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(Received April 11, 1962)

Results are reported here for a new theoretical calculation of the periodic deviations from the Schottky
line. Numerical methods exclusively were used to solve the Schrodinger equation for the emitted electron,
to obtain transmission coefFicients, and to calculate emitted current by averaging transmission coe%cient
over an appropriate electron energy distribution. The numerical calculations were carried out both for a
simple-image-force potential barrier and for a similar potential di6'ering only in having a small dip at the
metal surface. Results for the simple-image-force potential were in complete agreement with previous
analytic results, yielding Schottky deviations of approximately the right period and amplitude but shifted
in phase by about a quarter-period from experimentally determined deviations. In disagreement with an
earlier analytic-numerical study, results for the slightly altered potential were nearly identical to the simple-
image-force results and showed the same phase shift.

&. INTRODUCTION

'HE enhancement of thermionic emission from cer-
tain metals by the application of an external

electric field is known as the Schottky effect. .' This eGect
is easily explained as being due to a lowering (by the
applied field) of the effective potential barrier close to
the metal surface. The simple theory predicts a linear
relationship between the logarithm of the emitted cur-
rent and the square root of the field strength. However,
very careful experimental work by Phipps and his
co-workers' ' showed that the relationship is not quite
linear —that, in fact, there exist periodic deviations
from the so-called Schottky line. Since then there have
been several theoretical attempts to explain this phe-
nomenon, as well as additional experimental work.

The deviations were quickly recognized4 to be a quan-
tum mechanical eBect due essentially to reflection of
electrons having energies higher than the potential
barrier maximum. The problem was to set up a reason-
able model for the potential barrier at the metal surface,
to solve the Schrodinger equation for this potential,
and, finally, to obtain the emitted current from these
wave-function solutions by averaging over an ap-
propriate electronic energy distribution function. First
of all, to make the problem tractable a one-dimensional
model has always been assumed; that is, it is assumed
that the metal surface is homogeneous and that the
potential which the electron "sees" is simply a function
of the distance from the surface. Secondly, the form of
the potential barrier outside of the metal has been
taken to be essentially that given by simple image
force theory, based on a Coulombic attraction between
the emitted electron and the positive "hole" it has left

behind. Specifically, much theoretical work'-' was done
on this problem using a potential of the form

V(x) = e'/4x—eFoc —for x& xi
= —8', for @&xi,

where —e is the electronic charge, Ii is the electric field
strength, x is the distance from the metal surface, —5',
is equal to the sum of the Fermi energy and the work
function, and x& satisfies the obvious continuity condi-
dition (—W, =e'/4oci eFxi). This p—otential, the so-
called "simple-image-force potential, " is pictured in
Fig. I. Approximate analytical solutions to the Schro-
dinger equation were obtained in various ways, and
expressions for the Schottky deviations were derived.
The results were encouraging in that theory and experi-
ment agreed almost exactly on the period of the devia-
tions and reasonably well on their amplitude. The theo-
retical deviations, however, differed in phase by about
a quarter period from the experimental ones.

This phase difference indicated that perhaps a differ-
ent model shouM be used for the potential at the metal
surface. Herring' suggested that, based on theoretical
work done by Bardeen, "a more realistic potential would
feature a shallow potential well just at the metal surface
and periodic behavior within the metal. This so-called
Bardeen-Herring potential is also shown in Fig. 1. In
looking at Fig. 1, one should keep in mind that the draw-
ing is not to scale; in particular, the x scale is much ex-
panded in the neighborhood of the origin to show the
fine detail in the potentials in that area. In addition,
Sachs and Dexter" have shown that the simple-image-
force theory should have a quantum-mechanical correc-
tion term roughly proportional to z 2. Drawing upon
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where lV is the energy of the electron and 0 is its wave
function. When V(x) is constant, this equation is
exactly solvable. Therefore, for x&x, we can write the
general solution

A i
%(x)= exp —t2m(w+w )]'"x)

)2m(W+W ))'" 5

+p exp( —-(2m(W+W. )]tl'x /, (4)
r ail

FIG. i. Some proposed potential barrier models. Not drawn to
scale. ——Simple image-force potential; -- = the so-called
Bardeen-Herring potential, adapted from Fig. 1 of Cutler and
Gibbons (see reference 12); ————potential used by Cutler and
Gibbons (see reference 12) and in the present work.

these ideas, Cutler and Gibbons" proposed a potential
of the form (see Fig 1)

V(x) = 'e/4x+ —re)' /4x' eFx for—x& x
= —8' for g&g„

where x, is the smallest real root of the equation

—e'/4x+ r)e'/4x' —eFx= —W..

