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Scattering and Production Amplitudes with Unstable Particles*
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An S-matrix theory is developed for a system of strongly interacting particles in which unstable particles
are included. The particular system considered is 7f+E ~ 7l.+E, 7l+iV ~ p+S, and p+Ã+-+ p+E. Only
the one-pion-exchange interaction is included. The relationship to the strip approximation and the applica-
tion to the higher resonances in pion-nucleon scattering are discussed. Complex singularities are evaluated,
and their relationship to the generalized unitarity condition for the pion-pion system is stressed. An extended
&D ' method is used to develop a system of nonsingular, uncoupled, Fredholm integral equations, from
which the transition amplitudes can be evaluated.

I. INTRODUCTION

~ 'N the past few years experiments have revealed the
~ - existence of a large number of resonances in ele-
mentary particle reactions. Many physicists have
found attractive the idea of considering these resonances
as unstable particles, decaying via strong interactions,
but to be treated on an equal basis with the stable
particles. This poses the challenge to the S-matrix
theory of strong interactions' of dealing with processes
in which unstable particles occur as intermediate or
external particles. Forces arising from the exchange of
unstable particles have been the subject of intensive
investigation; i.e., the exchange of a p meson (J=I=1

pion-pion resonance) in pion-pion scattering. In this
paper we are concerned with processes such as tr+1V ~
p+1V, where the unstable particle occurs as an external
particle, and with the effect of this process on elastic
pion-nucleon scattering. One cannot, of course, insert
the concept of an unstable external particle directly
into an S-matrix theory, because in such a theory
transitions are defined only between asymptotic states.
Therefore, we consider processes such as or+% —+

7r+w+X, using the existence of the pion-pion resonance
to reduce the complexity of the three-body state.

A specific reason for interest in such a program is the
fact that recent theoretical work indicates that im-
portant sects are to be expected in elastic scattering
in the energy region where the cross section in a com-
peting inelastic channel is rising rapidly; for example,
at the "threshold" for the production of an unstable
particle or resonance state. ' ' In pion-nucleon scat-
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tering, there are strong indications that the higher
resonances may be understood in terms of the J=1,
I= 1 pion-pion resonancer (p-meson) in the pion
production channel. ' Thus, it is important that the
Chew-Mandelstam program' for the calculation of low-

energy scattering processes on the basis of analyticity
and unitarity be extended to include some effects of
inelastic channels. One such attempt is the "strip
approximation" proposed by Chew and Frautschi, '
based on the work of Mandelstam" and Cutkosky. "
These authors noted that those portions of the double-
spectral functions nearest to the physical scattering
region could be expressed in terms of equations in-
volving only two-body scattering processes. The
approximation of including only these inelastic effects
corresponds to the peripheral-collision model for high-
energy collisions. "In both cases the longest range part
of the interaction is assumed to dominate. This assump-
tion becomes especially plausible if one attempts to
calculate only high partial waves.

The strip approximation was applied by Ball and
Frazer' " to the calculation of inelastic effects on
pion-nucleon scattering partial waves of angular
momentum /&~2 in the energy range of the higher
resonances. This amounted to calculating the diagram
in Fig. 1 with the pions in a 7=1, I=1 resonant state,
and imposing the unitarity condition only in the pion-

7 For evidence in favor of J= 1, as well as references to previous
work on this resonance, see D. D. Carmony and R. T. Van de
Walle, Phys. Rev. Letters 8, 73 (1962).
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FIG. 1. A strip-approxima-
tion diagram for pion-nucleon
scattering.
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nucleon channel. Qualitative agreement was obtained
in the assignment of quantum numbers, as well as rough
agreement with the observed positions of the peaks.
Similarly, indications were found that the peak in
E=p scattering at about 1 BeV/c lab momentum is
associated with the E*production threshold. '4 Detailed
quantitative calculations proved impossible because
the inelastic effects calculated from the strip approxi-
mation diagram of Fig. 1 exceeded the unitarity limit.
On the other hand, in reference 4, the unitarity con-
dition was imposed on the transition amplitudes in all
channels at the outset, while no detailed assumptions
were made about the interactions, It is the purpose of
the present paper to outline a method in which it is
possible to calculate those inelastic effects @which result
from the longest range part of the interaction and at
the same time preserve the unitarity condition. '5

In order to make our program tractable it seems
necessary to avoid the full complexity of the three-
body states. We propose to do this by considering only
that part of the reaction s+1V —+ vr+m. +1V in which
two of the final particles are produced in a resonant
state; i.e., s+1V —+ p+,V and s.+1V ~~+1V*. As a
first approximation we shall consider in addition to the
pion-nucleon channel only the p-nucleon channel, since
the interaction leading to the p-nucleon state is the
longest range interaction leading to a final state of one
nucleon and two pions (see Fig. 2). In this respect we

are remaining within the spirit of the strip approxi-
mation, although we must go beyond it in order to
satisfy the requirements of unitarity. We shall do this
by imposing requirements of analyticity and unitarity
on the partial-wave amplitudes for the three processes
rr+1V ~ ~+1V, m+1V ~ p+1V, and p+1V —+ p+1V,
solving the resulting equations by an extended ND '
method. ""The only interaction (left-hand cut) which

FIG. 2. One-pion-exchange interaction.

we shall include is that shown in Fig. 2. It is easily
seen that the lowest order term in the solution of such
a set of equations is just the strip-approximation
diagram shown in Fig. 1 and calculated in references
2 and 13. The qualitative success of that calculation
encourages us to believe that the present program may
provide a quantitative explanation of the higher
resonances in pion-nucleon scattering. However, we
do not expect this program to be meaningful for the
low partial waves in pion-nucleon scattering, nor for
the production processes except perhaps for those
events in which the two final pions are observed to be
in resonance, because the longest range part of the
interaction cannot be assumed to be dominant in these
cases.

Let us now consider this program in more detail. In
Sec. II we discuss the expressions to be used for the
calculation of the discontinuities across the physical
branch cuts. The well-known fact that production
amplitudes have complex singularities" implies that
the discontinuity across the physical cut is not simply
related to the imaginary part. Therefore, the unitarity
condition does not give us the discontinuity, and an
appropriate modification proposed by Blankenbecler"
is presented. We discuss the relationship of these
equations to the unitarity condition. We then discuss
the form these equations take when the two-pion
system is in a resonant state.

In Sec. III we discuss the simplification of the
discontinuity equations by projection of partial waves
and by factorization of the sharp dependence of the
amplitudes on the energy of the two-pion system. We
introduce the one-pion-exchange interaction in Sec. IV,
and describe its analytic properties. In Sec. V we
formulate the integral equations satisfied by the tran-
sition amplitudes, and in Sec. VI we use the ÃD '
method to reduce these equations to Fredholm form.
The anomalous thresholds and complex singularities
are dealt with by analytic continuation in the mass of
the two-pion system. '9 Considerable care is required
to insure that the complex singularities do not introduce
violations of the generalized unitarity condition for the
pion-pion system.

