end it is necessary
to consider the differential cross section for one-phonon
coherent scattering. This relation has been given as'"

A k' Ã, g,'
~, (kp ~ k') =—— e-'"— (2)

47r kp X,+1
per unit cell steradian for neutrons interacting
with the jth phonon branch. The quantity Ã;
= [exp(hv/k&T) —1] ' applies for neutron energy gain,
while E,+1 applies for neutron energy loss; t, '" is the
Debye-Wailer factor and J;=1+(ph/2E') [k' grad, v,],
where p=+1 for neutron energy gain, p= —1 for
neutron energy loss, and h is Planck's constant. The
factor g,', analogous to the structure factor of x-ray
scattering, takes into consideration the dynamics of
the atomic motions. The factor g was calculated for
beryllium and applied in the scattering measurements
which were made. The calculation of g,' is presented in
Sec. II.

In this experiment the optical branches are referred
to as upper optical (UO) and lower optical (LO), and
the acoustical branches are referred to as transverse
(TA) and longitudinal (LA). This identification avoids
confusion which might arise if the conventional identifi-
cation was followed (e.g. , the upper optical branch in

the [0001]direction would be identified as longitudinal
optical while the upper optical branch in the [0110]
direction would be identified as transverse optical).
The optical frequencies at the center of the Brillouin
zone are 1.99~0.07 and 1.33~0.04, both in units of
10" sec ', for the upper and lower optical branches,
respectively. For the [0001] direction the optical
frequencies decrease for increasing value of the phonon
wave vector and join the acoustical branches at the
zone boundary at frequencies of 1.57+0.07 (UO and
LA) and 1.01+0.06 (LO and TA), both in units of
10" sec '. At a value of q/q, 0.6, in the [0001]
direction, the LO and LA branches intersect. Data
obtained for the acoustical branches join smoothly to
the initial slopes predicted from elastic constant data,
and these branches display the usual decreasing slope
for increasing wave vector, except for the LA[0001]
branch where the neutron scattering data plot above
the initial slope line for over half the wave vector range
in. the Brillouin zone. The Debye approximation
appears reasonable for the acoustical branches in the
[0001]direction but not for the [0110]direction where
the acoustical data deviate from a straight line by more
than 10'%%u~ at a wave vector value of q/q, .„~0.4.
Values for the [0110] zone boundary intercepts are,
all in units of 10"sec—':UO, 1.69&0.09;LO, 1.63&0.08;
LA, 1.54~0.08; TA, 1.21&0.05.

Lattice dynamics models which have been compared
with the data of this experiment are due to Slutsky
and Garland, hereafter referred to as SG, and Begbie
and Born, hereafter referred to as BB. The SG model
assumes simplified central-force interactions with
nearest neighbors in the hexagonal plane and in addition
nearest and next-nearest neighbors out of the hexagonal
plane. In contrast, for the BB model no assumptions
are made regarding the nature of the forces, and inter-
actions are assumed with only nearest neighbors in and
out of the hexagonal plane. The assumptions of the
SG model requires 3 force constants while the more
general BB model requires 8 constants. In both models
the microscopic force constants are related to the five
elastic constants for hexagonal crystals. Experimental
values of the elastic constants of beryllium, reported by
Smith and Arbogast, "permit the evaluation of five of
the eight force constants in the BB model and all of the
constants in the SG model. By introducing these values
of the force constants into the dynamic equations one
can compare the models directly with the experimental
data. With the force constants evaluated in this way,
neither model matches the data, particularly in the
predicted optical frequencies which are as much as 25%%u~

higher than the observed values.
Since for certain values of the phonon wave vector,

the dynamic equations simplify yielding the frequency
squared as a linear combination of the force constants,
it is also possible to evaluate the force constants

"J.F. Smith and C. L. Arbogast) J. Appl. Phys. 31) 99 (1960).
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bp

Fio. 1.Basis translation vectors of (a) the direct lattice and (b)
the reciprocal lattice of beryllium, showing their orientation
relative to the single-crystal sample. Sample dimensions are
x= 7 in. , y= 1.72 in. , and s= 1.08 to 0.47 in.

directly in terms of the neutron scattering data. Values
of the force constants arrived at in this way and used
in the dynamic equations give improved, although still
limited, agreement between the models and experiment.
The SG model was extended to include interactions
with fourth and fifth nearest neighbors, and the general
results of this calculation are given in the Appendix.
The extended SG model, with the consta, nts evaluated
from the neutron data, is compared with experiment,
and it is concluded that agreement is suS.ciently good
so that the model can be used to calculate a frequency
distribution for beryllium, and for preliminary reactor
calculations.

