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KCl. Commercial material had the highest slope. In
zone-purified material, the slope was lower. It was
also suppressed in material doped with calcium.

(3) The increase of coloring rate due to deformation
that had been observed previously was confirmed.
However, there were indications that as the samples
were irradiated more and more heavily, the coloring
curves tended to approach each other again. Deforma-
tion had no effect whatsoever on the F- to M-center
relationship.

(4) It was determined that changes in the ratio of
M and F centers brought about by bleaching could be
reversed by short re-irradiation. Moreover, lumines-
cence was observed in the crystals under gamma ir-
radiation, the spectral distribution and intensity of
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which was observed to differ in various samples. It is
thought possible that the square relation between the
M- and F-center concentration is due to an equilibrium
under irradiation conditions.
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A single-particle model in which the wave functions are spherically symmetric about each lattice site was
used to calculate the ground-state energy FE, of solid He. The self-consistent Hartree equations (which
yielded the best such wave functions) were solved numerically to an accuracy of better than 1%,. The re-
sults were worse than could have been expected a priori: At the observed densities, the calculated values
of E, were approximately +34 and +14 cal/mole for He® and He?, respectively, as compared with experi-
mental values of —4.5 and —12 cal/mole. Previous calculations are discussed in the light of our results.
In addition, we calculated E, for the crystals of the other noble gas elements. The results for Ar, Kr, and Xe
are within experimental error whereas Eo for Ne is definitely outside this error (being about 5% higher than

experiment).

I. INTRODUCTION

N the last few years the properties of solid He? have
received considerable attention both theoretically
and experimentally.! The fact that He® has a nuclear
spin of 4 makes it possible to do a variety of experi-
ments on it (e.g., measurements of the magnetic
susceptibility, longitudinal and transverse relaxation
times, and self-diffusion coefficient) which are not
possible with He* The crucial point in understanding
these phenomena theoretically is the calculation of the
effect of Fermi-Dirac statistics and exchange forces
on the properties of solid He?. Such a calculation re-
quires a detailed knowledge of the wave function of
solid He3. The object of this note is to present our
recent computer calculations of the ground-state energy
and wave function of solid He? and to discuss previous

* Supported in part by U. S. Atomic Energy Commission.

t Present Address: University of Minnesota, Minneapolis,
Minnesota.

{ Present Address: Stanford University, Stanford, California.

1 Helium Three, edited by J. G. Daunt, (Ohio State University
Press, Columbus, Ohio, 1960).

calculations?™ in the light of our results. In addition,
we will also present calculations of the ground-state
properties of crystals of the other noble gas elements.

The difficulty of computing the low-temperature
properties of solid He? arises from the fact that its
kinetic energy is of the same order of magnitude as its
potential energy; this is due to the low mass of He?
and the weakness of the attraction between two He
atoms. Because of the relatively large kinetic energy,
an external pressure of about 30 atmospheres is neces-
sary to solidify He?. Under these conditions He? has
a body-centered cubic structure which is to be contrasted
with the close packed structures of He? and the other
noble gas elements.? In addition, the average deviation
of a He?® atom from its equilibrium position is certainly
of the order of 30409, of the nearest-neighbor distance;

2N. Bernardes and H. Primakoff, Phys. Rev. Letters 2, 290
(1959); 3, 144 (1959); Phys. Rev. 119, 968 (1960).

3 N. Bernardes, Phys. Rev. 120, 1927 (1960).

4E. M. Saunders, Phys. Rev. 126, 1724 (1962).

5 J. Vignos and H. Fairbank, Phys. Rev. Letters 6, 265 (1961),

have recently found a new (‘“high” temperature) phase of Het
which almost certainly has the bcc structure.
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this is roughly the same as in He#, but about ten times
as large as the average deviations in the other noble
gas crystals.>® Therefore, it is certainly not possible
to treat solid He® or He* by the method of small
oscillations which is usually used to treat crystals.

To gain some insight into this problem, we felt that
it was worthwhile to use a computer to calculate the
lowest energy which could be obtained from a varia-
tional treatment using a wave function written as a
product of single-particle wave functions which are
spherically symmetric about each lattice site. The
single-particle wave functions which minimize the
ground-state energy are then solutions of the well-
known Hartree equations. These equations can be
solved by iteration and are, therefore, well suited to
computer calculations. We have calculated the ground-
state energy and wave function in this way for crystals
of all of the noble gas elements. The numerical results,
which are valid to within 19}, are presented in Tables
II and III.

