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KCl. Commercial material had the highest slope. In
zone-purified material, the slope was lower. It was
also suppressed in material doped with calcium,

(3) The increase of coloring rate due to deformation
that had been observed previously was confirmed.
However, there were indications that as the samples
were irradiated more and more heavily, the coloring
curves tended to approach each other again. Deforma-
tion had no effect whatsoever on the Ii- to M-center
relationship.

(4) It was determined that changes in the ratio of
M and F centers brought about by bleaching cou)d be
reversed by short re-irradiation. Moreover, lumines-
cence was observed in the crystals under gamma ir-
radiation, the spectral distribution and intensity of

which was observed to differ in various samples. It is
thought possible that the square relation between the
M- and P-center concentration is due to an equilibrium
under irradiation conditions.
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A single-particle model in which the wave functions are spherically symmetric about each lattice site was
used to calculate the ground-state energy Eo of solid He. The self-consistent Hartree equations (which
yielded the best such wave functions) were solved numerically to an accuracy of better than 1%.The re-
sults were worse than could have been expected a priori: At the observed densities, the calculated values
of Ee were approximately +34 and +14 cal/mole for He' and He', respectively, as compared with experi-
mental values of —4.5 and —12 cal/mole. Previous calculations are discussed in the light of our results.
In addition, we calculated Eo for the crystals of the other noble gas elements. The results for Ar, Kr, and Xe
are within experimental error whereas Eo for Ne is de6nitely outside this error {being about 5% higher than
experiment).

I. INTRODUCTION

~~ N the last few years the properties of solid He' have
~- received considerable attention both theoretically
and experimentally. ' The fact that He' has a nuclear
spin of —, makes it possible to do a variety of experi-
ments on it (e.g. , measurements of the magnetic
susceptibility, longitudinal and transverse relaxation
times, and self-diffusion coeKcient) which are not
possible with He'. The crucial point in understanding
these phenomena theoretically is the calculation of the
effect of Fermi-Dirac statistics and exchange forces
on the properties of solid He'. Such a calculation re-
quires a detailed knowledge of the wave function of
solid He'. The object of this note is to present our
recent computer calculations of the ground-state energy
and wave function of solid He' and to discuss previous

* Supported in part by U. S. Atomic Energy Commission.
f' Present Address: University of Minnesota, Minneapolis,

Minnesota.
f Present Address: Stanford University, Stanford, California.

Helium Three, edited by J. G. Daunt, (Ohio State University
Press, Columbus, Ohio, 1960).

calculations' 4 in the light of our results. In addition,
we will also present calculations of the ground-state
properties of crystals of the other noble gas elements.

The difFiculty of computing the low-temperature
properties of solid He"' arises from the fact that its
kinetic energy is of the same order of magnitude as its
potential energy; this is due to the low mass of He'
and the weakness of the attraction between two He
atoms. Because of the relatively large kinetic energy,
an external pressure of about 30 atmospheres is neces-
sary to solidify He'. Under these conditions He' has
a body-centered cubic structure which is to be contrasted
with the close packed structures of He4 and the other
noble gas elements. ' In addition, the average deviation
of a He' atom from its equilibrium position is certainly
of the order of 30—

40%%u~ of the nearest-neighbor distance;2¹Bernardes and H. Primako8, Phys. Rev. Letters 2, 290
(1959);3, 144 (1959);Phys. Rev. 119,968 (1960).'¹Bernardes, Phys. Rev. 120, 1927 (1960).

4 E. M. Saunders, Phys. Rev. 126, 1724 (1962).
~ J. Vignos and H. Fairbank, Phys. Rev. Letters 6, 265 (1961),

have recently found a new ("high" temperature) phase of He'
which almost certainly has the bcc structure.
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correlations between the motions of two (or more)
atoms. The latter effect might be treated by intro-
ducing a E matrix as is done in the theory of liquid He'
or nuclear matter. ' It is our opinion that it is necessary
to include bo/h of the above eGects accurately to obtain
a good answer. Although it seems likely that, taken
independent. ly, (ii) would give a much larger correction
than (i), but the contributions from (i) and (ii) are cer-
tainly not independent. To see this, we note that in-
cluding the correlations wouM increase the "size"
of the well considerably, and thus emphasize the im-

portance of specific directions in the motion of the atom.
Without correlations, the effective size of the vali is
too small for this to have a large effect on the energy.