' P. V. Landshoff and S. B.Treiman, Nuovo cimento 19, 1250
(1961);Y. S. Kim, Phys. Rev. Letters 6, 3131 (1961);L. F. Cook,
Jr. , and J. Tarski, J. Math. Phys. 3, 1 (1962); R. Blankenbecler
and J. Tarski, Phys. Rev. 125, 782 (1962)."S. Mandelstam, Phys. Rev. Letters 4, 84 (1960); R.
Blankenbecler and Y. Nambu, Nuovo cimento 18, 595 (1960).
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II. DISCONTINUITIES ACROSS THE PHYSICAL
BRANCH CUTS

We discuss in this paper an extension of the Chew-
Mandelstam program' for the calculation of two-
particle scattering amplitudes to processes involving
unstable particles. An unstable particle is described
here as a two-particle resonance, since all the particle
states in an S-matrix theory must be stable. It is,
therefore, necessary to discuss three-particle production
and scattering amplitudes. To be specific, we consider
the zr+cV and zc+zr+zV states, and assume that the
two pions are in a resonant state. For simplicity we
take zero angular momentum for the resonance, and
call it a p meson. We also neglect isotopic spin and
nucleon spin.

For the amplitude T~~ for the pion-nucleon elastic
scattering process zr+iV —+ zr+tV, we use the standard
variable s, the square of the center-of-mass energy,
and 3, the invariant momentum transfer. For the
production process zr+Ã —+ zr+zr+X, whose amplitude
will be designated T», we will be concerned with the
dependence on the variables s, t, and ~ where ~ is the
square of the energy of the two final pions in their
center-of-mass frame. In general, tb e production
amplitude T» depends on two more variables, but our
restriction to processes in which the two pions are
produced as a p meson corresponds precisely to neglect
of this dependence. Similarly, the amplitude T» for
the process zr+zr+X —+zr+zr+tV will be considered

as a function of s, 3, co plus an additional variable ~'
corresponding to the energy squared of the incoming
pair of pions in their center-of-mass system. According
to time reversal and space reHection invariance the
amplitude T12 for the inverse process m. +zr+Ã —+ zc+lV
is equal to T» while T» is symmetric in co and ~ .

We assume that as a function of the square of the
center-of-mass energy of any pair of particles, the
transition amplitudes T;, which we are considering are
analytic functions except for branch points in the region
of physical energies, and poles associated with single-
particle intermediate states. The physical values of
these amplitudes are obtained by approaching each of
the branch cuts from the zzpper half of the corre-
sponding complex plane. In general, the location of each
cut depends on the other variables of the transition
amplitudes; for some range of values of these variables
the cut extends below the physical threshold and into
the complex plane. In this section we are concerned
with the calculation of discontinuities across the cuts
in the s and ~ variables above the physical thresholds.
We use the equations for these discontinuities obtained
by Blankenbecler" from the I., S.Z. formalism but
emphasize their connection to the physical unitarity
condition in the channel where s is the square of the
total energy.

The unitarity condition in the s channel is, for all
variables having physical values [t &0; ol, &v') 4tzz,

s) (M+tz)'7,

ImT„(s+,t) =p[T„(s+,t') Tll(s, t")+T21(s+,t',&u+")T21(s,t",ol ")7,

ImT21(s~, t M~) =p[T21(s„t',GD+) Tll(s, t")+ T22(s+, t', M+,M „")T21( st",M ")7,

ImT22(si )t)M1 i)%2&) p[T21($ (-)t (oil+) T21($-.)t )M2—)+T22($+)t )oily)& 1- )T22($ )ft )M2—)M——)7q

(2.1b)

(2.1c)

where the primes designa, te intermedia, te variables, and
the summation symbol P represents the phase-space
integrals over the 4-momenta q, of the pions and nucleon
in the intermediate states with total 4-momenta I',

1 —d4q;
22' (q,2—222,2)8 (2,)

2 (2zr)'

&( (2zt)'5'(Q q, I'). (2.2)—

T"*(xy ) = T (x* y* )"(2.3)

which is obviously satis6ed by any perturbation graph.

The subscript +(—) on the variables in Eqs. (2.1)
indicates that the corresponding variable is taken above
(below) the cut. In the right-hand side of Eqs. (2.1) we

have assumed that the transition amplitudes satisfy a
generalized Schwarz reHection principle

The left-hand sides of Eqs. (2.1) can also be written

2i ImT11(s+, t) = Tll(s+, t) —Tll(s, t),
2z ImT21($+)t)ol~) = T21($+qt)ol+) T21(S )t)M ))'

(2 &)
2i ImT22($+ t o&1+ o12+) T22($+ t oil+ F2+)

—
T22 (s,t&011—,o12 ) .

These discontinuities given us by unitarity are not
in a useful form for dispersion-theoretic calculations.
We would like to know the discontinuities across the
physical cuts in s when the other variables are held
fixed. Consider, for example, T». The discontinuity
we want to calculate is the following:

T21(s+&t&ol+) T21($ &t,os) = 2z ImT21(s+, t,co+)
—[T21(s,t)co+) —T21(s )t)&u )7. (2.5)

The term in brackets on the right-hand side of Eq.
(2.5) is the discontinuity of T2, in ol for fixed values of

2 H. Lehmann, K. Symanzik, and W. Zimmermann, Nuovo
cinlento 1, 425 (1955).
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Similar considerations apply to T22. Here the dis-
continuity condition for the or channel takes the form

FiG. 3. Disconnected diagram
for m+7t. +Ã —+ ~+m+X.

T»($, tiM+, M ) Tl2($itiM iM )
=2ie'"" sin8(M) T22($, t,M,M'), (2.11)

s and t. Retaining only two-pion intermediate states,
we have for ~&4p,'

»($itiM+) T»($i "iM—)
= 2ie'""& sin8(M) T21($,t,M ), (2.6)

where 6(M) is the 5-wave pion-pion scattering phase
shift. Equation (2.6) is a generalized form of the
unitarity condition discussed by Mandelstam, " Cut-
kosky " and Slankenbecler. I7

Now let T22~ be the contribution to the amplitude
T22 due to a disconnected process in which the two
pions scatter without interacting with the nucleon (see
Fig. 3):

T22 = (21r)'P(P —Ii') f(M), (2.7)

where p and p' are the initial and final nucleon 3-
momenta, and f(M) is the 5-wave pion-pion scattering
amplitude,

f(M) =161rLM/(M —4ti')]-*e*'& & sinb(M). (2.8)

Then Eq. (2.6) can be rewritten in the form

T21($itiM+) —T21($it,M )
= 21 g T„($,t',M,M~")T„($,t",M "). (2.9)

Substituting this expression in Fq. (2.5), we arrive at
a relation for the discontinuity of T» in s for fixed t
and M ~

T»($+ t M) T»($ tM) 2't Q T-21($+ t M) Tll($—t )
+T22 ($+it iMiM~ ) T21($ it iM )i (2.10)

where T22 = T22—T22 is the contribution to the
amplitude T22 due to all the connected scattering
processes. Since both sides of Eq. (2.10) are analytic
functions of co, this equation is valid for all values of co.