A qualitative comparison of the beryllium data is
made with the lattice vibration data for zinc" (also
hexagonal closed-packed structure) which were obtained
by Joynson from x-ray measurements.

r= say+sas+sas, (3)

where aI, a~ and a3 are the primitive lattice basis vectors
illustrated in Fig. 1(a).Values of the lattice parameters"
are ~a~| = ~as~ =a=2.2856k, ~as~ =c=3.5832 A. As
noted previously, the primitive hexagonal unit cell of
beryllium contains two atoms and hence there are six
branches for the dispersion relation, three acoustical
and three optical.

The reciprocal lattice of beryllium is also hexagonal,
a,s shown in Fig. 1(b), and experimental conditions were
arranged such that only phonons having their wave
vectors in the plane of bs and bs (h=0) were investi-
gated. From the symmetry of beryllium (space group

+ R. E. Joynson, Phys. Roy. 94, 851 (1954),

II. LATTICE DYNAMICS

Beryllium possesses the hexagonal close-packed
structure which is based on the hexagonal lattice with
a basis of two atoms per lattice point, one atom posi-
tioned at the lattice point and the other removed a
distance

~D(q) —4m'mp'I
~

=0, (4)

reduces for the [0001]direction to three 2)&2 matrices:
one 2)&2 matrix for the longitudinal vibrations and two
identical 2)(2 matrices describing the transverse
vibrations. For the [0110] direction of wave propa-
gation, the 6)(6 dynamical matrix reduces to three
distinct 2)(2 matrices, one for longitudinal vibrations
and two for transverse vibrations having their polari-
zations perpendicular to each other and in mirror planes.
For the [0110] direction, the transverse modes are
designated T(~~) and T(J ) depending on the polari-
zation being either parallel or perpendicular to the
[0001]direction. Of interest is the fact that this model
predicts the presence of optical branches which do not
have a common frequency for zero value of the wave
vector. In addition, the identification of the upper
and lower optical branches changes in going from the
[0001] direction to the [0110] direction. The upper
optical branches, for the symmetry directions of
interest, correspond to the modes of vibration having
their polarization vectors in the [0001]direction.

With the simplification of the dynamical matrix to
three 2X2 matrices for the symmetry directions the
eigenfrequencies of the SG model are given by equations
of the form

4x'mv;=- F,+Z;(q, 11)&(Z, (q, 12) j. (5)

Y; is a linear combination of the force constants,
Z;(q, 11) is a real function of the wave vector and force
constants of atoms on the same sublattice and Z;(q, 12)
is a complex function of the wave vector and force
constants for the interaction between atoms on different

Dsq') it is noted that a sixfold rota, tion inversion axis is
oriented parallel to bs, and a twofold axis is oriented
parallel to bs with another twofold axis perpendicular to
bs and bs. In addition there are mirror planes parallel
to the plane of b& and b& and to the plane of b& and bs.
With these symmetry properties the polarization
vectors $ of waves traveling in the symmetry directions
are as follows: for waves traveling in the direction of
bs longitudinal wave polarization is parallel to bs and
transverse wave polarization is in the mirror plane
perpendicular to bs and independent of orientation
within the plane since the transverse modes are de-
generate; for waves traveling in the direction of bs
longitudinal wave polarization is parallel to bs and
transverse polarizations are perpendicular to bs and
either parallel or perpendicular to bs. In crystallographic
nota, tion the directions of bs and bs are referred to as
[0110]and [0001], respectively.

A general model for the lattice dynamics of hexagonal
close-packed metals has been developed by Slutsky and
Garland. The model assumes central-force interactions
with first, second, and third nearest neighbors. In
accord with the symmetry cited above the 6X6
dynamical matrix D(q), which appears in the secular
equation



sublattices. Equation (5) is identical in form to Eq. (7)
of Brockhouse and Iyengar" for germanium. Following
their assumptions and allowing for the difference in
crystal structure the structure factor g,' is given by 0220
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FIG. 2. Calculated structure factor gp, based on the lattice
dynamics model of Slutsky and Garland (a=1.83X10' dyn cm ',
P=3.76X104 dyn cm ', y=0) in units of (bQ g)s/2mv.

where b is the bound atom coherent scattering length,
g; is the phonon polarization vector describing the
direction of atom displacement for the jth mode, Q is
defined in Eq. (1), and r is defined in Eq. (3). In
evaluating the structure factor, the SG model has been
applied with the values a=1.83, /=3. 76, and y=0, all
in units of 10' dyn cm ', assigned to the force constants
in the notation of Slutsky and Garland. The final values
assigned to n, P, and y were determined from a least-
squares fit of the SG model to the neutron data for the
optical branches (preliminary evaluation of n, P, p, and

gP was made from elastic constants data). Results of
the g calculation are displayed in Fig. 2 for the
symmetry directions L0001) and L0110j. The plots of
g' labeled TA and UO for the L0110j direction refer to
the transverse modes having their polarization vectors
parallel to the L0001) direction (the other transverse
modes for this direction were not investigated). The
structure factor was used to predict the regions of
reciprocal space where maximum intensity might be
expected. In Fig. 3 is displayed, by bold outline, the
periodic range of g for the k=0 plane of reciprocal
space, and for comparison the Brillouin zone or periodic
range of v(q) is shown in light outline.

