Resonance Model for Photoproduction of K Mesons on Nucleons

Shigeo Hatsukade
Department of Physics and Astronomy, University of Rochester, Rochester, New York

AND
Howard J. Schnitzer
Department of Physics, Brandeis University, Waltham, Massachusetts
(Received March 30, 1962)

Abstract

An approximate one-dimensional dispersion relation of the Cini-Fubini type is assumed for the invariant amplitudes of the photoproduction of K mesons on nucleons on the supposition that among the various intermediate states in the three related channels only the single-particle states and the resonant states make appreciable contributions. The resonant states that are taken into account are the following: the three-pion-nucleon resonances, the pion-kaon resonance, and the three pion-hyperon resonances. The expressions for the spectral functions are derived by applying the unitarity conditions to each of the three related channels. By the conservation of angular momentum and parity only certain multipole amplitudes determined by the spin and parity of the resonances contribute to the spectral functions, and for these nonvanishing multipole amplitudes the Breit-Wigner formula is assumed.

1. INTRODUCTION

THE application of dispersion relations to problems involving strange particles generally involves considerable complication because of the number of channels coupled to the process of interest both in the physical and unphysical regions. The discussion of photoproduction of K mesons from nucleons is no exception; certain simplifying assumptions must be made in order to obtain any predictions.

In this paper we assume the validity of the Mandelstam representation, but use the (approximate) onedimensional representation obtained by keeping only single particle and resonant intermediate states in the unitarity condition. The resonances we retain are the pion-nucleon resonances N^{*}, the hyperon resonances $Y_{0}{ }^{*}, Y_{0}{ }^{* *}$, and $Y_{1}{ }^{*}$, and the $K-\pi$ resonance K^{*}. Thus, in addition to the usual coupling constants and parities, the various resonance energies, widths, and spins are the parameters of the model. ${ }^{1}$ In principle, these resonance parameters can be determined from the analysis of other experiments; pion-nucleon scattering, photoproduction of pions, K^{*} production, and associated production. We thus have a model which correlates the predictions of photoproduction of K mesons in terms of the parameters obtained from these other experiments. Here we present the formal results of these considerations, while numerical results (dependent on the $\Lambda-\Sigma$ parity and the spin of the K^{*}) will be presented in a subsequent paper. Even if our model is not completely successful in fitting the experimental results, the contributions we consider enter in any dispersion treatment and thus these results should suggest possible refinements.

[^0]
2. KINEMATICS AND DISPERSION RELATIONS

Although kinematical relations were given previously by Okubo ${ }^{2}$ and by Fayyazuddin, ${ }^{3}$ we will give a summary of these relations since somewhat different notation and assumptions are used in this paper. We will denote the four-momenta of the incoming photon and nucleon by k and p_{1}, and those of the outgoing K meson and hyperon by q and p_{2} respectively. By the conservation of momentum and energy, the invariant variables defined by

$$
\begin{align*}
& s=-\left(p_{1}+k\right)^{2}=-\left(p_{2}+q\right)^{2} \tag{2.1a}\\
& u=-\left(p_{1}-q\right)^{2}=-\left(p_{2}-k\right)^{2} \tag{2.1b}\\
& t=-\left(p_{1}-p_{2}\right)^{2}=-(q-k)^{2} \tag{2.1c}
\end{align*}
$$

satisfy the following relation

$$
\begin{equation*}
s+t+u=M^{2}+M_{Y}^{2}+m_{K}^{2} \tag{2.2}
\end{equation*}
$$

where M, M_{Y}, and m_{K} are the masses of nucleon, hyperon, and K meson, respectively.
These invariants are the square of the total energy in the barycentric system of the following reactions designated by channels I, II, and III, respectively:

$$
\begin{align*}
& \gamma+N \rightarrow K+Y \tag{2.3}\\
& \gamma+Y \rightarrow \bar{K}+N \tag{2.4}\\
& \gamma+\bar{K} \rightarrow Y+\bar{N} \tag{2.5}
\end{align*}
$$

The intrinsic parity of the $\Lambda-K$ system with respect to the nucleon is established to be negative, ${ }^{4}$ but the relative $\Lambda-\Sigma$ parity is not yet experimentally decided al-

[^1]though there is some indications that it is even. ${ }^{5}$ Therefore, we will give formalisms for both even and odd $K-Y$ parity so that we can deduce some information on the $K-\Sigma$ parity from the K-meson photoproduction experiment.