Before discussing these results for He it is illuminating
to consider crystals of the other noble gas elements
Ne, Ar, Kr, and Xe. In these systems it is a good approx-
imation to expand the potential energy about the lattice
sites and retain only quadratic terms. This approxima-
tion allows the Hartree equations to be solved analyt-
ically yielding a simple algebraic expression containing
lattice sums. The results of this solution are presented
in column 3 of Table II where they are compared with
the results of Bernardes.® They yield values of the
ground state energies of crystals of Ne, Kr, and Xe
which are within experimental error; the result for Ar
is outside experimental error but only by about 19.
The numerical solution of the Hartree equation, given
in column 4 of Table II, changes the results of this
simple calculation slightly in that the result for Ar is
now within experimental error and the result for Ne is
definitely outside the experimental error, being about
5% too high.

The above calculations already indicate serious
difficulties with He since the corrections to the Hartree
approximation appear to be increasing at least as fast
as the inverse square of the mass of the atom. Our
results for He® and He* show that this is indeed the
situation (see Table III). For a nearest-neighbor dis-
tance consistent with the observed density the calcu-
lated values of the ground-state energies are approxi-
mately +34 and 414 cal/mole for He* and He?,
respectively, as compared with experimental values
of approximately —4.5 and —12 cal/mole. The values
of the wave function and self-consistent potential for a
typical calculation for He?® are given in Fig. 1.7

These results, whose agreement with experiment is
far worse than could be anticipated a priori, clearly
point out the inadequacy of a model for solid Helium

S N. Bernardes, Phys. Rev. 112, 1534 (1958).
7 See discussion in Sec. IIT associated with Fig. 1.
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Fic. 1. Plot of the self-consistent potential w(r) (in units of
degrees) and the square of the single-particle wave function
(in arbitrary units) as a function of the magnitude 7 of the devia-
tion of a particle from its lattice site for Hes.

with single-particle wave functions which are spherically
symmetric about each lattice site. The Hartree equa-
tions for a crystal describe the motion of the ith
particle in a self-consistent potential w; which is the
sum over all neighbors j of the two-body interactions
v;; averaged over the motions of atoms j. Consider v;;
to have a hard core of radius #..® The Hartree procedure
effectively extends this radius by an amount given by
the deviation of an atom from its lattice site. Thus, w
is a potential well with infinitely high walls in all direc-
tions, and there are no divergences in the energy as in a
liquid or nuclear matter. On the other hand, because
of this infinite repulsion, there can be no overlap or
exchange interaction in a single-particle model. In
addition, we have assumed that the single-particle
wave functions were spherically symmetric about their
lattice sites. This neglect of the “symmetry of the lat-
tice” (i.e., the configurational symmetry of the atoms
in a particular lattice structure) required additional
averaging which eliminated the dependence of w; on
direction and further decreased the volume of the
attractive well.

From the above discussion it is clear that a calcula-
tion of the binding energy of solid helium must include
the effect of (i) the symmetry of the lattice and (ii)

8 Actually, the form of v is not well known at very small dis-
tances. However, the repulsion is so strong that for discussion
purposes we may consider v to have a hard core. In fact, detailed
knowledge of this repulsion is very likely needed in order to
accurately predict quantities such as the exchange energy.
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correlations between the motions of two (or more)
atoms. The latter effect might be treated by intro-
ducing a K matrix as is done in the theory of liquid He?
or nuclear matter.® It is our opinion that it is necessary
to include otk of the above effects accurately to obtain
a good answer. Although it seems likely that, taken
independently, (ii) would give a much larger correction
than (i), but the contributions from (i) and (ii) are cer-
tainly #ot independent. To see this, we note that in-
cluding the correlations would increase the ‘‘size”
of the well considerably, and thus emphasize the im-
portance of specific directions in the motion of the atom.
Without correlations, the effective size of the wall is
too small for this to have a large effect on the energy.