Experimental values of the elastic constants which
were used in evaluating the model of SG and in deter-
mining the initial slopes of the acoustical branches are
due to Smith and Arbogast. Values of the elastic
constants, in units of 10" dyn cm ', are as follows:
Cyy 2 923 j C33 3 364 ) C44 1 625 ) Cy2 0 267
Cg3 =0.14.

A complicating factor which arises in the study of a
solid such as beryllium stems from the fact that it is a

FIG. 3. The h=0 plane of reciprocal soace showing the periodic
range of the structure factor in bold outline and, for comparison,
the Brillouin zone in light outline.

good neutron monochromator. In such materials it is
possible that phonon scattering may be preceded by
Bragg scattering" or followed by Bragg scattering.
While analysis of the data from double scattering
events of this type lead to frequency and wave vector
values which are consistent with other dispersion curve
data, the data do not appear to satisfy the identi6. —

cation of the mode of vibration in terms of the polari-
zation factor (Q g)s which occurs in the structure factor

g . For scattering events of this type the wave vector
relation in Eq. (1) should be replaced with

kp —k"= 2ir (~i+~s) —q. (7)

Equation (7) is obtained by adding together the wave
vector equations (1) for two successive scattering events
in one of which Bragg scattering occurs (q=0). The
symbol k" refers to the neutron wave vector after the
second scattering process, and the reciprocal lattice
vectors ~~ and ~2 refer to the individual scattering
processes.

III. EXPERIMENTAL DETAILS

The data were obtained using the MTR (5&Iaterials

Testing Reactor) phased-chopper velocity selector', and.
time-of-Right methods. Chopper inserts having a radius
of curvature of 83.3 in. were used with a chopper speed
of 4950 rpm. The beryllium single crystal was placed
in the usual sample position, —,

' m from the second
chopper. Initially a total of twelve BF3 detectors having
a diameter of 1 in. and an active length of 4 in. were
placed side by side with their center wires perpendicular
to the scattering plane and at a distance of approxi-
mately 1.8 m from the beryllium crystal. The in-
dividual detectors were not all at exactly the same
distance from the sample. Detector pulses were stored
in separate sections of the 4096 channel time-of-Qight
analyzer for individual detectors or for sets of two
detectors in parallel, thus dehning from 6 to 12 closely
spaced scattering angles. The group of detectors was
centered on a scattering angle of 90'. During the
progress of the experiment ten additional detectors
were installed, the second group of detectors being
centered at a scattering angle of 75' and connected in

"B.N. Brockhouse, T. Arase, G. Caglioti, M. Sakamoto, R. N.
Sinclair, and A. D. B. Woods, Chalk River Report CRNP-946,
AECL-1074 (unpublished).
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the same manner as the original group of detectors. A
fission chamber was placed in the beam path at a
distance of 2.5 m from the second chopper, and data
from this detector were used to determine the initial
energy in a scattering experiment as well as to monitor
the phase relation between choppers. It was most
convenient to vary the initial energy Eo and crystal
orientation and maintain fixed scattering angles
(detector positions) throughout the experiment.

The crystal was mounted on a rotary table with one
of the "a" axes of the hexagonal plane in a vertical
position, perpendicular to the table surface and the
scattering plane of the experiment. Crystal orientation
was changed during the experiment by rotation about
this particular u axis. If we identify the rotation axis
as a~, then the vectors b~ and b~ of the reciprocal lattice
are normal to the axis of rotation and lie in the scatter-
ing plane Lsee Fig. 1(b)]. Crystal alignment was
checked several times during the course of the experi-

ment by observing Bragg reflection of neutrons from
various selected crystal planes. These observations were
made by using a single BF3 detector which defined the
scattering angle to within &23' of arc. Calibrations on
the rotary table permitted the adjustment of crystal
orientation to within 3' of arc.

Dimensions of the beryllium crystal are 1.72 in. wide
by 7 in. long with a thickness which tapered from 1.08
to 0.47 in. Only a portion of the crystal was exposed
to the incident beam in the scattering experiment, the
thickness of this portion varying from 0.64 to 1 in. One
of the u-axes was approximately parallel to the 7-in.
dimension of the crystal and this particular a-axis was
aligned with the rotation axis of the rotary table. The
angular resolution of the initial beam is ~0.3' in the
horizontal (scattering) plane and %0.8' in the vertical
plane as determined by the size of the chopper inserts
and collimation in the beam hole plug. The angle sub-
tended by the BF3 detectors gives an angular resolution
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phonon wave vector within ~5' of the
desired direction and solid points refer
to data obtained from the scattering
surface method. The character of the
data is as follows: &&, upper optical;

lower optical; o, longitudinal
acoustical; p, transverse acoustical.
The smooth curves were hand drawn
through the data, and the straight
lines at the origin indicate the initial
slopes of the acoustical branches
predicted from elastic constant data.
For the direction L01T07, phonon
polarization for the transverse acousti-
cal and under optical branches is
parallel to I 0001$.

b, and bs and hence perpendicular to the scattering
plane of the experiment could not be observed without
remounting the crystal in a different orientation (i.e.,
Q )=0 for these branches throughout the experiment).