The T matrix, defined by

$$
\begin{align*}
S_{f i}= & {\left[-i /(2 \pi)^{2}\right] \delta^{(4)}\left(p_{1}+k-p_{2}-q\right) } \\
& \times\left(M M_{Y} / 4 E_{1} E_{2} k \omega\right)^{\frac{1}{2}} \bar{u}\left(p_{2}\right) T\left(p_{2}, q ; p_{1}, k\right) u\left(p_{1}\right), \tag{2.6}
\end{align*}
$$

can be represented as a linear combination of four Lorentz- and gauge-invariant operators:

$$
\begin{equation*}
T=\sum_{i=1}^{4} A_{i}(s, t, u) O_{i}, \tag{2.7}
\end{equation*}
$$

with
$O_{1}=i \gamma_{5} \gamma \cdot \epsilon \gamma \cdot k$,
$O_{2}=2 i \gamma_{5}(\epsilon \cdot P k \cdot q-\epsilon \cdot q k \cdot P)$,
$O_{3}=\gamma_{5}\left[\gamma \cdot \epsilon q \cdot k-\gamma \cdot k q \cdot \epsilon-i\left(M-M_{Y}\right) \gamma \cdot \epsilon \gamma \cdot k\right]$,
$O_{4}=2 \gamma_{5}\left[\gamma \cdot \epsilon P \cdot k-\gamma \cdot k P \cdot \epsilon-\frac{i}{2}\left(M+M_{Y}\right) \gamma \cdot \epsilon \gamma \cdot k\right]$,
for odd $K-Y$ parity. Here ϵ is the polarization vector of the photon and $P=\frac{1}{2}\left(p_{1}+p_{2}\right)$. The terms proportional to $i \gamma \cdot \epsilon \gamma \cdot k$ in O_{3} and O_{4}, which are added for later convenience, differs slightly from those in reference 3 and reduces to those used by Chew, Goldberger, Low, and Nambu (CGLN) ${ }^{6}$ when the mass difference between a nucleon and a hyperon is neglected.
For even $K-Y$ parity, in which case the amplitudes and operators will be distinguished by a bar, $i \gamma_{5}$ should be replaced by 1 , and also the sign of M_{Y} has to be changed. Thus we write
$\bar{O}_{1}=\gamma \cdot \epsilon \gamma \cdot k$,
$\bar{O}_{2}=2\{\epsilon \cdot P k \cdot q-\epsilon \cdot q k \cdot P\}$,

$$
\begin{align*}
& \bar{O}_{3}=-i\left\{\gamma \cdot \epsilon q \cdot k-\gamma \cdot k q \cdot \epsilon-i\left(M+M_{Y}\right) \gamma \cdot \epsilon \gamma \cdot k\right\} \tag{2.9c}\\
& \bar{O}_{4}=-2 i\{\gamma \cdot \epsilon P \cdot k-\gamma \cdot k P \cdot \epsilon \\
&\left.-i \frac{1}{2}\left(M-M_{Y}\right) \gamma \cdot \epsilon \gamma \cdot k\right\} . \tag{2.9~d}
\end{align*}
$$

The scalar amplitudes A_{i} (or \bar{A}_{i} for even $K-Y$ parity) are matrices in isotopic spin space, and their dependence on the isotopic spin can be expressed by means of the following matrices:

$$
\begin{align*}
A_{i} & =\sum_{j} \mathfrak{g}^{(j)} A_{i}^{(j)}, \tag{2.10}\\
\mathfrak{g}^{(S)} & =1, \tag{2.11a}\\
\mathfrak{g}^{(V)} & =r_{3} \tag{2.11b}
\end{align*}
$$

for Λ production, and

$$
\begin{align*}
& \mathfrak{g}^{(+)}=\delta_{\alpha 3}, \tag{2.12a}\\
& \mathfrak{g}^{(-)}=\frac{1}{2}\left[\tau_{\alpha}, \tau_{3}\right], \tag{2.12b}\\
& \mathfrak{g}^{(0)}=\boldsymbol{\tau}_{\alpha} \tag{2.12c}
\end{align*}
$$

for Σ production, α being the isotopic spin index of the Σ hyperon.
It should be noted that $A_{i}{ }^{(S)}$ and $A_{i}{ }^{(V)}$ represent contributions from isotopic scalar and vector photon respectively, both leading to a final state with total isotopic spin $T=1 / 2$. For Σ production, $A_{i}{ }^{(0)}$ represents the absorption of an isotopic scalar photon with $T=1 / 2$ final state, while $A_{i}{ }^{(+)}$and $A_{i}{ }^{(-)}$are the contributions from an isotopic vector photon leading to a final state with $T=1 / 2$ or $3 / 2$, whose eigenamplitudes can be expressed in terms of $A_{i}{ }^{(+)}$and $A_{i}{ }^{(-)}$as follows:

$$
\begin{align*}
& A^{\left(\frac{3}{2}\right)}=A^{(+)}-A^{(-)}, \tag{2.13a}\\
& A^{\left(\frac{1}{2}\right)}=A^{(+)}+2 A^{(-)} . \tag{2.13b}
\end{align*}
$$

