ENERGY LEVELS OF

we find
(DS)

V4= Yaoe~ M PIET,

A value of v4=0.16 is calculated, again in error by a
factor of 2 due to errors in g4 and (E.—Ey).

Now, if we assume fi(ys)=1 at 45°K and 5000 kg
cm™2, we can find a first approximation for a4, using
Eq. (22), neglecting terms in u, and A4,. In this way
a4, =2.1X107% eV kg™! cm? Substituting this in Eq.
(D5) at P=5000 kg cm™2 we find y4="40X0.08~0.013.

Hence, at this pressure and temperature, fi(ys)=1.01
+0.01 where the 0.01 error represents an error of a
factor of 2 in vyy4.

At 45°K and atmospheric pressure, we find that

kTd Inp/dP=1.6X10-5 ¢V kg~ cm?,

and using
fa(vy)=1.13+£109,

a4, =1.8X10764:109, eV kg™ cm?,

we get

which is in agreement with the value found near 5000
kg cm™2. Thus this approach is reasonable.
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(2) At 45°K we find
dInp/dP~10-3 kg~ cm?.
We have seen in Appendix C that
d1nd,/dP~6X107% kg™ cm?.

Thus, the density-of-states factor represents a negligible
correction in Eq. (22).

(3) At 45°K the carriers are scattered both by lattice
vibrations and ionized impurities. In Appendix C we
have seen that the change in lattice scattering mobility
with pressure is of the same magnitude as the change
in the density-of-states factor and is therefore negligible.

The pressure coefficient of the ionized impurity
scattering mobility can be expressed as

dlnur 2d InK dln( mg)

aP aP dP \my'?

However, since the changes in K and in the masses
are also of the order of 10—¢ kg™ cm?, the pressure
coefficient of this scattering mechanism can also be
neglected.
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A Lagrangian formulation is used to discuss the nature of the force on a moving dislocation. Whether or
not a Lorentz force appears depends on the definition of force adopted, but it is shown that this force can
give rise to no physical effects; a definition which does not introduce it is therefore recommended. The force
is given by the usual static expression (F=0b) and is independent of the motion of the dislocation.

1. INTRODUCTION

HE nature of the force on a moving dislocation,
and especially the existence of the so-called
Lorentz force, is still a matter of discussion.! We shall
argue here that the difficulties associated with the force
concept arise because no clear definition of force appli-
cable to a moving dislocation has been given. A defini-
tion will be proposed which leads to an unambiguous
expression for the force and is consistent with its use in
other fields. Before starting on the constructive part of
this program, however, we must consider some of the
complications which arise when this point is neglected.
The nature of the force on a dislocation at rest has
been fully discussed by Eshelby,? who has particularly
* Sponsored by the U. S. Office of Naval Research, the Army
Signal Corps, and the Air Force.
T Deceased.
1F. R. N. Nabarro, Phil. Mag. 6, 1261 (1961).
2 J. D. Eshelby, Phil. Trans. Roy. Soc. London A244, 87 (1951);

Solid State Physics, edited by F. Seitz and D. Turnbull (Academic
Press Inc., New York, 1956), Vol. 3, p. 79.

emphasized the need for thorough treatment. His con-
clusions are that (a) the force should be defined as the
derivative of the energy with respect to dislocation dis-
placement ; from this it follows that (b) the force in the
slip plane is just b per unit length of the dislocation,
where ¢ is the resolved shear stress. It seems to have
been accepted quite uncritically that both statements
(a) and (b) apply also in the dynamical case, without
realizing that here they are in fact inconsistent. (The
question of a Lorentz force does not arise here as it acts
normally to the slip plane if it is present at all.) To
illustrate this, consider two parallel screw dislocations
P and Q in an isotropic medium, P at rest and Q moving
with a uniform velocity v in the direction PQ. At any
instant the interaction energy of P and Q can depend
only on their distance apart and not on their absolute
positions; hence, if statement (a) is adopted, the forces
each dislocation exerts on the other are equal and op-
posite. On the other hand, the stress produced by the
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Fi1c. 1. Elastic solid
with singularities S
and 7.
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moving dislocation Q is less than that due to P by a
factor (1—1%/c®)'2, where ¢ is the transverse velocity of
sound?; (b) then implies that the forces on the disloca-
tions are unequal. The stress-dependent force as well as
the Lorentz force thus needs reconsideration. In the
treatment to be given here, (a) will be modified by
replacing the energy with the Lagrangian; it will then
be found that (b) remains true, and also that no Lorentz
force need be introduced.