(2)

Using this potential and a combination of analytical
and numerical techniques, they obtained excellent agree-
ment with experiment for r)=0.0679 A, using a value
W, = 10 eV, which is typical of several metals.

We decided to try to use completely numerical
methods to compute the Schottky deviations; that is,
we would begin by numerically integrating the Schro-
dinger equation and then we would use the wave func-
tions obtained in this way to find the Schottky devia-
tions. Numerical. methods have the advantage of elimi-

nating the need for analtyical oversimplifications. They
should also be able to handle more complicated poten-
tials which are analytically intractable. As a 6rst step,
however, we used virtually the same potential that
Cutler and Gibbons used. Unfortunately our results
are not in agreement with theirs. But we will leave dis-
cussion of results to a later section (Sec. 5) and now

proceed to a description of our work. Section 2 contains
the general theoretical background, while Secs. 3 and 4
consist of the details of our computations.

fP d'@(x)
+(V(x)—W]+(x)=0,

2m Zx
(3)

"P.H. Cutler and J. J. Gibbons, Phys. Rev. 111,394 (1958).

2. THEORY

Consider an electron moving in the one-dimensional
potential given by Eq. (2). The Schrodinger equation
describing the behavior of this electron is

where A and p are complex numbers. Notice that the
erst term of Eq. (4) represents a wave moving from left
to right; i.e., the original electron wave impinging on
the barrier, while the second term represents a wave
moving from right to left; i.e., the electron wave re-
Qected from the barrier. In the region beyond the ba,rrier
we will have only a wave moving from left to right —a
transmitted wave. Since at x))x, (where x. is the loca-
tion of the barrier maximum), V(x) is a very slowly
varying, almost linear function of x, in this region we

may use the %KB approximation to write 4 in the form

+(x)=
(2mEW —V(x)])"4

lz x

Xexp — (2mLW —V(x)])'"dx ~, (5)
5 )

where C is, in general, a, complex number and xo is
chosen large compared to x,.The transmission coeKcient
D and reQection coeKcient R for electrons crossing the
potential barrier from left to right are then given by

D(F,W)=iCi/iAi; Z(F,W)=il i'. ()
The numerical calculation of D and E proceeds in

the following way. First, we select some value for the
arbitrary constant C. We choose

z x

C=exp —— 2m 5'—V x 'tax

Lwhere x &xs and xs is large enough for the approxima-
tion of Eq. (5) to be good], so that ~C~'=1 and%(x )
is easily computed. Then, starting with this 4'(x„),
we integrate Eq. (3) inwards (in the direction of de-
creasing x) numerically. Notice that 4 has a real and
an imaginary part, but both satisfy Eq. (3) and are
calculated completely independently. After the inte-
gration reaches the region where V(x)= —W„%' is
compared with the form given by Eq. (4) and A and p
are extracted. This point will be discussed in greater
detail in the next section.

The D(F,W) obtained in this fashion represents
the probability of transmission of an electron with
energy 8' in fieM F. To And the total transmissio~
probability, we must average D(F,W) over the electron
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energy distribution X(W) to obtain

QO c4

(D(F)&= D(F,W)~ (W)~W
~

X(W)~W.
-~n .. o

The denominator here was selected on the basis of
convenience from among the possible "normalizing"
factors. Changing (D(F)) by a constant factor has no
real eBect on the Anal results, as we shall show later.
We assume a Maxwellian energy distribution

1V(W) =E exp( —W/kT), (g)

which is a very good approximation at the temperatures
( 1500'K) at which experiments are usually per-
formed. In this equation, K is a normalizing factor
independent of lV, T is temperature, and k is the usual
Holtzmann constant.

Substituting (8) into (7), we obtain the following
expression:

D(F,W) exp( W/kT)d—W
(D(F))= (9)

The actual theoretical thermionic emission current i (F)
is proportional to (D(F)), the constant of proportionality
being independent of Ii.