As was shown by Ball, ${ }^{7}$ the choice of O_{i} as given by Eq. (2.8), does not introduce any kinematical singularities, and the Mandelstam representations for the A_{i} are

$$
\begin{align*}
A_{i}(s, t, u)=\frac{R_{N i}}{M^{2}-s}+ & \frac{R_{\Lambda i}}{M_{\Lambda^{2}}-u}+\frac{R_{\Sigma i}}{M_{\Sigma^{2}}-u}+\frac{1}{\pi} \int d s^{\prime} \frac{\rho_{1}{ }^{i}\left(s^{\prime}\right)}{s^{\prime}-s}+\frac{1}{\pi} \int d t^{\prime} \frac{\rho_{2}{ }^{i}\left(t^{\prime}\right)}{t^{\prime}-t}+\frac{1}{\pi} \int d u^{\prime} \frac{\rho_{3}{ }^{i}\left(u^{\prime}\right)}{u^{\prime}-u} \\
& \quad+\frac{1}{\pi^{2}} \int d s^{\prime} \int d t^{\prime} \frac{\rho_{12}{ }^{i}\left(s^{\prime}, t^{\prime}\right)}{\left(s^{\prime}-s\right)\left(t^{\prime}-t\right)}+\frac{1}{\pi^{2}} \int d t^{\prime} \int d u^{\prime} \frac{\rho_{23^{i}}{ }^{i}\left(t^{\prime}, u^{\prime}\right)}{\left(t^{\prime}-t\right)\left(u^{\prime}-u\right)}+\frac{1}{\pi^{2}} \int d s^{\prime} \int d u^{\prime} \frac{\rho_{13^{i}}{ }^{\prime}\left(s^{\prime}, u^{\prime}\right)}{\left(s^{\prime}-s\right)\left(u^{\prime}-u\right)} . \tag{2.14}
\end{align*}
$$

The three poles represent the lowest order perturbation theory. ${ }^{8}$ For odd $K-Y$ parity, the residues of the poles are

[^2]$R_{N 1}=-\frac{1}{2} \operatorname{eg}_{\Lambda}\left(\mathfrak{g}^{(S)}+\mathfrak{g}^{(V)}\right)$,
$R_{N 2}=\frac{e g_{\Lambda}}{t-m_{K^{2}}}\left(\mathfrak{g}^{(S)}+\mathfrak{g}^{(V)}\right)$,
$R_{N 3}=R_{N 4}=\left[\frac{1}{2}\left(\mu_{p}+\mu_{n}\right) g^{(S)}+\frac{1}{2}\left(\mu_{p}-\mu_{n}\right) \mathcal{g}^{(V)}\right] g_{\Lambda}$,
$R_{\Lambda 1}=R_{\Lambda 2}=0, \quad R_{\Lambda 3}=-R_{\Lambda 4}=-\mu_{\Lambda} g_{\Lambda} g^{(S)}$,
$R_{\Sigma 1}=\mu_{T} g_{\Sigma}\left(M_{\Lambda}-M_{\Sigma}\right) g^{(V)}, \quad R_{\Sigma 2}=0$,
$R_{\Sigma 3}=-R_{\Sigma 4}=-\mu_{T} g_{\Sigma} g^{(V)}$
for Λ-production, and
\[