2. DEFINITION OF FORCE

Consider a mechanical system whose state at any time
¢ may be specified by a finite or infinite number of
parameters, of which we take £ to be a typical repre-
sentative. The dependence of £ on time can be found
from Hamilton’s principle, which tells us to form the
Lagrangian L=L(%,£¢t) and to consider the integral
Ju? Ldt; the actual path taken by & then makes the
integral stationary for all small variations ¢ which
vanish at times #; and f;. Further, if the system obeys
classical mechanics, then L=7T—V, where T is the
kinetic and V the potential energy.

An elastic solid containing a dislocation is just such a
mechanical system where the parameters £ specifying
the position of the dislocation are part of the set of
parameters specifying the state of the whole system.
Let LS be the Lagrangian of this system. Now consider

a similar body in which the dislocation .S is absent but

some other elastic singularity T is present (this includes
the possibility that an external stress may be applied) ;
let LT be the new Lagrangian. Finally suppose that both
S and T are present; the Lagrangian is now not simply
LS4LT but, in general, contains additional terms; we
therefore write

L=LS4L7+ L 1

Because of the presence of the terms L?, the motion of
S given by the Lagrangian L will not be the same as
that given by LS; we may describe the difference by
saying that T exerts a force on S. For this force we need
therefore not consider the whole Lagrangian L but only
the part L?; this is fortunate because L’ as we shall
show, can be evaluated precisely in linear elastic theory,
a circumstance which is not necessarily true for L.
Clearly

Li=Ti—Vi 2)

in an obvious notation.

3F. C. Frank, Proc. Phys. Soc. (London) A62, 131 (1949).
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If £ is one of the parameters specifying the position
of the dislocation S (and therefore does not occur in
LT), and we may write for small variations 6¢,

t2 t2
5 / Lidi= / Fd¢d, 3)
t1 t1 .

then the condition 6 /" Ldt=0 gives, on using the Euler-
Lagrange equations for the variation of L5,

2 29LS d dL”"
/ ( _—— Fz)agdt= 0. €))
w \oF di 3f

Since 9L5/9¢ is the momentum conjugate to £ of the
isolated singularity S, Eq. (4) shows that Fy is a force.
Hence, Eq. (3) may be taken as defining the force Fy,
tending to increase £, which T exerts on S. An alterna-
tive definition will be considered in Sec. 6.

3. THE LAGRANGIAN

The material is assumed to be linear, so that the
resultant stresses and strains at any point are the sum
of those due to .S and 7 separately; i.e., o5 =0:;5+0;7,
e;;=e;;5+e;T. The elastic energy density is 3oijes;
giving

1
Vi:a / (0:%:"+0:"ei%)d*x, ©®)

the integration extending over the whole body. The
condition of linearity also implies that the two terms
in the integrand are equal, since each is equal to
cijrieiiSernT, where c;jr1 1s the elastic modulus.