Ke shall now discuss the relationship of our work
to previous work on this subject. Hernardes and Prima-
koff' gave a, variational treatment for He' using spher-
ically symmetric Gaussian single-particle wave func-
tions with an "efI:ective" interaction, constructed by
modifying the true two-body interaction at small
distances and chosen to reproduce the gross experi-
mental properties of He' fairly well. In this manner
they included the effect of correlations in a phenomeno-
logical way"; this allows the wave functions to overlap.
Their calculations give rather good agreement as far as
gross properties of solid He' are concerned; however,
experiments' show that they have overestimated the
exchange effects. In fact, it is not at all clear that such
a calculation can even give the correct order of magni-
tude of the exchange integral. Even if such a treatment
gave a good representation of the correlations in He4,
the differences in mass and crystal structure between
He' and He' would alter the effective interaction. The
tail of the wave function, to which the exchange integral
is very sensitive, depends strongly on the precise form
of the repulsive part of the effective interaction. This
was already apparent in the calculations of Brueckner
and Gammel, ' "who found that the Yntema-Schneider
potential (whose repulsive part rises less rapidly than
that of the Lennard-Jones potential) gave a reasonable
binding energy, whereas the Lennard-Jones potential
gave a slightly higher answer which resulted in a wrong
sign for this energy. In addition, they found" that it
was necessary to include accurately the interaction for
distances small enough so that the potential reached a
value of about 10' deg, which further emphasizes the
sensitivity of the tail of the wave function to the repul-
sive part of the interaction. Finally, since the exchange
energy is so small, a simple analytic form of the wave
function could easily give a reasonable binding energy
with an exchange energy that is unreliable.

The paper by Sernardes' considers only the gross
properties of solid He. His treatment contains the same
physical assumptions as ours does, but uses an approxi-
mate numerical method which involves an expansion in
powers of the kinetic energy and a variational calcula-
tion with a one-parameter sinusoidal wave function.
If his treatment were carried out exactly, it would have
to yield a higher energy than we obtained. Since
Bernardes obtained energies which were lower than
ours by a factor of two or three, his method converges
too slowly for use with He.

Saunders' has included both the effects of correlation
a,nd symmetry by using a Jastrow-type wave function.
Employing physical arguments, he reduced the calcu-
lation to a two-body problem, which he then solved so
as to include the symmetry of the lattice. Since it is
dificult to justify some of his approximations in a
systematic way, and since he obtains an energy of the
order of +10 cal/mole, it is hard to estimate the error
in his calculation of the exchange energy.

Our results for Ne, Ar, Kr, and Xe give only a slight
improvement over the results obtained by Bernardes, 6

However, since our results are the best values that can
be obtained with a spherically averaged single-particle
theory, it is clear that the eftects of correlations and
symmetry contribute about 5% of the ground state
energy of neon, although they contribute much less for
Ar, Kr, and Xe. Since these effects are small, but
dehnitely present in Ne, it would very likely be feasible
and certainly worthwhile to try to calculate them. If
this were done, it might shed considerable light on the
more difIicult ca,lculation of the properties of solid
helium.

(2.1)

where v(~ R,+r;—R,—r, ~) is the potential of inter-
action between two atoms. The potential is usually
written in the Lennard-Jones form,

v (r) =4e((o/r)" (0/r) 'j— (2.2)

where e and 0 are usually determined from the measure-
ments of the second virial coe%cient. The values of ~

in units of 10 deg and 0- in angstroms for the noble gas
elements are given in Table I. For helium the Yntema-
Schneider potential,

II. HARTREE TREATMENT

We consider a, system of iV atoms of mass m described
by positions r; relative to lattice sites R; (1&i&3).
The Hamiltonian for the system is

'K. A. Srueckner and J. L. Gammel, Phys. Rev. 109, 1040
I'1958) and previous papers referred to therein.

'0 Although symmetry e6'ects are not included explicitly, they
must enter implicitly in determining an eGective v to fit the
experimental results on He4.