The original Schottky theory assumes a transmission
coeKcient D, (F,W) which is zero for electrons with ener-
gies below the top of the barrier and unity for electrons
with energies above the top of the barrier. The potential
barrier is assumed to be that given by Eq. (1). Using
D, (F,W) for D in Eq. (7), we obtain

(D (F))=exp{oct'F't'/kT}. (10)

The "Schottky" current i, (F) is proportional to (D, (F)),
the constant of proportionality being equal to the one
relating i(F) and (D(F)). Plotting log(D, (F)) vs F'"
does give us a straight line which is essentially the
"Schottky line" mentioned in the introduction. Under
the assumption that the experimental deviations from
the Schottky line are caused by the difference between
D and D,„we obtain a theoretical deviation ~ as follows:

~(F)= logioL'(F)/i. (F)3= log ioL(D(F))/(D F)j
&3/2P&/2

(11)
kT 1n10

It is the quantity D(F) that we wish to calculate
numerically. This is then to be compared to the experi-
mental quantity D„„(F),defined by

where i„o(F) is the measured emitted current in Geld

F, and i„i(F) is an arbitrary reference line of slope
e't'/kT ln10. The choice of intercept of this reference
line has no effect on the important features of the devia-

tion curve. It is this same arbitrariness that allows us a
choice in selecting the normalizing factor of Eq. (7).

A pair of computer programs were written for the
Illiac (the University of Illinois' digital computer). The
first of these outputs a table of D(F,W) vs W when
given the parameters defining the potential and the grid
of 8' values required. The second program accepts a set
of such tables for various E values, together with a value
for the temperature, and outputs a table of the Schottky
deviations vs Ii. The latter program simply integrates
(using Simpson's rule) to obtain (D(F)) as given by
Eq. (9), and then evaluates Eq. (11).The remainder of
this section will therefore be devoted to a brief descrip-
tion of the program to calculate transmission coefficients.

Basic to the calculation of the transmission coefficient
is the solution of the Schrodinger Eq. (3). (For compu-
tational convenience, Eq. (3) was first put into a form
involving only dimensionless quantities. ) It is important
to use an integration method which is both accurate and
very rapid. We selected a method due to Milne. "This
is a fifth-order formula of the predictor-corrector type
and is especially designed for second-order equations
which have no first derivative term.

There were, however, certain programming dif-
ficulties which arose from this choice of method. Firstly,
we needed to generate in some way the values of the
solutions to the differential equation and their second
derivatives at four points in order to start the calcula-
tion. Secondly, we wanted to change the mesh size hx
somewhere in the middle of the calculation. This is a
simple procedure for, say, the Runge-Kutta method of
solving differential equations, but is not readily done for
predictor-corrector methods. The necessity for such a
mesh change is fairly evident from the form of the poten-
tial (Fig. 1). At large distances from the metal surface
the potential is a straight line of small slope, and fairly
large values of hx may be used. The size of Ax is limited,
however, because 0' is undulatory. Specifically, we see
from Eq. (5) that at large x, when V(x) is vary-
ing quite slowly, 4(x) has a wavelength of about
k/{2tttfW —V(x)]}'t2. Thus, for the typical case
pictured in Fig. 2 (W—V=0.276 eV) we see that the
wavelength for x=200 A is approximately 23.3 A. Close
to the surface the potential varies rapidly, necessitating
very small x increments. It is impractical to use a very
small Ax throughout the calculation because of computer
time limitations. Fortunately, a single program routine
can be devised to take care of both setting up initial
values and changing the mesh size. This consists of a
routine which iterates initially given function values
to obtain a set satisfying the differential equation at
several points. The iterative formulas we used are given
in Milne's book, " (p. 46). To start the calculation we

"W. E. Milne, Ngrrterical Solrstiol of Differential Equations
(John Wiley R Sons, Inc. , New York, 1953), p. 88.
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"guess" initial function values, then iterate. (Of course,
we are allowed to specify the value of the function
and its derivative at one point. ) To change the mesh
size, we interpolate from function values obtained on
the large mesh and then iterate, just as when starting
the integration.