If an elastic displacement #; can be defined, we may
derive the strains from it as

ey =% (ui j+u; ). (6)

However, as Eshelby? and Kroner* have emphasized,
an elastic singularity may be characterized as a region
in which the compatibility equations are not satisfied
and therefore where an elastic displacement cannot be
defined. Let us assume that the body can be divided
into two regions, I and II separated by a closed surface
2 such that .S lies wholly in IT and 7" wholly in I; then
uS exists in I, 7 in IT (Fig. 1). From Egs. (5) and (6)
we have

Vi=/aijTui,de3x+/ aijsuif'd“x
I II

3/ O”ijTuistj*/ UijT’IliSde
Zo >

—/aij,jTuisdsx-i-/ zrij‘sm,,-Td%, (7)
I II

4 E. Kréner, Z. angew. Phys. 7, 249 (1959); Kontinuumstheorie
zliers Slgersetzungen und Eigenspannungen (Springer-Verlag, Berlin,
958).
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where 2y is the surface of the body and the positive
direction of the normal to 2 is taken to be from region IT
to I. The integral over Z, represents the work done by
the surface tractions of 7" in producing the displace-
ments of .S'; that is, it represents a flow of energy into
the body from the mechanism that maintains the
surface tractions when S is formed in the presence of 7'
Since the physical behavior of the body must be in-
dependent of the particular mechanism by which the
surface tractions are maintained, we may suppose that
it consists of a conservative system of small inertia
(and so negligible kinetic energy); the energy entering
the body through =, must then be equal to the decrease
in potential energy of the external mechanism. Hence,
if we take V not to be just the potential energy of the
body alone but that of the body together with this
external mechanism, we may simply omit the integral
over 2 in Eq. (7).

Let S be a dislocation lying along a closed curve T,
and let C be a surface bounded by I'. Then #;$ may be
taken to be single valued but discontinuous on crossing
C, where it will change by a constant amount b;, the
Burgers vector. For 2 we take a tube o of small radius
a enclosing T together with surfaces lying close to and
on either side of C. Since on o,u;is of order Ina, we have

/ a,-,-Tu,;SdS,-z —Ih/ aideSj-i-O(a ].l’ld). (8)
z c

Also .
[ a@-jsui,de% =0 (a) , (9)
II

since o;;° behaves like 1/7 near the dislocation.
Inserting these results into Eq. (7) and letting o tend
to zero, we have

V"‘=bz/ aideSj—/oij,jTuisdax, (10)
c

the volume integral being taken over the entire body
which is cut at the surface C. Here the surface integral
is familiar from the static case and represents the work
done against the stress system 7 in giving the two sides
of C a relative displacement &;. The second integral also
has a simple physical interpretation if we recall that, by
the equations of motion, —o; ;7 is equal to the body
forces X;T acting at any point (the most important of
which are the inertial forces — p#i;7) ; the integral is thus
J X TuSd®x and represents the work done against the
body forces of T in forming the displacements of .S.

If it were possible to define the material velocities
;5 and v;7 everywhere, we should have for the kinetic
energy

T’"=/pvis‘v,-7’d3x; (11)

but this needs examination since the velocities may not
be well defined at a singularity. We again consider the
two regions I and II and note that, since v;5 is single
valued, region IT can be taken as the interior of the tube
o. Near the dislocation, #;S varies as Inr and 9,5 as 1/7;
hence the contribution to Eq. (11) from region IT will
be small of order a. Thus Eq. (11) differs by an arbi-
trarily small amount from the same integral taken over
region I alone, in which v;5 is well defined and equal to
%:5. In general, v;7 will not be defined everywhere in
region I, but the following cases, which give nodifficulty
are physically important and justify our use of Eq. (11):
(1) T consists of an external stress only so that #;” and
v;T=7,T exist everywhere, (2) T is a stationary singu-
larity for which v.7=0, and (3) ;7 is well defined except
in a region making an arbitrarily small contribution to
Eq. (11), when this region may be omitted from the
integration. In particular we see from the discussion
just given for S that this last will be the case if T is a
second moving dislocation.
We rewrite Eq. (11) as

Ti= /pdisvde3x. (12)