Equation (2.10) also follows directly from the general-
ized form of the unitarity condition in the s channel.
The important thing to note is that any two of Kqs.
(2.1b), (2.6), and (2.10), together with our assumption
about analyticity, imply the validity of the remaining
equation. The procedure that we adopt here is to use
the discontinuity Eqs. (2.6) and (2.10). We emphasize
that if both these equations are satis6ed, then the
unitarity condition in the $ channel, Eq. (2.1b), is
automatically satisfied also. We see in Sec. V that
when complex singularities arise, considerable care is
required to preserve the discontinuity equation in the
or channel.

which we assume to be valid by analytic continuation
for all s and ~'. A similar expression exists for the dis-
continuity in co'. With the help of these equations we are
able, after some manipulation, to convert Eq. (2.1c)
to the form

T22 ($+itiM1, M2) —T2l ($ t,M1 M2)

2l P jTll ($+it iM1) T21($—it iM2)

+T2l ($+it iMliM+ )T» ($ it iM2, M )) (2.1.2)

It is well known that the discontinuity conditions
in co and co can be satisfied quite easily by introducing
the functions:

T»= gf(M)/(t t '), — (2.14)

where g is the m —T coupling constant. Note that G
parity forbids a single-pion exchange in T~~ and T22.
In our erst approximation we attempted to neglect
other interactions, but it turns out that it is then
impossible to satisfy simultaneously the analyticity
requirements and the unitarity conditions on the
transition amplitudes. As we shall see later on, it is
necessary to include at least the pole contribution from
the single-particle states in Figs. 4 and 5 given by

T21——
g T11/ (a —M'),

"K.Watson, Phys. Rev. 95, 228 (1954).

It can readily be verified, using Eqs. (2.6) and (2.11),
that M» and %22 have no discontinuities in co and u
for co, ~')4p, '. Our procedure will be to impose this
condition on the equations we derive. It is possible to
define other functions that have no discontinuities in
~ and ~' by multiplying the right-hand side of Eq.
(2.13) by any function analytic in the neighborhood of
M)4tl'. However, we shall see later that Eq. (2.13)
turns out to be the most useful separation in our
scheme. We note that this is a particular form of the
final-state interaction theorem of Watson. "

To complete our discussion, we should also include
the unitarity condition in the t channel. However, the
approximation we make here is to neglect the branch
points of the transition amplitudes in the t variable,
and keep only the pole term in T» due to the exchange
of a single lr meson (see Fig. 2). This corresponds to
the physical approximation of keeping only the longest
range part of the force that produces the interaction
in the s channel. We have
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FIG. 4. Additional interaction necessary
for consistent formulation of integral
equations for T».

and the nucleon in the zr+zr+X state in their center-
of-mass system.

III. PARTIAL-WAVE AMPLITUDES

The discontinuity equations, Eqs. (2.1a), (2.10), and
(2.12), are greatly simplified if we expand our transition
amplitudes T;, in partial-wave amplitudes T;

T;,=P (2t+ 1)T; P 1(c os 8),
L=O

(3 1)

gT21 ($)t~M ) gT21($ t M

T22(s, t,M, M) = + (2.15)
0-' —3f'

where 0- is the energy square of one of the two pions

where 8 is the nucleon scattering angle in the center-
of-mass system. "

In terms of the partial amplitudes 3f„' defined by
Eqs. (2.13) and (3.1), the discontinuity equations
become, for s& (M+tz)2,

LM11'(s+)—M11'(s )]/22 =M11'(s+)p1(s+)M11'(s )+p' M21'($~,M")
I
j(M")

I
2M211 ($,M"),

LM21'(s+, M) —M21'(s )M)]/2i=M21'(s+)M)p1(s+)M11'(s )+2' M22'(s+, M, M")
I
f(M")

I
2M»'( s, M)

$M 2'($+,M,M') M'(s—,M,M')]/2i=M '(s+,M)p ($~)M21'($,M')+p'M '(s+,M,M")
I
j(M") I M22'($, M', "),

(3.2)

In Eqs. (3.4) and (3.5) we have defined

FIG. 5. Additional
interactions neces-
sary for consistent
formulation of inte-
gral equations for
T22

(b)

where the "summation" Q' now implies only an
integration over u" ..

and

{Ls—(M+t1)'][s (M—t1)']) '

q1(s) =
2+s

(Ls—(M++M)2]Ls —(M—QM)2] F-*'

2�(s,M) =
2/s

GO 4P
P(M) =

16' o)

(3.6)

(3.7)

2'=8(s —(M+2p)') dM" p, (s,M"), (3.3)

(3.4)

(3.5)

1 g1(s)
P1(s)=—

8~ Qs

1 q2(sM)
P2(S,M) = P (M).

42r2 Qs

We now use the fact that
I f(M) I

is large only in the
neighborhood of the resonance energy co=m, ' to
simplify further Eqs. (3.2). Since the amplitudes M'
do not have singularities in co on the physical cut, we

may expand them in a Taylor series about co=vs, '
zzrzder the integrat in Eq. (3.2). If the resonance is
narrow enough, a good approximation is to keep only
the first term, and we then obtain for s) (M+t1)2

I M11'(s+) —M11'(s )]/2i=M11'(s+)p1(s+)M11'(s )+M21 ($+ mp )p2(s+)8Ls —(M+2t1)']M21'(s, mp'),

LM21 ($+&M) M21 ($ &M)]/22= M21 ($+&M)p1(s+)M11'(s—)
+M22'(S+, M,m p') p2(S+) 8LS (M+ 2tz)']M21'(S, m—p'), (3.8)

LM22 (s+pM)M ) M22 (s &M,M')]/2z= M21' (s+,M)pz (s+)M21 (s )M )
+M22'($~, M, m p') p2 (s+)8Ls—(M+ 2tz) 2]M22' ($,M', m p'),

where

p, (s) =
(s&—M) 2

dM'p2($, M')
I
f(M') I'

wave unitarity condition for stable two-particle
channels. The properties of the unstable particle are

(3.9)
4~2 ~'An elegant discussion of the partial-wave expansion of T»

and T22, including spins, has been given by L. F. Cook, Jr., and
Equation (3.8) is identical in form to the partial- B. W. Lee (to be published).
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entirely contained in the generalized phase space
integral, Eq. (3.9).