We shall now discuss the relationship of our work
to previous work on this subject. Bernardes and Prima-
koff? gave a variational treatment for He?® using spher-
ically symmetric Gaussian single-particle wave func-
tions with an “‘effective” interaction, constructed by
modifying the true two-body interaction at small
distances and chosen to reproduce the gross experi-
mental properties of He* fairly well. In this manner
they included the effect of correlations in a phenomeno-
logical way!?; this allows the wave functions to overlap.
Their calculations give rather good agreement as far as
gross properties of solid He? are concerned; however,
experiments' show that they have overestimated the
exchange effects. In fact, it is not at all clear that such
a calculation can even give the correct order of magni-
tude of the exchange integral. Even if such a treatment
gave a good representation of the correlations in He?
the differences in mass and crystal structure between
He? and He* would alter the effective interaction. The
tail of the wave function, to which the exchange integral
is very sensitive, depends strongly on the precise form
of the repulsive part of the effective interaction. This
was already apparent in the calculations of Brueckner
and Gammel *'! who found that the Yntema-Schneider
potential (whose repulsive part rises less rapidly than
that of the Lennard-Jones potential) gave a reasonable
binding energy, whereas the Lennard-Jones potential
gave a slightly higher answer which resulted in a wrong
sign for this energy. In addition, they found! that it
was necessary to include accurately the interaction for
distances small enough so that the potential reached a
value of about 10* deg, which further emphasizes the
sensitivity of the tail of the wave function to the repul-
sive part of the interaction. Finally, since the exchange
energy is so small, a simple analytic form of the wave
function could easily give a reasonable binding energy
with an exchange energy that is unreliable.

9 K. A. Brueckner and J. L. Gammel, Phys. Rev. 109, 1040
(1958) and previous papers referred to therein.

10 Although symmetry effects are not included explicitly, they
must enter implicitly in determining an effective » to fit the
experimental results on He®.

11 K. A. Brueckner (private communication).
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The paper by Bernardes® considers only the gross
properties of solid He. His treatment contains the same
physical assumptions as ours does, but uses an approxi-
mate numerical method which involves an expansion in
powers of the kinetic energy and a variational calcula-
tion with a one-parameter sinusoidal wave function.
If his treatment were carried out exactly, it would have
to yield a higher energy than we obtained. Since
Bernardes obtained energies which were lower than
ours by a factor of two or three, his method converges
too slowly for use with He.

Saunders? has included both the effects of correlation
and symmetry by using a Jastrow-type wave function.
Employing physical arguments, he reduced the calcu-
lation to a two-body problem, which he then solved so
as to include the symmetry of the lattice. Since it is
difficult to justify some of his approximations in a
systematic way, and since he obtains an energy of the
order of 410 cal/mole, it is hard to estimate the error
in his calculation of the exchange energy.

Our results for Ne, Ar, Kr, and Xe give only a slight
improvement over the results obtained by Bernardes.®
However, since our results are the best values that can
be obtained with a spherically averaged single-particle
theory, it is clear that the effects of correlations and
symmetry contribute about 39, of the ground state
energy of neon, although they contribute much less for
Ar, Kr, and Xe. Since these effects are small, but
definitely present in Ne, it would very likely be feasible
and certainly worthwhile to try to calculate them. If
this were done, it might shed considerable light on the
more difficult calculation of the properties of solid
helium.

II. HARTREE TREATMENT

We consider a system of IV atoms of mass # described
by positions r; relative to lattice sites R; (1<i<N).
The Hamiltonian for the system is

H=—(1/2m)3_ V243 vy, (2.1)

i<y

where v(|R.+r,—R;—r;|) is the potential of inter-
action between two atoms. The potential is usually
written in the Lennard-Jones form,

v(r) =4el (o/7)*— (o/7)°],

where € and ¢ are usually determined from the measure-
ments of the second virial coefficient. The values of
in units of 10 deg and ¢ in angstroms for the noble gas
elements are given in Table I. For helium the Yntema-
Schneider potential,

v(r) = €[ 1200 exp (—4.82r) —1.24r76—1.89r78],

(2.2)