Also, since the equations of motion for the system 7 are

aij ;7= pdi” (13)
if no body forces are present, Eq. (10) becomes
V”=b1/ O'ideSj"‘ /puisi)ﬂ'd%. (14)
c

(If T is a moving dislocation, #;7 varies as 2 near the
dislocation line and it appears that the volume integral
in Eq. (14) might diverge logarithmically; this is not
so because V? depends symmetrically on .S and 7', and
we have seen that S gives rise to finite terms only.)
According to Eq. (2), we then have the Lagrangian

d
Li=—b, / 7" dSit / SN dr. (15)
¢ t

Here the time derivative has been written as d/d¢ since,
as a little consideration will show, it denotes differentia-
tion following the motion of material particle; i.e., a
Lagrangian description of the motion is being used.

4. EVALUATION OF THE FORCE

We must now, according to Eq. (3), find the variation
in L; when the dislocation is given a small displacement
0% from its actual position (curve I') to a neighboring
position (curve I'') ; let C’ be a surface (bounded by I'")
corresponding to C. Consider first the contribution to
0L? from the surface integral in Eq. (15). If the positive
direction of the normal to C is reversed and the strip
between I' and IV added, we obtain a closed surface
C+C’4TIT’ with its normal directed outward every-
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F1c. 2. Displace-
ment of the disloca-
tion from I to I".

where (Fig. 2). Hence,

'—51)1[ O'ﬁTde= - b,,f UideSj+b¢/ O'ideSj
c crctrr’ rr’
(16)

= -—b,-/zrij,ﬂ'd:’x—l—bi/ O'ijTejkldSk(sfz;
T

the volume integral here, which is to be taken over the
interior of C+H+C’+TT’, may, by Eq. (13), be written as
—b; S p0;Td?x. If this is added to the variation of the
second integral in Eq. (15), the result is the same as if
the surface C’ were deformed to coincide with C+TT".
Since the discontinuities across C will then subtract out,
we may write

where
5L1i=bi/ oiiT e ds kb1, (18)
r
and
d
Ly / oo, (19)
t

Here 6u;° denotes the difference in the displacements
due to two dislocations lying along I'" and T and is to be
taken single valued everywhere and continuous except
on I'T”.

From Egs. (3) and (18) we obtain a force

F=bio:i;iTenitn,

(20)

per unit length of the dislocation, £; being a unit vector
along the dislocation line. Equation (20) is the usual
expression for the force on a dislocation obtained in the
static case.? As we shall find that 8L,* gives rise to no
force, the force on a dislocation is thus independent of
its motion.

Let o be a tube of small radius e enclosing I' and
moving with the dislocation velocity d&/d¢ so that T'
remains inside o throughout the motion. Having thus
chosen o we consider only variations 6% so small that I’
also lies within ¢; then &#,8 is bounded, single valued,
and continuous outside . We first consider the con-
tribution to Eq. (19) from the region outside o. Noting
that pd®x, being the mass of a fixed element of the mate-
rial, is invariant, we have for this region

d d
/ p— (w50, T)dPx=— / pdusSvTd3y
dt dt

+ / pbu o TS, (21)
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where the velocity £; is measured relative to the mate-
rial so that the surface integral gives the variation
arising from the change in the region of integration.
Since, according to Eq. (3), 8L must be integrated
between times #; and ¢, at which §& vanishes, we may
omit the term d/dt S (- - -)d*x. Then

d .
8Lyt= / pduSvT€;dS,+ / p(_i—(‘suisviT)d%: (22)
. ¢

where the volume integral is taken over the interior of
o. Thus, 6Ly is seen to depend on conditions near the
dislocation line only. Also

d
[ e
J o dt
~ lZ .
= /p:i—(éu.is)z'ﬂ'dax-i-/pBuiSi){"di‘x, (23)
. ¢

and since near the dislocation ;5 is of order log 7 so that
6u;S cannot be of order greater than 1/r, the second
integral is small of order a. As 6L, cannot depend on
the radius of the tube o, we may let @ tend to zero,
giving