IV. THE INTERACTION SINGULARITIES

The interaction which is considered in this paper is
the one-pion-exchange diagram in Fig. 2. This is, of
course, a pole in the momentum transfer variable with
residue gf(~), where g is the pion-nucleon coupling
constant, f(cv) is the 2r —2r scattering amplitude, and
u is the mass squared of the m —m final state. Taking
the 8-wave projection of this pole, we find the con-
tribution to T2r is f(~)B(s,&a), where

(M-Polj

(M-~) (M &)'
S'+

sssssss~mssssssggs
S-

M+ Pal)

n(s, co) P(s,co)+n(s,co)—
B(s,a)) = ln

2r —P ($,(v) +n (s,(v)
where

P (s,(o) = 2rg

and

-s' —s (2M2+(u —f22) + (M' —f2') (M' —&u)

(4 1)

(4.2)

f". c

n(s', (o+i8)
ds )

1
B(s, a)+io) =

p+ s —$
(4 5)

where the contour of integration F+ and the cuts which
determine the required branches of o(s,a&) are shown
in Fig. 6. As we increase co the point s+ moves to the
right and reaches the physical threshold s= (M+f2)2
at ro=2p2(1+@/2M). For 2@2(1+@/2M)&~&4p2 the
contour circles around the point (M+f2)2 and s+ moves
to the left below the cut in a(s,cu) as shown in Fig. 6 (b}.

n(s, (o) =2rsg{Ls—(M+p, )2]t s—(M—f2)2]

X LS—(M—Qu)2]LS —(M++co)2])—l. (4.3)

It is easily seen from Eq. (4.1) that B($,&o} is singular
at the zeros of the numerator or denominator of the
argument of the log function. These zeroes are at s=o,
and at s= s+, given by

+( )=M'+ /2~L(v' )/2 ]
XE(4M' —p') (4~' —)1'. (4.4)

If we let cv have a small positive imaginary part, i.e.,
cu ~ ~+i8, where 8)0, and keep a&& 2p2$1+ (p/2M)],
we can express the analytic properties of B(s,~) in a
convenient form by the representation

I'zo. 6. Singularities of the one-pion-exchange interaction. The
cross-hatched lines are the cuts of the function a(s,ar); the solid
lines denote the contour F; and the dashed line indicates the
necessary deformation of the path of integration along the
physical cuts of M» and 3E». In Fig. 6(a) the situation for
~&2'(1+@/2M) is shown; in 6(b), for 2p2(1+p/2M) &cv&4p2,
and 6(c), for ~)4p'. In Fig. 6(c) the contour C ia shown, as well
as the sense in which we have dered the discontinuity across it.

For ~&4p,', s+ and s become complex, as is shown in
Fig. 6(c). Nevertheless, it can be seen from Eq. (4.5)
that B(s,&u) remains a real analytic function of s for
fixed real co. To show this one uses the relation

o.*(s*,to) =—u (s,at), (4.6)

which follows from our choice of branch cuts for rr(sp&).

V. FORMULATION OF THE INTEGRAL EQUATIONS

In this section we derive the integral equations
satisfied by the amplitudes 3E; . For simplicity we
consider only the 5-wave amplitudes M; . In the
following we drop the superscript. If there were no
anomalous thresholds or complex singularities present,
the discontinuity equations, Eqs. (3.8), together with
the interaction term, Eq. (4.1), would imply

1 " Mrr(Sy')pr($+')Mrr($ ')
Mrr($) =— ds +-

(~+u) ' s s (3E+2IJ)~

M2, (s+',m2,2)p2 (s~') M2r (s ',222,2)
ds

s s
(5.1a)

00

M22(s, (o) =B(s,ro)+-
(M+p) 2

M22 (S+',(o)pr (S~')M22 (S ')
ds

s s
00

+-
(M+2 p)

ds', (5.1b)
M22($+ &(d&2rlp )p2(sy )M21($ &2sp )

s s

1 " M22($+', &o')p2($+')M22($ ',co) 1

(~+a)' s s (~+2&)'

M22(sy ro 222 )p2($~ )M22($ (d 222 )
ds

7

s s
(5.1c)
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where 8(s,~) is the one-pion-exchange interaction (see
Fig. 2 and Eq. (4.1)j. The phase-space factor p2 has
been defined in Eq. (3.9).

It is, however, well known that production ampli-
tudes have complex singularities. Therefore, we shouM
write down Eqs. (5.1) for ~, cv'(2)(('Li+(p/2m) j, the
value for which an anomalous threshold develops, and
then continue analytically in ~ and cv' to the value of
physical interest, m, '." However, we find that a
straightforward application of this procedure leads to
a contradiction of the discontinuity equation for the
cu channel, Eq. (2.6). We showed in Sec. II that the
factorization of the pion-pion scattering amplitude
which was used to define the amplitudes 3f;; in Kq.
(2.13) should remove the physical cuts in cv and co'

from the M;,-. Therefore, if one performs the analytic
continuation of Eqs. (5.1) by giving co and co' small
imaginary parts, it should make no difference whether
these imaginary parts are positive or negative. This is
not the case, If positive imaginary parts are chosen,
the physical cut beginning at (M+p)' must be deformed
into the lower half-plane, whereas for negative imagi-
nary parts it must be deformed into the upper half-
plane. The discontinuity in co can be calculated, and is
found to be nonzero.

The meaning of this result can be seen most clearly
by considering the simple perturbation graph discussed
in Appendix A. It is found there that the discontinuity
in u produced by the continuation is identical to the

~f(~)p(~) +(-) s —s))'

(5.2)

We cannot simply add this term to Eq. (5.1b) as it
stands, because the physical cuts which it possesses are
already included in the integrals in Eq. (5.1b). We want
only the contribution of the left-hand singularities in $,
which is given by

~f(~)p(~)

,pi(s+')~(s' ~)~»(s')
ds' . (5.3)

s —s

Similarly, the diagrams of Figs. 5(a) and 5(b) suggest
that the following terms be added to the equation for
&22 (S,G&,M):

term in the unitarity equation for the co process which
results from cutting the perturbation diagram in the
manner shown in Fig. 7 (c). Thus unitarity in ~ cannot
be satisfied unless the interaction shown in Fig. 8 is
included. The natural generalization is that we must
include the interactions shown in Figs. 4 and 5 in order
to formulate a consistent set of equations for the M;, .
These diagrams are, of course, to be interpreted in the
dispersion-theoretic sense: amplitudes which appear as
residues of poles are to be evaluated on the mass shell.