In mapping the different branches of the dispersion
relation, the structure factor g,' was followed as much
as possible in determining the areas of reciprocal space
in which to work, and every e8ort was made to maximize
the polarization factor (Q ()'. The general areas of
reciprocal space in which the investigations were
carried out are given in Table I. The longitudinal
acoustical and lower optical branches which cross for q
in the L0001] direction were investigated in different
areas of reciprocal space such that the polarization
factor of the branch being investigated was maximized
and the same factor for the other branch was nearly
zero.

TABLE I. Regions of reciprocal space in which the specified
branches of the dispersion relation were investigated.

+Direction
Branch+
Transverse

acoustical
Longitudinal

Acoustical

Lower optical

Upper optical

E00013

between (0,2,2, 1)
and (0,2,2,0.5)

near (0,0,0,4)a

between (0,2,2,0)
and (0, 2.5, —2.5, 0.5)

near (0,0,0,5)a

t01ioj
between (0,0,0,4)

and (0, 0.5, -0.5.4)
near (0,2,2,0)a and

between (0,2,2, 1)
and (0, 2.5, —2.5, 1)

between (0,2,2,0)
and (0, 2.5, —2.5, 0)

between (0,0,0,5)
and (0, 0.5, -0.5, 5)

a On a line connecting the specified reciprocal lattice point with the origin,

IV. DISCUSSION

In agreement with the SG and BB lattice dynamics
models the experimental data indicate that for both
symmetry directions, L0001] and L0110], the higher
frequency optical branch corresponds to the mode of
vibration having its polarization vector parallel to the
hexagonal axis. Whether or not there exists a splitting
of the optical and acoustical branches at the zone

boundary in the L0001] direction cannot be determined
from the present data. Further, there does not appear
to be any question regarding the crossing of the lower
optical and longitudinal acoustical branches in the
L0001] direction. These two branches were investigated
in different areas of reciprocal space such that the
polarization factor (Q g)s for one branch was maxi-
mized and simultaneously the polarization factor for
the other branch was nearly zero. In this way each of
the two branches was investigated individually without
the presence of interference from the other branch.

For the acoustical branches displayed in Fig. 6 the
experimental data join smoothly to the initial slopes
predicted from elastic constant data for three of the
four branches. In the case of the fourth acoustical
branch, LAL0001], the data points lie above the initial
slope line for half the wave vector range in the Brillouin
zone. Although the data in the region of small values
of q are not sufficient to show that the curve has the
correct slope at q=0 the data for larger values of q do
suggest the presence of long-range forces in the crystal.
Further inspection of the acoustical branches indicates
that the Debye approximation is reasonable for the
L0001] direction but not for the L0110] direction
where the dispersion is more pronounced.

Comparison of lattice dynamics models with the
experimental data can be made by solving the dynami-
cal equations for phonon wave vectors in the directions
of interest, L0001] and L0110].A plot of the solution in
the form v(q) vs g/q, gives a direct comparison with
the experimental data.

Slu/sky and Garland Model

Qualitatively, the SG model is in agreement with
experimental data. In particular, the general separation
of the optical branches and the crossing of the lower
optical branch and the longitudinal acoustical branch
in the L0001] direction are both predicted by the model
as well as the over-all general shape of the dispersion
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curves for both symmetry directions. Further, it is
concluded that the structure factor g which was
calculated from the SG model is a good approximation
to the real quantity.

Quantitatively, however, the SG model is inadequate
when the force constants are evaluated from the elastic
constants. This statement is based on comparison of the
model with experiment for the optical intercepts at the
center of the Brillouin zone, the initial slopes of the
acoustical branches, and the frequency ranges of both
acoustical and optical branches.

In the SG model, central forces are assumed with the
further simplification that only terms quadratic in the
displacements of the atoms from their equilibrium
positions are retained in the expression for the potential
energy, and that derivatives of the potential energy are
evaluated about the potential minimum. Thus, there
are three force constants (for describing the interaction
of a given atom with first, second, and third nearest
neighbors) plus a volume-dependent electron gas
constant a- which are related to the five independent
elastic constants. The problem of evaluating the four
unknown constants in terms of the elastic constants is
over determined and the values obtained for the force
constants when introduced into the dynamic equations
of motion yield results which are not consistent with the
experimental data. For example, the upper optical
branch is predicted to have an intercept at the center
of the Brillouin zone of 2.9/10" sec ' compared to
the experimental value of 1.99&0.07X10"sec '.