d
6L2i=fpBuisviTédej+/pvde—'(éuiS)d%. (24)
a i

To find the force acting at a point P of the dislocation
line ', we need consider variations 6% which differ from
zero near P only; then éu;S will be small except near P.
Also, since the force cannot depend on the observer’s
frame of reference, we may, by superimposing a uniform
velocity, take v,7 to be zero at point P; by continuity
there will be a neighborhood of P in which »,7 is arbi-
trarily small. Then, by suitably restricting the range
in which 8% differs from zero, we can make du;5 as small
as we like outside this neighborhood. Hence we can
make 6Ly’ arbitrarily small compared with / ré&ds;
Eq. (3) then shows that the corresponding force at P
must be zero. Equation (20) thus gives the total force
per unit length on the dislocation.

5. IMAGE FORCES

The motion of a dislocation in a finite body will
generally differ from that of the same dislocation in an
infinite medium; the difference may be described, in
analogy with electrostatics, by speaking of an image
force acting on the dislocation.? The treatment of this
force requires certain modifications of Secs. 3 and 4. We
denote the stresses and displacements of the dislocation
S when situated in an infinite medium by ¢;;* and #.2,
and their values in the finite body by ¢;;, #:. The image

stresses and displacements are then defined by
and  wi=u>+tul. (25)

- 0 T
o= oy,

The magnitude of the image stress field is to be deter-
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mined so that the surface Z of the body (see Fig. 1) is
stressfree; that is on 2
Cr«;deS,': - O‘ijwde. (26)

Denoting by III the region outside 2o, we have

L= Tco__ Vooz% / puino2 d3x

T4+ II4IIT

N

/ aijwui,,”d?‘x. (27)
I+IT4+111

As is well known, these integrals do not converge for a
dislocation lying along an infinite straight line; to avoid
this difficulty we shall consider only dislocations lying
along closed curves. To simplify the discussion we shall
also assume that the dislocation line T' lies entirely
within 2y (i.e., the dislocation does not meet the free
surface of the body) ; then %, has no singularities out-
side 2o and #,! none within Z,. Since

L—“—-%/ p(?liw+ui1)2 d3x
I+II
-3 / (0i°+0i") (s, 4w HdPx,  (28)
I4+II
[=L—L*

=/ puCu ddx—1 / (05°u;, 10 7u;, ) d3x
L+IT I+I1
1 ; .
+3 / (ot =0 is'ui ) d*x
411

-3 [ (ot 2— o s°u; )d3x.  (29)
Jx

On using Green’s lemma and Eq. (13), the third integral
becomes

d
% ] p—(diIuil)d%C_% / O'ijIMiIdS
ar dt BN

d
=7 ptiluldix—3 / oi'udS;;  (30)
dt Jin =

similarly, the fourth integral is
d
—%— ] puPuddx—1% / a2 udS;. (31)
dt J o

Since the terms (d/dt) f" (- - - )d®x contribute nothing to

8./ Ldt, we may omit them and, using Eq. (26), take

—_ y y 1
L'= /. P P —F / (oiui ' +oiui,)d%
L+IT 1411

+3 / (osfu+oiu)dS;.  (32)
Ea

The expression (32) for L shows that it depends sym-
metrically and bilinearly on the quantities labeled by
I and . Also, according to Eq. (26), the I quantities
are proportional to the o quantities; hence, the actual
variation L will be just twice the variation we should
obtain if we treated the I quantities as constant during
the variation: a result we shall require later.