After accurate real and imaginary parts of 0' have
been obtained by integrating the diHerential equation
(3), the next problem is to obtain the transmission and
reflection coeflicients from the values of 0'(x) for x xi.
The form of the solution in this region is

(fax ( r &px

+(x)= exp~ +exp~—
qF I'

(13)

where y= L2m(W+W, )]'12. Let V„A„and fr, be the
real parts of 0", A, and p, , respectively, and +„,A„, and
p„be the corresponding imaginary parts. Then evalua-
tion of %(x) at the points x=0 and x= —a.h/2y yields
the fol)owing set of simultaneous equations:

+-(0)= (~./V'") (1+f )—(~,/V'")~v'

+.(o)= (~"/V"")(1+a')+ (~*/~'")f v'

+*(—&/2~) = (~./ '") (1—
f .)—(~*/V'")

+.( ~h/ V )=—(./V'") —( f .) (v/—V'")f—

(14)

These equations are readily solved for the unknowns
A„A„,p„and p, . From these quantities we calculate
the transmission and reAection coeKcients according
to Eq. (6). In general, however, the points x=0 and
x= —~A/2y will not both lie on the grid on which we
have solved the differential equation. It turned out to be
quite satisfactory to choose the grid so that @=0 hes
on it and then interpolate (using a fourth-order Stirling s
formula) to obtain 4(—m.k/2y).

A check on the accuracy of the entire computation is
provided by the relationship

D+If.= 1.

In a typical case, our calculation yielded D+If
=0.9999998, which seemed sufficient accuracy for our
purposes. As W increased, the deviation of D+R from
unity also increased, getting as large as 0.00002 for W= 2
eV; i.e., near the upper limit of W values for which
the calculations were carried out (see Sec. 4.2). For
these energy values, however, E(W) is relatively small,
so that the error in D(W)1V(W) (which is what we want
to integrate) remains negligible.

4. COMPUTATIONS

4.1 Choice of Potential

Using a potential of the form given by Eq. (2), we
are still free to vary the parameters 8' and p. W, we
chose to be 9.3 eV, corresponding to the value for tan-
talum, obtained from an experimental work function
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Fro. 2. Potential and a typical wave function for 7=9064 V/cin,
sketched to scale. Numerical results obtained with g=0.090~,
1i',=9.3 eV. —V(x); ————real part of wave function in
arbitrary units, for an electron of energy 0.2716 eV.

of 4.53 eV and a Fermi energy calculated'4 from an as-
sumed free electron density of one electron per atoms.
The form of the potential sets an upper limit on q of
e'/16W„ for values of rI larger than this the equation
determining x, has no real roots. Hence, in our case we
are restricted to rf 0.0965 A. We used an rf close to
this limit, rI =0.090 A.

Cutler and Gibbons, "whose results we wish to com-
pare with ours, chose W,= 10 eV, a sort of average 8',
for the three metals molybdenum, tungsten, and
tantalum for which Schottky deviation data are
available. They then selected p according to the rule
ii =3e'/64W„which gives rf =0.0679 A. For W, =9.3 eV,
this rule yields &=0.073 A, less than the value we used.
Now, as q is increased, the dip in the potential curve
becomes shallower and broader. Although the small
difference between our potential and that of Cutler
and Gibbons should not affect the results significantly,
the broader potential that we use should be closer to the
Bardeen-Herring' " picture in which the potential
oscillations inside the metal have a period of roughly
interatomic size, implying a dip width of about 3 A.

4.2 Program Parameters

To integrate Eq. (3) numerically, first we had to
choose values for the following computational param-
eters: x, the large value of x at which the integration
is started; (hx) ~, the integration step for x(x2, (Dx) &,

the integration step for x&x2, and x2, the step-change
point. These parameters had to be selected by striking
a balance between the requirements of accuracy and the
restriction of computer time limitations. The values we
decided upon are x =212k, (hx)2=0.264A, (Dx)r
=0.033 A, and x~ ——8.46 A. In Fig. 2, we have indicated
x and x2 on plots of our potential for F=9064 V/cm
and a typical resulting wave function.