An alternative method of evaluating the force
constants is provided by the fact that for certain points
in the Brillouin zone the eigenvalues (4m'mv') in the
secular equation are given directly by a linear combina-
tion of the force constants. Introducing the experi-
mentally observed eigenvalues into the equations for
these points the dynamic equations can be fit directly
to the experimental data. Points in the Brillouin zone
for which this simplification of the dynamic equations

exists are the center of the zone and at the zone bounda-
ries in both $0001] and (0110]directions.

Evaluation of the SG model in the manner just
described is still unsatisfactory. In an e6ort to improve
the fit of this model to the experimental data, the SG
model has been extended to include interactions with
fourth and fifth nearest neighbors and is, hereafter,
referred to as the extended SG model. The general
formulation of this calculation, which is applicable to
other hexagonal close-packed metals, is included in the
Appendix. The force constants in the extended SG
model have been evaluated in terms of the experi-
mental data. The linear force constant relations which
result from the simplification of the lattice dynamic
equations at the specified points in the Brillouin zone
are listed in Table II. Values of the force constants for
the extended SG model which were obtained from a
least-squares solution of the relations of Table II are,
in units of 104 dyn cm '. a=1.60, / =2.66, y=0.188,
5=0.668, and a=0.454.

The extended SG model, fitted to the experimental
data, and displayed as the dashed lines in Fig. 7 is
compared to the solid lines of Fig. 6 which were hand
drawn through the data points, The extended SG mode.
is seen to deviate from the experimental data particu-
larly for the L0001] acoustical branches and the t 0110]
lower optical branch. For both the SG model and the
extended SG model the lower optical and transverse
acoustical branches for the L0001] direction can be
considered as a sine curve folded back at q/q, =1.
Thus, in fitting the models to the experimental data
one has the choice of setting the amplitude of the sine
curve to fit the lower optical branch or the initial slope
to fit the acoustical branch, but not both. A compromise
set of values would not fit either optical or acoustical
branch adequately.

It is interesting to compare the value of the force
constant 0, for interactions with nearest neighbors in the
hexagonal plane with the force constant P for the
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interactions with nearest neighbors out of the hexagonal
plane. In both the SG model and the extended SG
model, P is considerably larger than n even though the
distances from the reference atom differ by less than 3%.
This asymmetry of the interatomic forces presumably
plays an important role in the separation of the optical
branches, a phenomenon which is not observed for
monatomic cubic crystals. Further, this asymmetry
suggests that there may be interactions with more
distant neighbors which are important, where the forces
are directed approximately along the hexagonal axis.
The experimental data for the LA/0001] branch
indicate that either a more general type of force is
needed to describe the dynamics of atomic motion in
the solid or that forces of long range are not taken
adequately into account in the model. The latter would
appear to be the case because of the lack of character
predicted by the BB model which is discussed next.

Begbie md Bore Model

The BB model was developed without any assump-
tions as to the nature of the interatomic forces,
assuming only that these forces are restricted to
interactions with nearest neighbors in and out of the
hexagonal plane. There are eight force constants in the
model and not all of these can be evaluated from elastic
constant data. Those force constants'4 which can be
evaluated give predicted optical intercepts at the center
of the Brillouin zone of 2.40 and 1.65, in units of 10'3

sec ', values which are approximately 20% higher than
the observed values. The alternative of evaluating the
force constants in terms of the experimental data has
been applied as in the SG model and the extended SG
model. In Table III are listed the linear force constant
relations obtained from the dynamic equations of the

"A systematic error of 8~' appears in the equation of Begbie
and Born relating the elastic constants to the force constants of
their model. The correct equations are given in the paper by
Joynson, reference 19 of this pape~. .

BB model for the specified branches and directions.
Values obtained for the force constants in this model
are, in the notation of Begbie and Born and in units of
104 dyn cm ': v=1.95; X=0.871; 7=0.145; (n+P)
= 1.21; and p, =0.118. Measurements of phonons with
their wave vectors in the t-0110] direction and their
polarization vectors parallel to the basal plane would
enable one to determine individual values for the
constants n and P. However, one of the force constants,

cannot be evaluated from phonon data for the
symmetry directions. In Fig. 8 the BB model is dis-
played as the dashed lines and compared to the experi-
mental data which are represented by the solid lines.
The BB model gives a reasonable fit to the optical
branches but is consistently low for all of the acoustical
branches and does not describe the dispersion present
in the acoustical branches. The model is expected to
fit better for the optical branches for it is the data from
these branches which have been used predominantly in
evaluating the force constants in the model. Evaluating
the force constants to fit the acoustical branches would.
give the same result as evaluating the force constants
in terms of the elastic constants data. Because of the
general nature of the forces in this model it is desirable
to extend the model to include interactions with more