» K. A. Brueckner (private communication).

e(r) = eoL1200 exp( —4.82r) —1.24r '—1.89r '], (2.3)

is also used; &0=7250 deg and r in angstroms. '
Our program is to do a variational calculation of the

ground-state energy of such a system under the condi-



GROUND STA'L E OF SO L I D EkeHARTREE CALCULATIONS FOR

T I. Values of the Lennard-Jones parameters e and ~
and the nearest-neighbor distance. A; these are

ABLE
all taken from

3ernardes. '
TABLE II. Values of -E0 for Ne, Ar, Kr, and Xe in units of

)teal/mole; minima are obtained at the observed nearest-neighbor
distances given in a eT bl I The parentheses contain the kinetic
energies for our numerical solutions.

He
Ne
Ar
Kr
Xe

a See reference 6.

e (10 deg)

1.02
3.62

12.1
16.3
23.2

2.56
2.74
3.40
3.65
3.98

3.13
3.76
4.01
4.35

Ne
Ar
Kr
Xe

Experiment

0.450~0.010
1.850~0.012
2.59 ~0.05
3.83 ~0.05

Hartree calculations
Oscillator Numerical

8ernardes" approximation solution

0.420 0.457 0.431 (0.085)
1.852 1.875 1.859 (0.097)
2.63 2.64 2.63 (0.073}
3.82 3.83 3.83 (0.065)

tion that the wave functions have the form
a See reference 13.
b See reference 6.

where
e=g q (R;+r;),

neglected, (2.8) becomes
(2.4

q (R,+r,) = u(r;) /(4s)&r, , (2.5) w(r) =we+-', ws(r'+ p I u(p) I'dp), (2 11)

u(r) I'dr=1. (2.6) wo= P' e(Ri), (2.12)

That is, we look for the best wave function which is
a product of single-particle wave functions, each of
which is spherically symmetric about a lattice site.
It is straightforward to show that u(r) is the lowest
energy solution of the Hartree equation,

—(gg, '/2m) u(r)+w(r)u(r) =eu(r), (2.7)

with the boundary conditions u(ao) =0 and limLu(r)/r$

=finite. The self-consistent potential w(r), which
depends on u(r), is given by

w(r) =2' e.(R,pr) I u(p) I'dp, (2.8)

where

~,, (R; p r) = (16m')—' dn„dna e(~ R+p —r~). (2.9)

I'-0= eo ——
~
u(r) )'w(r)dr, (2.10)

where eo is the lowest eigenvalue of (2.7).
Before discussing the numerical solution of (2.7),

it is illuminating to obtain an approximate solution
analytically. We shall consider the case that the atoms
per orm onform only small oscillations about the lattice sites.

ofThen e(~R,+y—r~) can be expanded in powers o y
and r and integrations in (2.9) carried out explicitly.
4Vhen terms in p and r higher than quadratic are

In (2.7) the particle can be looked upon as localized
about the lattice site at the origin so that the sum in
(2.8) runs over all neighbors. The spherical averages
over the angles of 0 and r in (2.9) enter because of the
spherical symmetry of u(r). The ground-state energy
per particle of the system is given by

pd e(R,) 2 de(R, )i
w =-', ' +-

dR, ' R; dR; )
(2.13)

III. NUMERICAL SOLUTION

Ke obtain the single-particle potential and wave
function, w(r) and u(r), from the Hartree equations,
(2.7) and (2.8), by iteration. The main numerica
difhculty is that w(r) must be evaluated at many
points for each iteration. As can be seen from (2.8) and
(2.9), calculation of w(r) for a given r requires the
evaluation of a three-dimensional integral. In addition,
the potential can become in6nite over part of the region
of integration. This causes no difhculty in principle,
because the wave function which multiplies it will

always vanish suKciently strongly so that there will

Theory of Gases and Jiqlids (John Wiley 8z Sons, Inc. , New York,
1954).

jth (2.11) it is straightforward to solve for the lowest
energy state of (2.7) appropriate to the boundary
conditions. The ground-state single-particle wave func-
tion and energy per particle turn out to be

p(r) = (n'i /as~4) exp ( nsrs/2—),
and

Eo——xslws+3h, (ws/m) &j, (2.15)

since mo and mq can be calculated in terms of known
lattice sums. "%e have done this for all of the noble
gases excep e;t H the results are given in Table II.
These results compare favorably with those of er-

des. ' Equation (2.14) cannot apply to He, sincenar es.
~ ~

the He atoms perform very large oscillations a ou e
lattice site. This shows up in that m2 calculated for the
measured lattice distance in He is negative.
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TABLE III. Values of +E0 for He' and He' for various nearest-
neighbor distances (in angstroms) in units of cal/mole. The
nearest-neighbor distances for both He' and He4, determined from
the observed densities, are about 3.7 A. The Lennard-Jones form
of the potential was used. The parenthese contain kinetic energies.

