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~-n4~ P/kT

and using

we get
fz(Vz) = 1 13~10%z

zr4 =1.8X10 '&10% eV kg ' cm',

which is in agreement with the value found near 5000
kg cm '. Thus this approach is reasonable.

A value of y4p=0. 16 is calculated, again in error by a
factor of 2 due to errors in g4 and (E,—E4).

Now, if we assume f4(y4) =1 at 45'K and 5000 kg
cm ', we can And a first approximation for n4 using
Eq. (22), neglecting terms in iz„and A„. In this way
n4„=2.1&(10 ' eV kg ' cm'. Substituting this in Eq.
(D5) at P=5000kg cm ' we find yz=yzsX0. 08 0.013.

Hence, at this pressure and temperature, f4(y4) = 1.01
&0.01 where the 0.01 error represents an error of a
factor of 2 in y4p.

At 45 K and atmospheric pressure, we find that

kTd 1np/dP= 1.6X10 ' eV kg ' cm',

(2) At 45'K we find

d lnp/dP 10—' kg
—' cm'

Ke have seen in Appendix C that

d in'„/dP 6X10 ' kg ' cm'

Thus, the density-of-states factor represents a negligible
correction in Eq. (22).

(3) At 45'K the carriers are scattered both by lattice
vibrations and ionized impurities. In Appendix C we
have seen that the change in lattice scattering mobility
with pressure is of the same magnitude as the change
in the density-of-states factor and is therefore negligible.

The pressure coe%cient of the ionized impurity
scattering mobility can be expressed as

d 1nizr 2d lnE d int' zzz,

+
dP dP dP Ezzzt'I'

However, since the changes in E and in the masses
are also of the order of 10 ' kg ' cm', the pressure
coefficient of this scattering mechanism can also be
neglected.
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Force on a Moving Dislocation*
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A Lagrangian formulation is used to discuss the nature of the force on a moving dislocation. Whether or
not a Lorentz force appears depends on the definition of force adopted, but it is shown that this force can
give rise to no physical eBects; a definition which does not introduce it is therefore recommended. The force
is given by the usual static expression (F = oh) and is independent of the motion oi the dislocation.

S. INTRODUCTION

'HE nature of the force on a moving dislocation,
and especially the existence of the so-called

I orentz force, is still a matter of discussion. ' We shall
argue here that the difhculties associated with the force
concept arise because no clear dehnition of force appli-
cable to a moving dislocation has been given. A defini-
tion will be proposed which leads to an unambiguous
expression for the force and is consistent with its use in
other fields. Before starting on the constructive part of
this program, however, we must consider some of the
complications which arise when this point is neglected.

The nature of the force on a dislocation at rest has
been fully discussed by Eshelby, ' who has particularly

* Sponsored by the U. S. Once of Naval Research, the Army
Signal Corps, and the Air Force.

4 Deceased.' F. R. N. Nabarro, Phil. Mag. 6, 1261 (1961).' J.D. Eshelby, Phil. Trans. Roy. Soc. London A244, 87 (1951);
Solid State Physics, edited by F. Seitz and D. Turnbull (Academic
Press Inc. , New York, 1956), Vol. 3, p. 79.

emphasized the need for thorough treatment. His con-
clusions are that (a) the force should be defined as the
derivative of the energy with respect to dislocation dis-
placement; from this it follows that (b) the force in the
slip plane is just a.b per unit length of the dislocation,
where 0 is the resolved shear stress. It seems to have
been accepted quite uncritically that both statements
(a) and (b) apply also in the dynamical case, without
realizing that here they are in fact inconsistent. (The
question of a I orentz force does not arise here as it acts
normally to the slip plane if it is present at all. ) To
illustrate this, consider two parallel screw dislocations
P and Q in an isotropic medium, P at rest and Q moving
with a uniform velocity n in the direction PQ. At any
instant the interaction energy of P and Q can depend

only on their distance apart and not on their absolute
positions; hence, if statement (a) is adopted, the forces
each dislocation exerts on the other are equal and op-
posite. On the other hand, the stress produced by the
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Fro. 5. Lattice de-
formation near two
dislocations of op-
posite sign,

attempt to evaluate this momentum in the general case
though a special case will be considered shortly.

Eshelby' and Nabarro' have considered the Lorentz
force in a simple case (straight dislocations moving
with constant velocity). As definition of force they take
BT/8$, but since in their case the potential energy V is
zero, this is equivalent to defining force as BL/BP; thus
they find a Lorentz force. Their argument is as follows:
Consider a slip plane AB crossing a unit cube of the
material (Fig. 4), the slip plane containing rs disloca-
tions moving with velocity V. The relative velocity of
the material on either side of the slip plane is mbV, so
that if the mean material velocity in the slip plane is e,
the two parts of the body have velocities (s+ ',rsbV)-
and (s—-', rib U). Hence, the kinetic energy is

T=-,'pf(v+-', Nb V)'+-,'p(1 —t) (s—-', rib V)', (48)

giving the force tending to increase $ as BT/8)= npbvU.

Taking the force per dislocation, we obtain an expres-
sion for Lorentz force agreeing with Eq. (47).

But terms in $ have been omitted from T so that the
additional momentum is missed. (True, j=0, but this
value must be substituted after and not before the dif-
ferentiation. ) It is simplest now to consider the disloca-

tions individually. Suppose a dislocation D, a distance p
from the edge, climbs a distance u from one atomic
plane to the next. If no diffusion occurs and the dis-
location does not leave a trail of defects behind it, the
atomic plane of atoms AD must be given a displacement
b as the dislocation climbs, ' (see Fig. 5) and so the
velocity of this plane will not be e but (@+be/a).
Hence, the strip AD gives an additional contribu-
tion to the kinetic energy LEq. (48)] of amount
',pea-Ds+bg/u)' ss)—, and we obtain a corresponding
momentum (BT/8$)&t~~~=s=phoria per dislocation. Since
j= V, we see that the rate of change of this momen-
tum is just equaI. to the Lorentz force.

5. DISCUSSION.

Ke have seen that two different definitions of force
can be given: either Eq. (3) Lor equivalently Eq. (41)j
may be used, or force may be defined as ciL'/8$. These
two definitions are equally legitimate and must lead to
the same physical results in every case; in particular
neither can give rise to any effects dependent on the
absolute velocity of the body. On the other hand, the
second definition, Ft=BL'/8&, introduces the Lorentz
force which apparently depends on the absolute ve-
locity and is cancelled by the rate of change of the
additional momentum which must now be introduced;
there appears to be no advantage in introducing two
terms which always cancel with one another in diGerent
places. It is preferable therefore to retain our first defi-

nition LEq. (3)$ when the force on a dislocation is given

by the simple expression (Eq. (20)j in every case.

' Nabarro (see reference 1) suggests that consideration of the
transport of matter can be avoided by assuming dislocations of
both signs climbing in the same direction to be present. But if D
and E are dislocations of opposite sign (Fig. 5). the strip of ma-
terial DE between them has still to be given a displacement b as
they climb, and this is equivalent to the case we are considering.