(2.3)

is also used; ¢o="7250 deg and 7 in angstroms.®
Our program is to do a variational calculation of the
ground-state energy of such a system under the condi-
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TasiLE I. Values of the Lennard-Jones parameters e and o
and the nearest-neighbor distance A4; these are all taken from
Bernardes.® )

€ (10 deg) o (R) A (R)
He 1.02 2.56
Ne 3.62 2.74 3.13
Ar 12.1 3.40 3.76
Kr 16.3 3.65 4.01
Xe 23.2 3.98 4.35
» See reference 6. o
tion that the wave functions have the form
V=11 ¢(Ri+r)), (2.4)
where @
eRiA1)=u(ry)/ (4m)tr,, (2.5)
and
/ |u(r)|2dr=1. (2.6)

That is, we look for the best wave function which is
a product of single-particle wave functions, each of
which is spherically symmetric about a lattice site.
It is straightforward to show that u(r) is the lowest
energy solution of the Hartree equation,

— (@) 2m)u’" (r)+w(r)ur) =eu(r),
with the boundary conditions (e )=0 and lim[%(r)/7]
r_—)O

2.7)

=finite. The self-consistent potential w(r), which
depends on #(r), is given by

w)=% [ nRplulds, @9

where

2,(Rijp,r) = (1612)“1/11%/119» o(|Ri+o—1]). (2.9)

In (2.7) the particle can be looked upon as localized
about the lattice site at the origin so that the sum in
(2.8) runs over all neighbors. The spherical averages
over the angles of p and r in (2.9) enter because of the
spherical symmetry of #(r). The ground-state energy
per particle of the system is given by

1 w
l€0=eg-—£/ |4 (r) | 2w (r)dr, (2.10)

where e is the lowest eigenvalue of (2.7).

Before discussing the numerical solution of (2.7),
it is illuminating to obtain an approximate solution
analytically. We shall consider the case that the atoms
perform only small oscillations about the lattice sites.
Then o(|R;+9—r|) can be expanded in powers of g
and r and integrations in (2.9) carried out explicitly.
When terms in o and r higher than quadratic are
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TastLE II. Values of —E, for Ne, Ar, Kr, and Xe in units of
kcal/mole; minima are obtained at the observed nearest-neighbor
distances given in Table I. The parentheses contain the kinetic
energies for our numerical solutions,

Hartree calculations

Oscillator ~ Numerical

Experiment® Bernardes® approximation solution
Ne 0.450+0.010 0.420 0.457  0.431 (0.085)
Ar  1.850+0.012 1.852 1.875 1.859 (0.097)
Kr  2.59 £0.05 2.63 2.64 2.63 (0.073)
Xe 3.83 +£0.05 3.82 3.83 3.83 (0.065)

a See reference 13.
b See reference 6.

neglected, (2.8) becomes
wo) =+ [ plu)l, @0

where
wo=2_" v(Ry), (212)
i
and
@v(R,) 2 dv(Rj)
wy=1 };'< Y4 ’ ) (2.13)
i \ dR? R; dR;

With (2.11) it is straightforward to solve for the lowest
energy state of (2.7) appropriate to the boundary
conditions. The ground-state single-particle wave func-
tion and energy per particle turn out to be

o(r)=(@**/7%*) exp(—a’r’/2),

Eo=%[‘&)o+3h(ﬂ?2/m)§], (215)

where a?= (mwq)}/%. It is easy to evaluate (2.15),
since wo and w, can be calculated in terms of known
lattice sums.? We have done this for all of the noble
gases except He; the results are given in Table II.
These results compare favorably with those of Ber-
nardes.® Equation (2.14) cannot apply to He, since
the He atoms perform very large oscillations about each
lattice site. This shows up in that w, calculated for the
measured lattice distance in He is negative.

(2.14)
and

III. NUMERICAL SOLUTION

We obtain the single-particle potential and wave
function, w(r) and u(r), from the Hartree equations,
(2.7) and (2.8), by iteration. The main numerical
difficulty is that w(r) must be evaluated at many
points for each iteration. As can be seen from (2.8) and
(2.9), calculation of w(r) for a given r requires the
evaluation of a three-dimensional integral. In addition,
the potential can become infinite over part of the region
of integration. This causes no difficulty in principle,
because the wave function which multiplies it will
always vanish sufficiently strongly so that there will

12 J. O. Hirschfelder, C. F. Curtiss, and R. B. Bird, Molecular

Theo;y of Gases and Liquids (John Wiley & Sons, Inc., New York,
1954).
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TasLE III. Values of +E, for He® and He* for various nearest-
neighbor distances - (in- angstroms) in units of cal/mole. The
nearest-neighbor distances for both He® and He4, determined from
the observed densities, are about 3.7 A. The Lennard-Jones form
of the potential was used. The parenthese contain kinetic energies.