"C. Kittel, Introduction to Solid-State I'hysics (John Wiley Bz

Sons, Inc. , New York, 1953), p. 229.
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It is clear that although we have not really chosen
x~&x„as we required in the discussion of Sec. 2., the
%KB approximation should still be good near this x
throughout most of our energy range. Specifically, the
criterion for the applicability of the WKB approxima-
tion is"

8—=Arl (rl V/Bx)/E2rtt (W—V)]'t'«1. (16)

A rough calculation shows that 8&10—' for F=10'
V/cm and W—V)0.0015 eV. The difficulty that arises
as 5"—V decreases through zero and becomes negative
is taken care of in our program by an automatic tem-

porary increase in x . Tests on selected cases indicated
that increasing x or xs, or decreasing (Ax)i or (Dx)s,
does not significantly affect the results.

In the numerical integration of Eq. (9) it is evident
that the practical limits on the integration are not from
—W, to oo, but from a point where D(F,W) is negligibly
small to where exp( —W/kT) is negligibly small. We
therefore fixed the upper limit at 8', =1.922 eV.
This corresponds to exp( —W/kT) =3X10 r for
7= 1500'K. Since the lower limit for 8" must lie under
the barrier top, at some small negative value of TV, at

the electron density has fallen off to about 10 '
of its maximum value. The lower integration limit 8';
was adjusted so that D(F,W;„)&10 '. The region of
integration was initially cut up into about 40 segments
for the application of Simpson's rule. However, D
changes abruptly in the immediate vicinity of the
barrier maximum, (see Sec. 5), and a much finer grid
is required there. Thus, a typical table of D(F,W) con-
sisted of about 39 points for W=W„. —NAW (N=O,

1, 2 38; DW=0.053 eV), plus some 50 to 100 points
for W= W.—2 rite W(W. =W„,„—38DW; rtt =0, 1 ).

30 1
F/10 volt cm'

6
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Fxo. 3. Periodic deviations from the Schottky line. ————Ex-
perimental curve for tantalum, adapted from Seifert and Phipps
(see reference 2), Fig. 5. Theoretical curve, Cutler and Gibbons
(see reference 12). z Numerically calculated points, this work,
q=0.090 L. (For purposes of comparison, a curve has been
sketched connecting these points. )

"D. Bohm, Qaantara Theory (Prentice-Hall, Inc. , New York,
195i), p. 267.

Again, we adjusted the parameter values until further
refinements caused insignifi. cant changes in the results.
For example, for low F values, where D varies especially
rapidly with H/, we found we had to choose 8'=W.
—2 6rghW', when W+lV, .

Tables of D(F,W) were obtained for 35 values of F
over the range 9064 V/cm&F &2.63X10' V/cm. Since
such a table took 1 to 2 h to compute (about 2 min per
point), it is evident that anything in the way of a
general refinement of mesh parameters or a complica-
tion in the potential would quickly make the computa-
tional time prohibitive on Illiac (which has a multi-
plication time of about 700 ttsec). It is for this reason also
that we were unable to do much in the way of varying,
for example, the parameters in the potential.

S. RESULTS

5.1 Periodic Deviations

In Fig. 3 we have plotted the main result of our work,
a curve of the Schottky deviations 6, computed as
described in the preceding sections, as a function of field.
Since theoretical workers' ' ' "discovered 6 to be pro-
portional to a periodic (cosine) function of the variable

y = 4e'"rrt'"/3fsF' "=357.1 (V/cm)'t4/F'", we have used

y as the abscissa in Fig. 3. For comparison purposes,
Fig. 3 also contains an experimental curve and the re-
sults of Cutler and Gibbons. "

In comparing these curves, recall that the location of
the line 6=0 is arbitrary for all three curves, so that
it is only their absolute amplitudes and phases that
should be compared. Notice that our curve differs con-
siderably from both the experimental curve and that of
Cutler and Gibbons. This last is particularly surprising
in view of the fact that we have used a model virtually
identical to that used by them. (cf. Secs. 1 and 4). Our
results, however, agree very well with the old results
given by simple-image-force theory. (The agreement is
so close that we have not bothered to include an image-
force-theory curve in Fig. 3.)