Designation

Qbserved Force constant relations
frequencies for the extended SG model

v (10"sec ') 4~'mv'

UQ(q=o)
LQ(q=o)
UQC01107q=q „„
LQt 01107q=q „
LA/01107q=q „
TA[0110jq=q ,

1.99
1.33
1.69
1.63
1.54
1.22

(3c/u)'(p'+y'/4+2m'/7)
6(p +v'+2")
(3c/u)'(2p'/3+4&'/21)
2 (3n+2p'+3y'+16m'/7)
2 (3n+p'+266'/7)
(3c/~)'(p'/3+7'/4+26'/21)

TABLE II. Qbserved frequencies and force constants relations
for the specified branches and points in the Brillouin zone which
were used to evaluate the force constants in the extended Slutsky
and Garland model.
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distant neighbors;- However, '--extension - of:-the —model
would be considerably more difficult than extension of
the SG model; Colhns~~has combined the SG 'and BS
models in attempting to fit experimental data for'

magnesium, using the BB model and general forces for
first and second nearest-neighbor interactions and the
SG model and central forces for treating interactions
with more distant neighbors. Although no indication
of the success of Collins' fitting has been received, his

approach appears worthy of consideration in attempting
to fit the beryllium data.

V. SUMMARY

The experimental data obtained for the phonon
dispersion relation of beryllium provide a.contrast to the
data obtained from the investigation of cubic metals.
The asymmetry of the force fieM in hexagonal close-
packed beryllium is indicated in the separation of the

TABLE III. Observed frequencies and force constants relations
for the specified branches and points in the Brillouin zone which
were used to evaluate the force constants in the Begbie and Born
model.

Designation

UO(q=0
LO(1=0)
UOt 0110]q=q,
LOL0110]q=q,
LAL0110]q=q,

- TAE0110]q=q,

Observed
frequencies

v {1013SeC 1)

1.99
133
1.69
1.63
1.54
1.22.

Force constant
relation 4''mv2

12v
12k

8(v+V)
8 (x+~+p+&)
4Lx+ 2 i~+Is —ul ]

4(v+2')

"G.L. Squires (private communication).

X-Ray Measlrements on Zinc

The present measurements can be compared quali-
tatively with x-ray measurements of the phonon
dispersion relation of zinc, which also has the hexagonal
close-packed structure. The measurements on zinc were
made by Joynson using the BB model as a guide. For.
those branches of the dispersion relation which were
measured in both the zinc experiment and the present
experiment the general shape of the curves is approxi-
mately the same and that is all that one might expect.
Of importance is the fact that the optical frequencies
observed in the zinc experiment (q=0) are not con-
sistent for the two symmetry directions. The optical
branches labeled longitudinal and transverse tj for the
direction b2 in the zinc experiment should have the same
intercept frequency at the center of the Brillouin zone
(lower optical) as the transverse optical branch for the
direction b~. This result is predicted by both BB and
SG models and verified in the case of beryllium by the
present measurements. The discrepancies in the x-ray
data are considered as further support of the superiority
of neutron scattering methods.

optical: branches, for zero value of the wave vector.
Lattice dynamics models. of Begbie. and Born and of.
Slutsky and Garland, the. latter model. .extended in the
present investigation, give limited agreement with the
experimental data only when the force constants in the
models are evaluated directly from the phonon data.
Although the agreement between the models and the
experimental data is considered adequate to use the
models for calculating properties involving the fre-
quency distribution, a better model appears to be one
which combines the two models, allowing for general
forces between near neighbors and central-force
interactions with more distant neighbors.
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APPENDIX

In the following paragraphs results are stated for the
extension of the Slutsky and Garland model of the
lattice dynamics of hexagonal close-packed metals to
include interactions with fourth and fifth nearest
neighbors. Also, it should be noted that corrections
are included for certain of the terms involving the
third neighbor constant y (or y'), which were in-
correctly stated in the original paper. The notation of
Slutsky and Garland is continued in the extended model.

The hexagonal close-packed structure can be con-
sidered as two interpenetrating hexagonal lattices, the
basis translation vectors of which are defined relative to
an orthogonal coordinate system as a& ——a(1,0,0),
a2 ——a( —1/2, V3/2, 0) and a3 ——c(0,0,1). The position
vector of an arbitrary atom in the structure is given by
r(l, j)=r(l)+r( j), where r(l) =p, l,a, is a lattice
translation vector and r(j) locates the atom on one or

. another of the two interpenetrating lattices. One of the
lattices has r(j=1)=0 and the other has r(j=2)
= (a~/3)+ (2a2/3)+ (a3/2). There are two fourth nearest

- neighbors at a distance c from the reference atom which
interact with . the force constant 6, and twelve
fifth nearest n'eighbors which are at a distance
[(c/2)'+'Ia'/3$'" and interact with force constant e.
The fourth nearest neighbors are along the hexagonal
axis above and below the reference atom. In Table IV
are listed the additional neighbors for the two atoms
in the primitive hexagonal unit cell: Unprimed numbers
refer to the neighbors of the atom at the origin,
r(l =0, j= 1), and primed numbers refer to the neighbors
of the atom at the position r(l=0, j=2). Positions of
the first, second, and third nearest neighbors were given
in the work of.Slutsky and. Garland.