Evaluating the diagram in Fig. 4 and projecting the
outgoing pions into an S state we find, as described in
Appendix A, the following contribution to 3I2((s,a&):

~f(~)p(~),(-)

pi(s+') Mg) (s',a)')n (s',(o) 1

s s ~f(~')p(~') .,(-)
pi (s+')n (s', (u') M„(s',a))

ds
$ —s

(5 4)

The remainder of this section is devoted to the analytic
continuation of the integral equations for the M,;. The
additional terms we have introduced will result in
equations which have no discontinuities in ~ or co for
physical values.

As we perform the continuation in ~ and co' our
integral equations require modification when the
contour I', along which B(s,or) is singular, crosses the
physical cut. Since this happens only in the vicinity of
the point s= (M+p)', the integrals beginning at
s= (&+2)(()'are unaffected. Thus we see that Eq. (5.1a)
is unchanged; i.e., there are no anomalous threshoMs or
complex singularities in the ~+1V—& m+cV channel, as
is well known. I.et us then proceed to the analytic
continuation of the M2~ equation. Our method is an

extension of techniques used by Oehme" and by
Blankenbecler, Goldberger, MacDowell, and Treiman'4
in discussions of anomalous thresholds. An anomalous
threshold occurs when a singularity, such as the end
of our contour I', moves from the second sheet through
the physical cut and onto the physical sheet. The
contour of integration of the physical cut is deformed
to avoid the approaching singularity, and an anomalous
threshold results. See Fig. 6 for an illustration of the
contour deformation required when co is given a positive
imaginary part, as we shall assume throughout the
following discussion.

Adding the term given in Eq. (5.3) to Eq. (5.1b) we

have the following equation to continue in co:

()((s',(u) 1
ds' +

~f(~)p(~) .,(-)

pi (s')n(s', (d)M)) (s')
dS

s —$/

00

+-
(~+@)'

,3-f »(s+', ~)pi(s+')~»(s-')
ds + (55)

s —s

"R.Oehme, Z. Physik 162, 426 (1961)."R.Blankenbecler, M. L. Goldberger, S. W. MacDowell, and S. B.Treiman, Phys. Rev. 123, 692 (1961).
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M;i(s)
M ir'(s) =

1+2ipi(s)Mii(s)

where we have used the dots to indicate the integral from which it is apparent that
beginning at s= (M+2')', which is unaffected by the
continuation. In order to facilitate deformation of the
contour from the physical cut into the lower half-plane,
we use the relation

(5.9)

Mzir'(s' —z~) =Mzi(s'+ze),

where Mzi" (s) is the continuation of M2i(s) through
the cut in the inteval (M+zz)'&s&(M+2zz)' onto the
second sheet. The function M»" (s) can be found by
manipulation of the unitarity relation in this interval,

M, i(s+ze) M—,, (s ie—)
=2zpi(s+ze)Mii(s —ze)M;i(s+ze), (5.7)

where j= 1, 2, into the form

We have defined the branch cuts of pi(s) to be

s& (M+ y)' and s& (M—z()',

from which it follows that

pi*($*)= —pi(s) (5.10)

Thus we can express the last t,erm in Eq. (5.5) in the
form

M;i(s —ze)
M, i(s+ie) =-

1+2ipi(s —ic)Mii(s —ze)
(5 g)

Mzi'(s ')~)pi(s )Mii(s ')
ds' . (5.11)

s s

If we now continue to Redo) 4p', we find

Mzi($&(d) =-
r(~)

n (s', co) 1 '»+» PdiscM»" (s',co) )pi(s+') M»(s')
ds ds

s —s x' +() s —s

~f(~)p (~) sy(ru)

(»+»' pi(s')Mi, "(s')n (s',(0)
ds' +-

s s ~f(~)p(~) (»+»*

p, (s')M i, (s')n (s',ce)
Zs + (5 12)

s s

To simplify the notation we have written a&, whereas &a+i e is intended throughout. Moreover, we have used the
symbol "disc" to indicate the discontinuity of a function across a cut. The sense of the discontinuity is shown by
the plus and minus signs in Fig. 6c, where we also define a contour C(~). Taking the discontinuity of M» across
that portion of C which lies in the lower half-plane, and remembering that discM~~=0, we find

or.

2zpi($)Mii" (s)n ($,(o)
discMzi(s, ~) =2zn(sp&)+2z[discMzi" ($,&v))pi(s)Mii(s)+

f(~)p(~)

pi (s)Mii" (s)
dlscMzi ($)(o) = 2zn($)R) 1+

f(~)p(~)

(5.13)

(5.14)

Combining Eqs. (5.12) and (5.14) we find that

(»+»' pi(s') Mii(s')n (s',(o)
ds' +

s —s ~f(~)p(~) (»+.)*
Mzi(sp)) =B(s,o))—

~f*(~)p(~),(-)

pi(s') Mii(s')n(s', cu)

dS
s s

where we have made use of the relation

1+2ipiMii

1 " pi(s+')M»($+')(v)M»(s —')
+— ds' +, (5.15)

(1lf+Is,) s s

(5.16)

and the unitarity condition for m —x scattering in the form

2zp(a)—
f((0+ie) f (cv ie)— (5.17)

We have defined the cuts of p(~) to lie in the region 0&sr&4zz'.
We can obtain a further simplification of Eq. (5.15) by restricting our attention to Mzi(s, z)z, ), since
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2'=i. ~e then obtainf(mp')P(mP ~

Z

( m 2) —g(s, mp )
p, (s')Mu($ ) 'm ')

ds
(M+w)s —$

I(, ')Mn($+
ds —$I

(s
s

mp )M21($- p

(5 18)
p2 $+

ds
$ —s

, („) p, ($')M2)($ )4')
dS

$ —$$ —$/

„)p, ($+')M2i($- "
+ . (5.19)+- ds

$ —s

IM 22($& ~ f(~)p((d) s+(~)

(V+2m)'
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where the sense of the discontinuity across the contour C
is shown in Fig. 6, and where discdii(s) is to be deter-
mined. Now let us derive an equation for n» by calculat-
ing its singularities from Eq. (6.1a). Using Eq. (5.18) to
obtain the discontinuity of M» across C,

discM2i (s) = 2in (s)L1+ipi (s)M i i (s)], (6.5)

we obtain, suppressing the argument s,

d2. ($) =: —--
7r

,
pi(s+')«2($'}

s

1 ii($ )d2i($ )
eii(s) =— ds'

1 s —s

1 n (s')d2(s')
ei2(s) =B(s)+— ds'

i. s —s

(6.13d)

(6.14a.)