The explanation of these facts that comes to mind
most readily is that the dip in the potential introduced
by Cutler and Gibbons is not really large enough to
aGect the Schottky deviations and that Cutler and
Gibbons' good results somehow arise spuriously from
their analytical approximations. An alternate possibility
was that our numerical integration was ignoring the dip,
but we ruled this out to our satisfaction by drastically
cutting down the integration mesh-step auxin the vicinity
of the dip and noting only an insignificant change in the
resulting A. To test this point further, we obtained some
points for the same potential form but with g =0. Setting
q=0 should just eliminate the dip and yield the simple
image force theory results. A considerable difference was
obtained between the 6 values computed for q=0 and
those for rt=0.09 A. Horleer, the entire difference con-
sisted of a very small decrease in the amplitude of the
deviations, coupled with what we can consider as a shift
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of 0.0005 (quite sizable) in the 6=0 base line. This is
excellent corroborating evidence that our computational
method is not just ignoring the potential dip. The calcu-
lations show, in fact, that the dip simply causes a uniform
increase in the amount of emitted current (i.e., a shift
of base line) but has virtually no eRect on the phase
or amplitude of the periodic deviations, For further
discussion on this point, see Sec. 5.3.

~ I

0~~~a T=2400'K

T = 2000'K

I I I 'I I I I I
)

( I ~ I

5.2 Temperatue Dependence of
Periodic Deviations

It is of some interest to investigate the temperature
dependence of the periodic deviations. Theoretical
workers' ' "have been in agreement that the amplitude
of the periodic deviations should vary linearly with T ',
while the phase should have no T dependence. Experi-
mentally, the deviation amplitude is determined with

Q x104

0

T=1500 K

0

T=1200 K

4

6.5339

8.4287

2— D~
D~ '~o 9.4579

o o~gx103
7,4764

D 5.5734

4 5 „6 7 8
T "x10"'&

9 10

FIG. 4. Plot of 6 vs T ' for several values of the Geld. The
number identifying each curve is the corresponding y/m. The
straight lines are drawn to indicate the approximate linearity
of the points.

"G.A. Haas and E. A. Coomes, Phys. Rev. 9B, 1421 (1954).

a relatively large uncertainty of about 20%is; within
this uncertainty, the dependence of amplitude on
temperature agrees with theory, while it has been a moot
point whether or not some variation of phase with
temperature can be seen.

Our numerical work is in complete agreement with
previous theoretical studies. In Fig. 4, 6 vs T ' for
several values of F was plotted. The general linear
dependence is evident, although there is a slight devia-
tion from linearity. The deviation is probably within
the range of the computational accuracy. Notice that,
in agreement with the fact that it is the amp/itstde of
the Schottky deviations which increases with increasing
T ', 5 increases (with T ') in the neighborhood of
maxima and decreases in the neighborhood of minima.

The very nature of numerical work, in which only

I. «, . I, , s i I

9.35 9.40 p/lT 9.45 9.50

&'xG. 5. Close examination of one minimum in the 6 vs y curve
for several T values, in order to detect a phase shift, if any exists,
with changing T.

discrete points are obtained, makes it difficult to study
small phase shifts. This same difhculty, of course, arises
in experimental work. The best we can do is to examine
the temperature variation of several very closely spaced
points in the vicinity of a maximum or a minimum. The
result of our doing this is shown in Fig. 5. Clearly any
phase shift, with temperature must be either very small
or nonexistent.

5.3 Transmission CoeRcients

As a by-product of calculating the Schottky devia-
tions, we obtained extensive tables of the transmission
coefiicient D(W) for a series of values of the field 17;
i.e., for a series of potential barriers very similar to each
other in form. Some unexpected features appearedin
these results which we feel merit interest in their own
right and which also may shed some light on the
Schottky deviations.