Equation (32) may now be reduced to a simpler form
though one in which the symmetry is not apparent.
First we note that the integrals over region II become
vanishingly small as the volume of this region tends to
zero, and therefore may be omitted. Using Green’s

lemma, Eq. (13), and the relation
oif i i = i (33)
we have

d
LI=/p—(ui°°u¢I)d3x+f aijlui”de
1 dt =

+3 / (oiul—oifue)dS;; (34)
20

and again using Green’s lemma and Egs. (13) and (33),
the integral over 2 is

/ (aij”uf-— G’iquiw)de= / (aij“’u,-l - oijlui"")de
Zo

J3Z

d
+/ p—(uiwuil—uilu@-”)d%. (35)
1 dt

d
L= % / o—(uub) d3x+—% / Uiquiwde
1 dt b

d
—[—%/;r—(uﬁu})d"’x-}-%/ O'ijwMiIde. (36)
1 dt p)

As in Sec. 3, the second integral reduces to an integral
over a surface C bounded by the dislocation line I'. In
the last two integrals, since % and ¢;;° are single
valued, the surface = may be contracted into the tube
about o. Then these integrals are

1

1 ol ddx
dt Jy

—}‘i / pu»;wuiIE.jllSj”}"-l)‘ / a;,-“u,-lde, (37)

o
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F1c. 3. Displace-
ment of the tube o
about the disloca-
tion S.

where £;is the velocity of the surfaces; (d/dt) S (- - - )dx,
makes no contribution to 8/ Lldi. We may take the
radius ¢ of ¢ so small that the variation of #.! across ¢
is negligible. Then, breaking ¢ up into elements of
sufficiently small length, the integrals over o are

52 ul / (pu2€j+0:)dS;; (38)

the integral here represents the flow of momentum into
each section of ¢, and this must be zero since it is easily
seen that the momentum inside o tends to zero with the
radius a. Thus

- . d
L'=—3b; / 0i'dSi+3% / Pa(%imvil)ﬂ& (39)

c¢

This differs from Eq. (15) by a factor of 1/2. However,
when we form the variation, ¢;;7 is constant but o4;7 is
not and this, as we have seen, gives a further factor of
2 in the variation of Eq. (39). Hence, we obtain the
same expression for the force as before [Eq. (20)7],
namely,

(40)

= bia,-,-lejklt/,-.
6. THE LORENTZ FORCE

Our definition has led to a force that is independent
of the dislocation velocity, and we have found no terms
representing a Lorentz force. However, if we choose a
different but equally legitimate definition we shall find
a Lorentz force arising. Equation (3) is equivalent to
defining the force as

dL: d 9L?
Fem——— (1)
¢ dt 9f

we might instead have defined the force to be equal to
the term dL¢/9% only, and then dLi/d£ would represent
an additional contribution to the momentum of the dis-
location. This, of course, would not effect our deductions
as to the motion of the dislocation. It is nevertheless
interesting to evaluate the force according to this defi-
nition. We must still consider the variation in L for
small displacements &%, but now the dislocation ve-
locity £ is to be treated as an independent variable.
Equation (17) remains valid and 6L,% leads to the force
(20) as before; we also have the expression (24) for
0L,". Taking the radius a of the tube ¢ to be small com-
pared with the radius of curvature of the dislocation
line ', we may substitute in the first integral in Eq. (24)

51£¢S= (auis/afk)5$k= ‘—’ui'ksagk. (42)

STROH

Assuming also 8¢ to be small compared with the distance
in which the change in 97 is appreciable, we may in the
volume integral keep the dislocation fixed and give the
region of integration, the interior of the tube ¢, an equal
and opposite displacement —é8¢. We have then to
evaluate the integral over the shaded area in Fig. 3,
obtaining for this term

duis

—/pviT—Ei—sEdej: /pviTui,ksékagdej) (43)

since with £; constant, du;5/dt can be due only to the
change in position of the dislocation. Hence

OLyi= / (6408~ €0 1) pv."u;, 15dS;

= / pviT%;, 1 5dS €5 k1€ 1mnEnbEm. (44)

Neglecting terms small of order (e lng) this can be
written as

16}
5[42{:/ €56 (005705 €1 nEn0Em)AS', (45)