The lattice contribution to the elastic constants has
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been calculated using the method of homogeneous
deformation as in the original model. Relations between
the force constants and elastic constants are as follows:

Atom j lI l2 la Atom j lI lg

Tmx, E IV. Positions of fourth and Gfth neighbors
of atoms 0 and 0'.

1
Cii= 3 (3n+P'+by'+143')

2 G

[P' 2y'+—(20/7) 3']2

(P'+q'+24')
1

C12—— 3u+P'+4y'+ 144'
2VSc

[P'—»'+ (2o/7) 3']'
+(re

C88= (v3c/a2) [P sin2$+y sin28

19 1' 1 0
20 1 0
21 8' 2 1
22 9' 2 0
23 2 —2
24 2 —2
25 2 0
26 2 1
27 2 1
28 2 0
29 2 —2
30 2 —2
31 2 0
32 2 1

0
0
1
1—1—2—2-1
1
1—1—2

-2
—1

—1
0
0
0
0
0
0—1—1—1—1—1—1

19'
20', 4

22'
231

2S'

27', 11
28', 12
29
30'
31'
321

2 0
2 0—1
1 0

2
1 2
1 2
1 —1
1 —1
1 0
1 2
1 2
1 2—1

0 1
0 —1—I 1—1
1 1
2 1

1 1
—1 0

0
1 0
2 0
0 0
1 0

+-'+(/ )(/ )"']+,
C44——(v3c/2a2) (P'+y'+ 23'),

C18 C44+0 .

The force constant c has been replaced with e' in Eq.
(8) where 4'= e cos'C and cos'C = 7a2/(3c2/4+7a2).

Contributions of the additional force interactions to
the dynamic equations of motion are viewed in the
secular Eq. (4) which is given in Sec. II.

In Eq. (4), I is the unit matrix and D(k),"a function
of the wave vector k, is a 6X6 matrix which is related
to 3&&3 submatrices A and 8 by the relation

.B~ A.

and 8* is the complex conjugate of B. With the addi-
tional interactions considered, the elements of A and
8 are

A 11 &[3 2C1 2 (C12+C2)]+3P'+ 3V'+ 64',

A „=342[1——', (C12+C2)]+3(P'+y'+23'),

A 88 = (9/2) (c/a)2 (P'+ gy')+ 28 (1—C8)+ (9/7) (4/g)23',

A21 —A12 — 2&3(x(C12 C2))

A31 A32 A13 A 23

&11= —
4 [p'(C2+C12+C23+ Ci23)+2v'Ci(1+C8) ]+4[p'(52+512+523+5123)+2v'C153]z

(3& /28) {(1+C3)(C2+C12)+53 (52+512)+9[C212+C2123+Cl (C2+C23)+Sl (S2+523)]
+4(C2122+C22+C21228+C„8)}—(34'/28)z{ (1+C8)(5,+S„)—58(C,+C„)+9[S,(C,+C,8) —C, (S,+S„)

5212 52128] 4(52122+522+521223+5223) }i

822———{p'[1+C8+4 (C2+C12+C28+ C128)]+y'[C122+C1228+-', Ci (1+C8)]}+2{p'[S8+ 4 (S2+S12+528+5123)]

+| (5122+51223+ 2 C158)} (4 /28) {25 [(1+C3) (C2+ C12)+53 (52+512)]+C212+C2123+Ci (C2+C23)

+S,(S2+S,3)+16(C„2,+C2„,8+C2,+C„8)}—(3 /28)z{25[(5,+S„)(1+C8)—S8(C,+C„)]+S,(C,+C„)
Cl(52+523) 5212 52123 16(52122+521228+522+5223)})

833 ———(34"/4a') {P'(1+C2+C8+C12+C28+C123)+gy'[2C1(1+C3)+C122+C1223]}
+z(3c'/4a ){p'(53+52+512+523+5123)+gy'(2C153+5122+51223)}—3'(3c'/28a') {(1+C8)(C2+C12)

+Ci (C2+C23)+53 (S2+S12)+ Sl (S23+S'2)+C212+C2122+C22+ C2128+C21223+ C223+ z[51 (C2+C28)