Firstly, the general behavior of D(W) as a function
of TV is about what one would expect. As the electron
energy approaches W& (the energy corresponding to the
top of the potential barrier) from below, D(W) rises
very sharply from zero to about 0.96, which is reached
for 8' slightly greater than Wb. From this point the
rise in D(W) proceeds at a much slower rate, appearing
nearly linear over small ranges of W (but of course
D(W) eventually approaches 1.00 asymptotically).
Previous workers have obtained much the same sort of
thing. (See, for example, Fig. 2 in the paper' by Guth
and Mullin. )

The really interesting feature is the detailed behavior
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FIG. 6. D(IV) for several values
of Geld, all plotted with respect to
the same arbitrary zero of energy.
The number above each graph
gives the value of y/v.
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rier height Wb.
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Fqo. 7. D(&) for two values of Geld, showing in detail the
rapid rise of a sharp peak from a shoulder,

of D(W) for W just slightly larger than W&. In this

region D(W) appears to oscillate. This fact is not in
itself strange, since such oscillations are a common
feature of the most simple potential barrier problems.
What is noteworthy is that for some values of Ii these
oscillations are very large, while for other values of Ii

the oscillations practically vanish. Furthermore, the
waxing and waning of these oscillations can be roughl
correlated with the periodicity of the Schottky devia-

tions. To illustrate this, in Fig. 6 we have plotted D(W)
vs W, in the vicinity of Wq, for several values of y/~
varying over approximately one Schottky deviation
period. Notice that we start with a rather high, shar, s arp
peak, which gradually decreases in height and broadens
as y decreases until no peak is visible at all. Then a new

peak rises very rapidly, beginning as a small shoulder
on the side of the broadened-out old peak. (This last
feature is shown more clearly in Fig. 7.) The new peak
begins to decline and broaden, and the cycle is complete.
This same pattern is repeated over the other Schottky
deviation periods. Of course, the rise and fall of the
peaks is superimposed on a gradual shift toward lower
energies, corresponding to the lowering of the barrier
height with increasing field (decreasing y). Outside the
region of the peak the rise of D to unity was identical
throughout the range of fields considered.

It seems reasonable to conclude, therefore, that the
oscillating peak in the D(W) curve is the direct cause of
the Schottky deviations. Other workers have attributed
the deviations to interference between electron waves
reflected from various parts of the potential barrier. 4 9 "
Our results are entirely consistent with this, since the
periodic variation in the transmission peak has the ear-
marks of an interference eHect. In fact, a careful investi-
gation of the correlation between the oscillations of the
transmission peak and the changing potential may yield
clues as to exactly what regions of the potential are re-
sponsible for the interfering reQections and furthermore
what alteration of the form of the potential might bring
about the desired phase shift. We have not as yet come

to any conclusions along these lines.
All of the results presented in Figs. 2-7 have been ob-

tained with the potential given by Eq. 2 with p=0.090
A. Now, in Fig. 8, we contrast a plot of D(W) for
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ran=0. 090 A with one for r1=0 (simple image force). As
we mentioned in Sec. 5.1, the eGect of setting q=0 is
simply to shift the whole curve by a nearly constant
amount. Although we have here plotted D for only one
value of field, the same result held for other field values
checked. Since the rise and fall of the transmission
peak, which correlates with the periodic Schottky devia-
tions, does not appear to be signihcantly affected by
the change from ri=0.090A to g=0, we would not
expect the &=0.090 A potential to yield Schottky devia-
tions shifted in phase from those given by simple image
force theory.

Ke have been discussing a single "transmission
peak, "but it is interesting to note in Fig. 8 that in addi-
tion to one tall peak there are several smaller oscillations
appearing at slightly larger energies. These extra oscil-
lations appear only at the smallest field (largest y)
values, damping out to the point of being barely visible
(cf. Fig. 6) wheny/rr=9. 839 (i.e. Ii =1.782X10'U/cm).

0.972—

0.970- g =0

0.968-

0.966-

0.964

( W+ 0.04074)/eV

q =0.090A

0/ Scale: =
0.02

6. CONCLUSIONS

The principal conclusion of our work is that the
periodic deviations in the Schottky effect are far from
being thoroughly understood. Our results, in contradic-
tion to those of Cutler and Gibbons, demonstrate that
the potential of Eq. (2) is no more adequate than the
simple image-force potential to explain the phase of the
Schottky deviations. Undoubtedly, a more complicated
potential form is needed; at least, there appears to be
no simple variant of Eq. (2) which changes the potential
in any important respect. Since a potential of the
complexity of Eq. (2) already pushes both analytic

Fzo. 8. D(W) for y= 11.317 s., for two diferent values of
the potential parameter g.

methods and high-speed computer methods near their
practical capability limits, further work involving more
complex potentials will probably require the use of the
higher speed computers now coming into common use.
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