$$
\begin{aligned}
& R_{N 1}=-\frac{1}{2} e g_{\Sigma}\left(\mathfrak{g}^{(+)}+\mathfrak{g}^{(-)}+\mathfrak{J}^{(0)}\right), \\
& R_{N 2}=\frac{e g_{\Sigma}}{t-m_{K}^{2}}\left(\mathfrak{g}^{(+)}+\mathfrak{g}^{(-)}+\mathfrak{g}^{(0)}\right), \\
& R_{N 3}=R_{N 4}=\frac{1}{2}\left\{\left(\mu_{p}+\mu_{n}\right) \mathfrak{J}^{(0)}+\left(\mu_{p}-\mu_{n}\right)\left(\mathfrak{g}^{(+)}+\mathfrak{g}^{(-)}\right)\right\} g_{\Sigma}, \\
& R_{\Sigma 1}=-e g_{\Sigma} \mathfrak{J}^{(-)}, \quad R_{\Sigma 2}=\frac{2 e g_{\Sigma}}{t-m_{K}{ }^{2}} \mathfrak{g}^{(-)}, \\
& R_{\Sigma 3}=-R_{\Sigma 4}=-g_{\Sigma}\left\{\mu_{0} \mathfrak{g}^{(0)}+\frac{1}{2}\left(\mu_{+}-\mu-\right) \mathfrak{g}^{(-)}\right\}, \\
& R_{\Lambda 1}=\mu_{T} g_{\Lambda}\left(M_{\Sigma}-M_{\Lambda}\right) \mathfrak{g}^{(+)}, \quad R_{\Lambda 2}=0, \\
& R_{\Lambda 3}=-R_{\Lambda 4}=-\mu_{T} g_{\Lambda} \mathfrak{J}^{(+)},
\end{aligned}
$$
\]

for Σ production.
In these expressions, μ with suffices $p, n, \Lambda,+,-$, and 0 represent anomalous magnetic moments of proton, neutron, Λ hyperon, and Σ hyperon with the corressponding charges, respectively. Due to charge independence, the magnetic moments of the Σ hyperons satisfy the relation ${ }^{9} \mu_{0}=\frac{1}{2}\left(\mu_{+}+\mu_{-}\right) . \mu_{T}$ is the magnetic moment related to the transition between the Λ and Σ particles defined by

$$
\begin{equation*}
\langle\Sigma| j_{\mu} A_{\mu}|\Lambda\rangle=\frac{1}{2} \mu_{T} \bar{u}_{\Sigma} \sigma_{\mu \nu} F_{\mu \nu} u_{\Lambda} . \tag{2.17}
\end{equation*}
$$

g_{Λ} and g_{Σ} are the coupling constants at the $N \Lambda K$ and $N \Sigma K$ vertices,

$$
\begin{equation*}
\langle V| J|N\rangle=g_{Y} \bar{u}_{Y} \gamma_{5} u_{N}, \tag{2.18}
\end{equation*}
$$

J being the K-meson current.
Since in the odd $\Lambda-\Sigma$ parity case, the $K-\Lambda$ parity is assumed negative, the residue of the poles at $s=M^{2}$ and $u=M_{\Lambda}{ }^{2}$ of the Λ-production amplitude are equal to those occurring in Eq. (2.15). The only term that has to be modified is the pole at $u=M_{\Sigma}{ }^{2}$, i.e., a contribution from the transition magnetic moment, which is now defined by

$$
\begin{equation*}
\langle\Sigma| j_{\mu} A_{\mu}|\Lambda\rangle=\frac{1}{2} \mu_{T} \bar{u}_{\Sigma} \sigma_{\mu \nu} \gamma_{5} F_{\mu \nu} u_{\Lambda} . \tag{2.19}
\end{equation*}
$$

Thus, we have the following expressions for the residues at $u=M_{\Sigma}{ }^{2}$:

$$
\begin{align*}
& R_{\Sigma 1}=-\left(M_{\Lambda}+M_{\Sigma}\right) \mu_{T} g_{\Sigma} \mathscr{J}^{(V)}, \quad R_{\Sigma 2}=0 \tag{2.20}\\
& R_{\Sigma 3}=-R_{\Sigma 4}=\mu_{T} g_{\Sigma} \mathscr{J}^{(V)}
\end{align*}
$$

For Σ production, we have, for even $K-\Sigma$ parity:

$$
\begin{aligned}
R_{N 3}= & -R_{N 4}=-\frac{1}{2}\left\{\left(\mu_{p}+\mu_{n}\right) \mathfrak{J}^{(0)}\right. \\
& \left.\quad+\left(\mu_{p}-\mu_{n}\right)\left(\mathfrak{g}^{(+)}+\mathfrak{J}^{(-)}\right)\right\} g_{\Sigma}, \\
R_{\Sigma 3}=- & R_{\Sigma 4}=g_{\Sigma}\left\{\mu_{0} \mathfrak{J}^{(-)}+\frac{1}{2}\left(\mu_{+}-\mu\right) \mathfrak{J}^{(0)}\right\}, \\
R_{\Lambda 1}= & \left(M_{\Lambda}+M_{\Sigma}\right) g_{\Lambda} \mu_{T} \mathfrak{g}^{(0)}, \\
R_{\Lambda 3}= & -R_{\Delta 4}=g_{\Lambda} \mu_{T} \mathfrak{J}^{(0)},
\end{aligned}
$$