+59(1 Ci+C3) S3(C2+C12+C212+C2122+C22) (1+C3)(S212+S2122+S22 S12) S23C1]}~

I&21=812= —493{p'( —C,+C,2
—C,8+C„8)+2y'5,53+z[p' (S,—S,2+S28—S,28)+2y'5, (1+C8)]}

—Y3/28) 8 {5[C»(1+C8)+S8 (S12—52)—C2 (1+C8)]+3[C212+C2128—Ci (C2+C28) —Si (S2+528)]

+8(C2i22+C21228 C22 C228)} (~/28) & 2{5[(1+Cz)(512 52)+58(C2 C12)]

+3[C1(52+523) 51(C2+C28) S212 52128]+8(522+5228 52122 521223)}p

2'The symbol q which was used to designate the phonon wave vector in the main body of the paper for consistency with the
reference is changed tp the symbol h which Slutsky and Garland use in their paper.
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831 813=—(3c/4a){p'(C2 —C12 C28+C128) 'V 5153 2p (52 512 523+5123) r 51(1 C3)]}
—(3c/28a) e'{(1—C8) (C12 C2)+58(S2—512}+3/Cl(C2—C23)+Sl(S2 523) C212+C2123]

+2 ( —C2122+C21228+C22 C223) } —2(3c/28a) e'{53(C12 C2)+ (S12 S2) (1—C3)

+3L51(C2 C23)+Cl(528 52)+5212 52128j+2(52122 521228 522+S228)}1

and

B28 832 (V3c/2a){p Ll C8+2 ( C2 C12+C23+C123)]+2+ LC1223 C122+Cl(1—C3)j}
3(V—Sc/2a) {PL53+-'2 (52+512—528—5123)j+-2,y'(5122 —51223+C153)}—e'(V3'/28) (c/a) {5L(1—C8) (C2+C12)

S3(S2+S12)j+Cl(C23 C2)+Sl(S28 52) C212+C2123+4( C22+C228 C2122+C21223)}
—3(V3/28)(c/a) '{5L(1—C )(S+S )+5 (C+C )j+5 (Cw —C)+C (5 —5 )+5 —5„„

+4(522 5223+52122 521228)}

The notation

C,= cos2xk;,

C;;= cos22r (k~+ k;),

C122——cos22r (k1+2k 2) y

C123——cos22r (kl+k2+k3),

C1,23
——cos22r (k1+2k2+k3),

C21223 —cos22r (2k 1+2k 2+k3)

has been used, and the S's refer to the corresponding
sine s.

Corrections to the third-neighbor terms in the original
model include changes of the coefficient of y' for the
elastic constant C44 in Eq. (8) and the coefficient of y'
in the equations for the terms A33 +33 +]3 and 823.
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Charged Dislocations in Ionic Crystals*
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The paper aims to shoe that the charge clouds around dislocations are important for the mechanical
properties of ionic crystals. The previous work of Eshelby, Newey, Pratt, and Lidiard is extended by solving
the nonlinear equation giving the potential distribution and by obtaining the boundary condition appro-
priate at the dislocation core. Three typical examples are worked out in detail. Finally, a series of experi-
mental phenomena are discussed and it is shown how the charge cloud model can be used to understand the
experimental behavior. In particular, the minimum in the yield stress versus annealing temperature of
NaQ doped with a known concentration of PbC12 is used to obtain the energy of formation of a positive ion
vacancy in NaCI. One Ends that Ep+=0.53 eV.

I. INTRODUCTION
' 'N this paper we shall try to show that the idea of
~ - charged dislocations screened by a cloud of charged
lattice defects enables a number of mechanical and
electrical properties of ionic crystals to be understood.
This idea was Grst discussed by Eshelby, Newey, Pratt,
and Lidiard' who used the theory of the charge cloud
in the static case to understand the temperature de-
pendence of the yield stress of NaCl crystals.

In Sec. II the general principles appropriate for static
dislocations will be described. The equations obtained
will be useful for pure and for crystals containing di-

*This research supported in part by the National Science
Foundation.

' J.D. Eshelby, C. W. A. Newey, P. L. Pratt, and A. B.Lidiard,
PhiL lag. S, SS (&958).

valent positive impurity ions. Two essential additions
to the theory will be described. First, Kshelby and co-
workers simpli6ed the problem by linearizing it. We
have solved the nonlinear equations. Second, Eshelby
and co-workers were not able to treat the region near
the core of the dislocations; in fact, they did not
establish what boundary condition the potential should
satisfy at the dislocation core. We have attempted to
deal with this region with considerable care. Applica-
tions of the theory to various experimental observations
are described in Sec. III.

II. GENERAL THEORY FOR STATIC DISLOCATIONS

Qualitatively the charge cloud arises as follows: con-
sider a dislocation which has some edge type character.
Suppose that the energy E p+ required to form a posi-