(6.14b)

disceii =Mii discdii+2iii (1+ipiMii) d~i. (6.6)
1

In order that M» not appear in discmii, we must choose iizi($) =B(s)+-
i"

n (s')d„(s')
ds

s —sI

dlscdll = 2&pll2l. (6.7)

discdiq= 2npi(1+dqq), (6.9)

which leaves Eq. (6.3b) unchanged.
In order to calculate the discontinuities of n2l and n22

we need the following relation, derived from Eq. (5.22):

discM~~= —4pin/M ~i—in(1+ipiM»)]. (6.10)

It is then straightforward to show that, after some
cancellations,

I

discii2i ——2in(1+dii) —2ap, LM» (1+dii)+M2id..i]
= 2i&(1+dii) —2@pi'Bii. (6.11)

Since the first term is the result one obtains by using
Eq. (6.3c), we are forced to add an extra term to this
equation. Finally, the result for n» is

Then n» satisfies Eq. (6.3a). Similarly, we fuid that

dhscmi2=Mii discdi2+2i~i(1+ipiMii)(1+d„). (6.8)

As before, to eliminate the explicit dependence of nl2
on Mil, we are led to the choice:

i pi(s')n(s')ei, (s')ds', (6.14c)
s s

n (s')di, (s')
@22($)= ds

7l i S —S

i pi(s')n (s')ei2 (s')
+— ds' . (6.14d)

7l s —s

One can now verify that the M;, given by Eqs. (6.1)
and the above equations have the correct discontinui-
ties, as derived in Sec. V.

The patient reader who has followed us to this point
may wonder what has been gained by converting the
three formidable equations for the M;; into eight
apparently equally formidable equations for the n,;
and the d;, . The answer is found in the relative simplic-
ity of the integral equations satisfied by the n;, , which
we now formulate. First consider Eq. (6.14a) for
xiii(s). Substituting for d2i according to Eq. (6.13c), we
obtain by partial fractions

discn22 2~0'd 12 2P 1&n12. (6.12) eii(s) = ds'p (2~s')E(s, s')m. i( ),s(6.15)

Let us now gather together the n and d equations
which we have derived for the case or =or'= ns, ':

i pi(s')n(s')d„(s')
dii($) = —— ds

7! g S —S

3f+2p)

where we define the kernel E(s,s') by

&(»$')=LB($)—B($')]/~($—$')

Similarly, one obtains

(6.16)

,pi($+')~»($')ds', (6.13a)
s —s ei2(s) =B(s)+

3f+2@,)

ds'p2(s+') E'(s,s') n22(s'). (6.17)

1 pi(s')~(s') L1+d22 (s')]
dig(s) = —— ds'

'r g s —s

pi(s+') ei2 (s')
d$

s —s

The equation for n» is more complicated, but by
straightforward substitution one can express n2l in
terms of nil and d2l. Then substituting for these

(6 13b) quantities according to Eqs. (6.15) and (6.13c) we find
the following uncoupled linear integral equation for n2l.

1
d2i(s) = ——

(3I+2II,)

,p~($+')~»($')
dS

s —sI
(6.13c) n2i(s) =B(s)+

M+2p)

ds'p2 (s+')L(s,s')e2i(s'), (6.18)
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where the kernel L(s,s') is

L (s,s') =
M(+p,)

ds "pi (s+")E(s,s")E(s',s")

Z+-
7r

which can also be written in the form

E(s-+.",s') E(s ",s)
ds"pi(s")n(s") +, (6.19)

s —s s s

This procedure appears to be quite tractable with the
help of existing computers. The important point is that
the integral equations to be solved are not a great deal
more complicated than those appearing in single-channel
problems with normal thresholds. The additional
complication of the complex singularities manifests
itself only in quadratures which must be done to
calculate kernels and to calculate the amplitudes from
the functions e2~ and e».

The generalization required to calculate the depend-
ence of M;, on co and co' is discussed in Appendix B.

L (s,s') =
(M+@)

ds "pi (s+")E(s,s")E(s',s")'
VII. COMPARISON W'ITH THE STRIP

APPROXIMATION
i E(s„",-s') E(s+",s)

+— ds"pi(s")n(s") +
7P s s s —s

2in(s")

~(s"—s) (s"—s')
(6.20)

I.et us now examine the relationship of the solution
of the equations we have derived to the strip approxima-
tion, ' lf we solve these equations formally by iteration,
we find that the lowest order contribution to ImMii(s) is

ImMii(s) =p2(s)B'(s, m„'). (7.1)

From the latter form it can easily be shown, with the
help of Eqs. (4.6) and (5.10) that L(s,s') is real for real
s and s'. This would not be true if we had not included
the additional interactions discussed in the previous
section.

The reality of this kernel greatly increases the
prospect of solving Kq. (6.18) by numerical methods.
Moreover, we note that Kq. (6.18) is a nonsingular
Fredholm equation of the second kind, since the complex
singularities appear only in the calculation of the kernel.

Similarly, we And for e» the following Fredholm
integral equation:

n22(s) =B(s)+
(M+2', )

ds'p2(s4. ')L(s,s')4t2$(s'), (6.21)

where we define

B(s)=
M+p)

ds'pi (s')E(s,s')B(s')

n(s)pi(s)
+— ds' L2B (s+') —B(s) —2in(s') j. (6.22)

s —s

M = 44(I+d) (6.23)

Note that the integral equation satisfied by e» differs
from that satis6ed by e» only in the inhomogeneous
term.

The procedure to be followed in solving for the
amplitudes 3f;, is then the following: First calculate the
inhomogeneous term B and the kernel L, and solve
the Fredholm equations for e2~ and e2~. This is a
routine numerical problem. Then calculate n~~, ei2, and
the four d,; by quadratures, using Eqs. (6.15), (6.17),
and (6.13). Finally, one calculates M;,. from the matrix

equation

ImMii(s) =
47r Qs 4p'

d~p(~) lf(~) I'

&&q, (s,~) l B(s,~)), (7.2)

where the pion-pion interaction has been assumed to be
entirely S wave, and where f(~) is the pion-pion
scattering amplitude in this state.

As before, we use the fact that
l f(co)

l
is large only

for ~=N, ,', and evaluate B(s,cv) at &u=m, '. We then
obtain the same result as that found in Eq. (7.1) for the
lowest order interative solution of our equations.