Xk

where to make #.;5 single valued we introduce a cut
along g, this cut being a curve differing from I" only by
a displacement of order a. By Stokes’s theorem the
surface integral can be replaced by an integral along
its boundary, i.e., the cut; if this is done, the cut will
be traversed twice in opposite senses, the corresponding
values of .5 differing by 4,. Hence,

0Lyi= 1,/ P'Uinjmnénsgmdea (46)
T

or there is a force,

Fl= pbiviTéjejkztk (47)
per unit length of the dislocation line, where §; is the
velocity of the dislocation relative to the material. This
is the Lorentz force acting perpendicular to the direction
of the dislocation motion, and with the present defini-
tion should be added to Eq. (20) to give the resultant
force. In addition, there will be a momentum whose
rate of change is also given by Eq. (47); we shall not
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F1c. 4. A disloca-
tion moving across
the solid.
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attempt to evaluate this momentum in the general case
though a special case will be considered shortly.

Eshelby? and Nabarro!' have considered the Lorentz
force in a simple case (straight dislocations moving
with constant velocity). As definition of force they take
9T /8¢, but since in their case the potential energy V is
zero, this is equivalent to defining force as dL/9%; thus
they find a Lorentz force. Their argument is as follows:
Consider a slip plane AB crossing a unit cube of the
material (Fig. 4), the slip plane containing 7 disloca-
tions moving with velocity V. The relative velocity of
the material on either side of the slip plane is #bV, so
that if the mean material velocity in the slip plane is v,
the two parts of the body have velocities (v4-3#nb1")
and (v—2nbV). Hence, the kinetic energy is

T=3o5(uH bV +3o(1—8) (o= 3BV, (49)

giving the force tending to increase £ as d7/d&=npboV .
Taking the force per dislocation, we obtain an expres-
sion for Lorentz force agreeing with Eq. (47).

But terms in £ have been omitted from T so that the
additional momentum is missed. (True, £=0, but this
value must be substituted after and not before the dif-
ferentiation.) It is simplest now to consider the disloca-
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tions individually. Suppose a dislocation D, a distance g
from the edge, climbs a distance ¢ from one atomic
plane to the next. If no diffusion occurs and the dis-
location does not leave a trail of defects behind it, the
atomic plane of atoms 4D must be given a displacement
b as the dislocation climbs,’ (see Fig. 5) and so the
velocity of this plane will not be » but (v+b£/a).
Hence, the strip AD gives an additional contribu-
tion to the kinetic energy [Eq. (48)] of amount
Loma[ (v+b€/a)*—1*], and we obtain a corresponding
momentum (07/9£)s¢ato=pbvy per dislocation. Since
7=V, we see that the rate of change of this momen-
tum is just equal to the Lorentz force.

5. DISCUSSION

We have seen that two different definitions of force
can be given: either Eq. (3) [or equivalently Eq. (41)]
may be used, or force may be defined as dL¢/d¢. These
two definitions are equally legitimate and must lead to
the same physical results in every case; in particular
neither can give rise to any effects dependent on the
absolute velocity of the body. On the other hand, the
second definition, Fz=9L!/d¢, introduces the Lorentz
force which apparently depends on the absolute ve-
locity and is cancelled by the rate of change of the
additional momentum which must now be introduced;
there appears to be no advantage in introducing two
terms which always cancel with one another in different
places. It is preferable therefore to retain our first defi-
nition [Eq. (3)] when the force on a dislocation is given
by the simple expression [Eq. (20)] in every case.

5 Nabarro (see reference 1) suggests that consideration of the
transport of matter can be avoided by assuming dislocations of
both signs climbing in the same direction to be present. But if D
and E are dislocations of opposite sign (Fig. 5). the strip of ma-
terial DE between them has still to be given a displacement b as
they climb, and this is equivalent to the case we are considering.