A

Bee(bcc)
He&(fcc)
He4(fcc)

Experiment'

-4.5 +0.5
-12 +0.3

3.65
Hartree calculation

3.70 3.80 4.20

37.2 34.5 (71.8) 27.9
36.4 (87.4) 34.6 (83.0) 31.8 (75.4)
14.4 13.9 13.1

a See reference 13.

be no spurious infinities. However, a numerical cutoG
procedure is clearly indicated.

To handle both of these difhculties, we note that for
values of R;, p and r such that ~R,+y—r~ never
vanishes, the integrals in (2.9) can be carried out
explicitly for the potentials given by (2.2) and (2.3).
One finds for the Lennard-Jones potential

e, (R;,p, r) = (e/R;pr)gfLq(R, +p+r)
+f»(R~ p r) —fL—~(R—+p «)—

fL~(R—p+r) j—, (3 1)
where

fLr(r)=0.0111o"r '—08333o'r ', (3.2)

and for the Yntema-Schneider potential

ti. (R;,p, )r= (eo/4R, pr)t fvs(R;+p+r)
+fvs(R; p r) fv—s(R—,+p—r)—

f»(R —p+r)3, —(3 3)
where

(vs(r) = 10.716(2+4.82r) exp( —4.82r)
—0.1325r '—0.0630r '. (3.4)

Our cutoG procedure consisted in choosing a distance g
and then using either (3.1) or (3.3) in (2.8) whenever
R,—p —r)g and

(nR;, rp) =res(g), (3 5)

whenever R;+p r&g (ts —is the number of nearest
neighbors). The calculation was carried out for several
g's and it was always possible to find a gp such that Ep
was unchanged for any g&gp.

In calculating w(r), it is also necessary to evaluate
the sum over the lattice sites. Using tabulated values"
of the distances of various shells from a given atom
and the number of atoms in each shell, we included
the first 34 shells for a fcc lattice and the first 38 shells

for a bcc lattice. In both cases this included a,ll atoms
up to 6 nearest-neighbor distances from the central
atom and gave the lattice sums to an accuracy of better
than half a percent.

Once w(r) is tabulated, the next step is to solve the
differential Eq. (2.7) numerically. We calculated Es
for various step sizes H from 0.001 to 0.005 A keeping
all other parameters fixed. From the variation of Ep
with B we could set an accuracy on our results of better
than 1%for He and better than is% for the other noble
gas elements.

The results for Ne, Ar, Kr, and Xe are given in the
last column of Table II; they are presented for the
measured nearest-neighbor distances' "given in Table
I, since the calculated Ep is a minimum at these dis-
tances. The results for He4 (fcc structure) and He'
(fcc and bcc structures) are given in Table III for
various nearest neighbor distances A. There is no
minimum in the variation of Ep with A as is to be
expected since crystalline He exists only under pressure.

The extremely poor agreement of the He results with
experiment should be compared with the excellent
agreement for the rest of the noble gas elements. The
self-consistent potential for these elements, as shown
in Sec. II, can be very closely approximated by an
oscillator potential. On the other hand, the self-con-
sistent potential for He, a typical example of which
is shown in Fig. 1, is much more like a square well.
Therefore, we have also calculated the lowest energy
which could be obtained with a wave function ip(r)
of the form sinur using the same parameters as in Fig. 1.
We found Es approximately +42 cal/mole, which is
about 20% higher than the Hartree result. This dis-
crepancy is due almost entirely to the fact that the
Hartree y(r) tails off more slowly than sinar.

Calculations of the binding energy of He analogous
to those in Table III were also performed using the YS
potential (2.3). They gave results which in all cases
were essentially the same as those obtained with the
LJ potential (2.2).
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