VIII. SUMMARY

We have developed in this paper a procedure in
which unstable particles can be included on a similar
footing with stable particles in an S-matrix theory of
strong interactions. We treated the unstable particle as
a resonance in the scattering of its decay products. To
be specidc, we described how the effect of the p meson
can be included in the treatment of the pion-nucleon
intera, ction by the methods of dispersion theory. We
ignored, however, the complication of spin and isotopic
spin in order to keep the discussion as simple as possible
while emphasizing the new features associated with the
treatment of unstable particles. The essential new

point is the appearance of the mass of the unstable

We wish to compare this formula with the strip approxi-
mation result for our spinless pion-nucleon model.

The strip approximation calculation proceeds along
the lines erst outlined by Mandelstam. In the energy
region in which no more than 24r+ X intermediate states
contribute, it amounts to calculation of the contribution
to IntM»(s) arising from the diagram in Fig. 1.The pro-
jection of partial waves is discussed in reference 13.
The result for the amplitude 3f~~ calculated from the
diagram of Fig. i is

(a~—M) 2
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particle as an additional variable in the transition
amplitudes. In treating the unstable p meson as a
two-pion resonant state we assumed that the transition
amplitudes were analytic functions of the square of the
mass of the p meson with a branch point corresponding
to the physical threshold for pion-pion scattering. We
then required that the discontinuity across the cut
co&4p,' satisfy a generalized unitarity condition. A
similar condition was imposed on the discontinuity of
the transition amplitude across the physical cut in
the total energy square variable s. These two conditions,
together with the requirements of analyticity of the
amplitudes in s and ~, were shown to imply that the
physical unitarity condition in the s channel is satis6ed.
The important thing to realize is that the requirement of
physical unitarity is not suKcient to derive integral
equations for the transition amplitudes in this problem
which includes three-particle contributions. The reason
is that the unitarity condition gives a relation for the
simultaneous discontinuity of the amplitudes in both
the s and the ~ variable across their physical cuts. In
order to evaluate these discontinuities separately
generalized unitarity conditions have to be introduced.
To simplify the resulting equations we have confined
our discussion to the treatment of partial waves.
Furthermore, we included only the pole contribution in
the momentum transfer variable due to a single-pion
exchange. This gives the longest range part of the
interaction between pions, nucleons and p mesons, and
is expected to be the dominant contribution for high
partial waves. However, to illustrate the general
procedure we have conhned our remarks to 5 waves.
At this stage we have written down dispersion relations
in the s variable, keeping the co variable Axed well below
its physical threshold. In this case only normal thresh-
oMs occur, as is well known from the study of anomalous
thresholds in perturbation theory. Using the analytic
properties in co we then proceed to increase the value of
rd to its physical domain 4p'(rd ((s**—M)'. The result-
ing equations, however, do not satisfy the discontinuity

equations in co. To preserve this condition it is necessary
to include further contributions to our amplitudes in
which the two pions in the ~+ir+1V state do not
interact. A detailed discussion is given in the text and
an example is discussed in perturbation theory in
Appendix A. Finally, the resulting coupled integral
equations are reduced by an exten'sion of the ED '
method to nonsingular Fredholm integral equations
which can be solved by straightforward numerical
methods.

This method, therefore, allows a generalization of
the Chew-Mandelstam technique to include unstable
particles. We hope this may prove useful in the treat-
ment of the recent large number of such particles which
have been discovered experimentally.
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APPENDIX A

In this Appendix we use a simple example from
perturbation theory to illustrate the relation between
the discontinuity equations in s (Eq. 2.10) and rd (Eq.
2.6) and the unitarity condition. In particular, we
demonstrate that disconnected graphs produce dis-
continuities in co, not in s, and that the complex singular-
ities in the s plane for the production amplitude are
closely connected with the phase of m

—m scattering. "
The necessity of adding the nucleon pole diagram to
satisfy the discontinuity equation in co is also shown.

Consider the Feynman diagram in Fig. 7 for the T»
amplitude, where the three vertices correspond to the
m. —Ã coupling constant, and constant scattering
amplitudes Tii for m

—1V scattering and f for ~—~ scat-
tering. From perturbation theory we find

T2i —zTr]fg ( (k p +ze)p(g2 k) p +ze5$(p+rli k) 3P+'Le5}
(2m)'

(A1)

where p, q&, and q& are the four-momenta of the incident nucleon, pion, and outgoing ~—ir system, respectively.
For q&

=—re suKciently small, the discontinuity across the physical s cut is given by the imaginary part of T»(s+,r0)
which can be obtained directly from Eq. (A1), by cutting the diagram in. Fig. 7 along the line (a). The only con-
tribution for co &4p' is

fTrig
ImTpr&" (s+,ce) =—

pi (s~ ')B(s',ei)
(Is' . (A4)

(s' —s)

2~) (k' —z')8 (ke) 2~8L (P+qr —k)' —~'50 (P&+q» —k,). (A2)
2 (2m)4

Carrying out the integration over k we obtain s) (M+@) .Then using Eq. (A3) we obtain the integral

ImT. r "&(s+,ce) = Tiipr(s) fB(s,ce), s& (M+p)', (A3) fTli
where B(s,re) is the Born term given in Eq. (4.1) and T,r&'&(s, o&) =
pi is the phase-space factor defined in Eq. (3.4). It
follows from Eq. (A1) that T2i ' (s,e~) is (for ce&2p' "This connection has been pointed out by 81ankenbecler agff+p'/3II) analytic in the s plane except for the cut p@reki, reference 18,
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FIG. 8. Additional graph
contributing to T21.

FIG. 7. Perturbation graph contributing to T21.

If we now continue a& in the upper half-plane to
physical values, the contour of integration in Eq. (A4)
must be deformed downward to avoid the singularities
in B(s,&u+) as shown in Fig. 6. When this contour is
collapsed around the cut in B(s,a&+), T2i") may be
written

Tilf
T~P& (s,~~) = ,»(s+')B(s',~)

ds
(s' —s)

Tiif (~+a)~

+2i
pi(s )()((s (A))ds', (AS)

(s' —s)

where the only requirement on the contour in the second
term of Eq. (A5) is that it does not cross the branch cuts
of n(s, a&) indicated in Fig. 6.

On the other hand, if ~ is continued in the lover
half-plane, the contour in Eq. (A4) must be deformed
upward to avoid the cut in B(s,&o ). The resulting
expression for Tgy is

Tlif
T~P)(s,co )=

~ (~+a)'

,"("')B(",-)
ds

(s'-s)

Tlif—2z

'+("-) pi(s')~(s' ~)
ds' — . (A6)

(s'-s)

Comparing Eqs. (A5) and (A6) it is clear that T2i (s,(0)

has a branch point at co=4@', with a discontinuity in
co given by

T»(" (s,co+)—T2P) (s,(d ) =2tB((s,co) fp ((d) (A7)

APPENDIX B. THE DEPENDENCE OF
THE M;; ON ~ AND ~'

In Sec. VI we formulated a generalized EjD method
for reducing the integral equations for the M;; to
tractable form. However, we considered there only the
special case of co=co'=m, '. This is adequate for the
calculation of M», which was our primary motive in
undertaking this work. Nevertheless, once one has
obtained the M;, , e;;, and d,; for co=co'=m, , it is only
a matter of quadratures to calculate M2i(~) for all
values of ~. One can also calculate 3f~2(s,&o',co), but the
procedure is more complicated. To show this we must
derive the equations of Sec. VI in a more general form.