Experiment» Hartree calculation

A 3.65 3.70 3.80 4.20
He3(bcc) —4.5+0.5 37.2 34.5 (71.8) 27.9
He3(fcc) 36.4 (87.4) 34.6 (83.0) 31.8 (75.4)

—12 +0.3 144 13.9 13.1

He¢(fcc)

a See reference 13.

be no spurious infinities. However, a numerical cutoff
procedure is clearly indicated.

To handle both of these difficulties, we note that for
values of R;, p and r such that |R;+-e—r| never
vanishes, the integrals in (2.9) can be carried out
explicitly for the potentials given by (2.2) and (2.3).
One finds for the Lennard-Jones potential

05 (Rjp,7) = (¢/ Ripr)[ frs (Rj+p+7)
+ frs(Ri—p—7)— fri(R;+p—7)

—fuuRi—pt+7)], 3.1)
where
Jfr1(r)=0.0111¢"%"9—0.8333c% 3, (3.2)
and for the Yntema-Schneider potential
05 (Rjy0,7) = (eo/4R;pr)[ frs(Ri+p+7)
+ fys(Rj—p—7)— fys(Ri+p—1)
—fysRi—p+n)], (3.3)
where
fys(r)=10.716(2+4.82r) exp(—4.82r)
—0.132573—0.0630r~%. (3.4)

Our cutoff procedure consisted in choosing a distance g
and then using either (3.1) or (3.3) in (2.8) whenever
Rj—p—r>gand

Vs (th:r) =nv (g)y (35>

whenever R;+p—r<g (» is the number of nearest
neighbors). The calculation was carried out for several
g’s and it was always possible to find a go such that E,
was unchanged for any g<go.

In calculating w(r), it is also necessary to evaluate
the sum over the lattice sites. Using tabulated values'?
of the distances of various shells from a given atom
and the number of atoms in each shell, we included
the first 34 shells for a fcc lattice and the first 38 shells
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for a bcce lattice. In both cases this included all atoms
up to 6 nearest-neighbor distances from the central
atom and gave the lattice sums to an accuracy of better
than half a percent.

Once w(r) is tabulated, the next step is to solve the
differential Eq. (2.7) numerically. We calculated E,
for various step sizes H from 0.001 to 0.005 A keeping
all other parameters fixed. From the variation of E,
with H we could set an accuracy on our results of better
than 19, for He and better than 39 for the other noble
gas elements.

The results for Ne, Ar, Kr, and Xe are given in the
last column of Table II; they are presented for the
measured nearest-neighbor distances®!? given in Table
I, since the calculated E, is a minimum at these dis-
tances. The results for He* (fcc structure) and He3
(fcc and bec structures) are given in Table IIT for
various nearest neighbor distances A. There is no
minimum in the variation of Ey with 4 as is to be
expected since crystalline He exists only under pressure.

The extremely poor agreement of the He results with
experiment should be compared with the excellent
agreement for the rest of the noble gas elements. The
self-consistent potential for these elements, as shown
in Sec. II, can be very closely approximated by an
oscillator potential. On the other hand, the self-con-
sistent potential for He, a typical example of which
is shown in Fig. 1, is much more like a square well.
Therefore, we have also calculated the lowest energy
which could be obtained with a wave function ¢(7)
of the form sinar using the same parameters as in Fig. 1.
We found E, approximately 442 cal/mole, which is
about 209, higher than the Hartree result. This dis-
crepancy is due almost entirely to the fact that the
Hartree ¢(7) tails off more slowly than sinar.

Calculations of the binding energy of He analogous
to those in Table III were also performed using the YS
potential (2.3). They gave results which in all cases
were essentially the same as those obtained with the
LJ potential (2.2).
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