The equations for e&( and dii, Eqs. (6.13a) and
(6.14a), need not be changed. In order to calculate the
rest of the e;; and d;, , we first derive the correct equa-
tions for co, cu'(2p'(1+ p/2M). We shall then continue
these equations to physically interesting values of co

and a&'. For di~(s, (d) we make the ansatz

00

dip(s, (o) = ——
(~+a)'

2' z c{co)

pi(s')N(2(s', (0)
d$

$ —$

discLd(2(s', co); C(co)j
dS

S S

2' z c(m p~)

d)sc)d(2 (s', (u); C(m p') )
ds' . (81)

S —S

their own center-of-mass system. The discontinuity can,
of course, be obtained directly from Eq. (A1) by cutting
the diagram in Fig. 7 along line (c).

Since Bi(s,(e) has no discontinuity in ar for or&4p, ,
then according to Eq. (A7) the first-order amplitude
T» ——B&+T»( ) satisfies the discontinuity equation in
&u, Eq. (2.6), to lowest order in f This f.act led us to the
conjecture that a term analogous to Bi must be added
to the integral equations for the T;; in order that these
amplitudes satisfy the discontinuity equation in co.

This is shown in detail in Sec. V.

for co&4p' where

T 8 {(i)

B)(s,(v) =-
~p(~) s+(~~)

,p
(s') (s', )

dS
(s' —s)

(AS)

We have been forced here to introduce a more elaborate
notation for the discontinuity, one which specifies the
contour. Then, observing from Eq. (5.5) that the dis-
continuity of M»(s, co) across C(co) is

(82)
p(~)f(~)—

This amPlitude corresPonds to the diagram in Fig. S, d;scL~„(s ~).C(~)j 2&~(s ~)
p((s)~i((s)

in which the two pions are projected into an 5 wave in
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~ ()-P(s»
(8+2zn($)cd)

( )f(~)

( m 2)PI($)d22( ) p )sm2, ~)P

(89)

(81O)„()/Pp( )f( )~'=22n($)c ) 1+d)I($))

(811)

[12 I($ ())), C( )l
' C (d)3~ C mP
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I

(812)
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87)

In prder to e~

d)scLiV22(s)(0)»
~ (s (0)n($)mp2p1 S

choos~

)/L- (~)f((g)j (84)C(~)]=22n($)cd)PI(d (»
. .t of ( ) .

L~ ( ) C( )~
( )f(= —2gP1 $
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~
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.

( ) C(m2)$
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00

dII(s) = —— PI(S')12(I(S') 2
/

S —$7r |.(m, ')

n (S',m p') PI (S')d2I (S',m p'
dS—

S S/
(813)

1
d(2(s, ar) = ——

1
d2) (S)c)))=

(hf+2I/, )

S —S

P2(S') 1222($',Cd)

dS
S S

p1 $ Sqq S,CO

2I p(c)))f(c))) c( )

p)($')n($', ~)
8$

S —S

C(mp )

p I (S')n (S',m, ')422 (S',m, 2,(d

)dS
S S/

(815)

~ 00

d»i ) )(s c)) )c))) =
/ /

pq S Sqq S,co,co

dS—
S S

(816)

j
n)) (s)=-

r(m p')

n (s', m p') d2) (s',mp')
dS

S —S
(817)

n)2(s, co) =8(s,cu)+—
n(s' m ')d22(s')mp')n)

dS—
S —S/

(818)

)) ($

2(p( )f(~) c(.)

1 n(s, cp)d
n, (s,(u) =- 7) (s,co)+— ds ——

n (s',~')d) ) (s')cu)
4$—

S —S

/
112) ($)(d )C))

7r p(~2'p) f(~')S S

. n(s', cu)PI(s')n(I(s')

, /n(s', cd)p)(s')n)) s, ru

S S

(819)

(820)
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M+2p)

I
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//p&(s")E(s,s"; (u)n (s,m,
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S S
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I/dS

S S
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where ~ and cv' are assumed to have unequal positive imaginary parts, and the respective cuts are kept separated.
Now let us assume that we have solved the equations derived in Sec. V and, therefore, that e;, and d;, are known

for &u=~ =m, '. Then the equations we have derived up to this point permit us to calculate (by quadratures)
22»(s,~) from Eq. (823) and 2222(s, ~',m, ') from Eq. (824). Once these quantities are known, we can calculate
M»(s, ce) and M22(s, cu, m, ') = M22(s, m„',~) from the following equations, which follow from Eqs. (6.1):

where

L1+d22(s m m )])221(s ~) )222($ 2) m )d21($ m )
M21(S,CO) =

D(s)

L1+dll($))2222($ G7 m )—1221($ ~)d21($ m )
M22 ($,(u,m„2) =-

D(s)

D($) = Ll+dll($)]L1+d22(s, m, m )j—d12(s,m )d21(s,m ).

(830)

(831)

(832)

The quantity M22(s, co',a&) seems to be more dificult to evaluate, since we must obtain n 2(2s~', co) by solving
Eq. (824). We would also need d»(s, ~&), which we obtain from the continuation of Eq. (814),

00

d12($,22) = ——
(M+@)2

P 1 (S')2212 (S',(u) i
dS

/
C(m ')

pl(s')n(s', mp2) d22(s', m,2,1d)
dS

$ $

&~+»' pl (S')n($', (o) 1
ds' +

~f*(~)p(~) .,(-)

&~+ )' pl(s')n(s', a&)
ds' . (833)

~f(~)p(~) (-) $ $

Finally, one solves the algebraic Eqs. (6.1) for M22(s, a&,&v). Alternatively, one could evaluate this quantity via
Eq. (5.20), using Eqs. (830) and (831).

It is interesting to note that it might be possible to use these amplitudes to improve upon the approximation
made in reducing Eq. (3.2) to the form given, in Eq. (3.8). In performing integrations over &a" we used the sharply-
peaked nature of

~

f(M")
~

to approximate M»(s, ~") by M»(s, m, 2), and similarly for M». In this Appendix we
have outlined a procedure for calculating the co dependence, which could then be used to check or improve upon
our approximation.