[^3]while the other R 's are the same as the corresponding ones in Eq. (2.16).
From Eq. (2.14), we can find the location of the singularities of the partial wave amplitudes, ${ }^{10}$ and set up integral equations for them, but the equations thus obtained are too complicated to give any physically interesting solution. Therefore, in accordance with the plan stated in the introduction, we will assume the following one-dimensional representation:
\[

$$
\begin{align*}
& A_{i}(s, t, u)=\text { Born terms }+\frac{1}{\pi} \int \frac{a_{i}\left(s^{\prime}, t\right)}{s^{\prime}-s} d s^{\prime} \\
& \tag{2.22}\\
& \quad+\frac{1}{\pi} \int \frac{b_{i}\left(u^{\prime}, t\right)}{u^{\prime}-u} d u^{\prime}+\frac{1}{\pi} \int \frac{c_{i}\left(t^{\prime}, s\right)}{t^{\prime}-t} d t^{\prime} .
\end{align*}
$$
\]

The spectral functions a_{i}, b_{i}, and c_{i} can be obtained as imaginary parts of the amplitudes of the reactions in channels I, II, and III, respectively. In the next three sections, the expressions for these spectral functions will be derived on the assumption that only resonances in each channel make appreciable contributions.

3. $\pi-N$ RESONANCES

(i) Odd $K-Y$ Parity

In the center-of-mass system of channel I, we introduce the following three-momenta and energies:

$$
\begin{array}{ll}
p_{1}=\left(-\mathbf{k}, E_{1}\right), & k=(\mathbf{k}, \kappa), \\
p_{2}=\left(-\mathbf{q}, E_{2}\right), & q=(\mathbf{q}, \omega) . \tag{3.1}
\end{array}
$$

These are related to the total energy $W=\sqrt{ } s$ as follows:

$$
\begin{aligned}
& E_{1}=\left(W^{2}+M^{2}\right) / 2 W, \quad E_{2} \\
& \kappa=\left(W^{2}+M_{Y}^{2}-m_{K}{ }^{2}\right) / 2 W, \\
& \kappa=\left(W^{2}-M^{2}\right) / 2 W, \quad \omega \\
& q=\left\{[(W - M _ { Y }) ^ { 2 } - m _ { K } { } ^ { 2 }] \left[\left(W+M_{Y}{ }^{2}+m_{K}{ }^{2}\right) / 2 W,(3.2)\right.\right. \\
&\left.\left.m_{K}^{2}\right]\right\}^{\frac{1}{2}} / 2 W .
\end{aligned}
$$

Using the solutions of the Dirac equation of the form

$$
\begin{equation*}
u(p)=\frac{-i \gamma \cdot p+M}{[2 M(E+M)]^{\frac{2}{2}}} u(0) \tag{3.3}
\end{equation*}
$$

with

$$
\begin{equation*}
u(0)=\binom{\chi}{0} \tag{3.4}
\end{equation*}
$$

where χ is a two-component spinor, the T matrix can be reduced to a matrix in Pauli spin space as follows:

$$
\begin{equation*}
\bar{u}\left(p_{2}\right) T u\left(p_{1}\right)=4 \pi\left[W /\left(M M_{Y}\right)^{\frac{1}{2}}\right] \chi_{f} F \chi_{i}, \tag{3.5}
\end{equation*}
$$

with

$$
\begin{align*}
F=i \boldsymbol{\sigma} \cdot \boldsymbol{\varepsilon} F_{1}+ & (\boldsymbol{\sigma} \cdot \mathbf{q} \boldsymbol{\sigma} \cdot(\mathbf{k} \times \boldsymbol{\varepsilon}) / q k) F_{2} \\
& +(i \boldsymbol{\sigma} \cdot \mathbf{k q} \cdot \boldsymbol{\varepsilon} / q k) F_{3}+\left(i \boldsymbol{\sigma} \cdot \mathbf{q q} \cdot \boldsymbol{\varepsilon} / q^{2}\right) F_{4} . \tag{3.6}
\end{align*}
$$

[^4]The relation between the amplitudes F_{i} and the invariant amplitudes A_{i} will be written in a matrix form :

$$
\begin{equation*}
A_{i}(s, t, u)=\xi_{i j}(s, x) F_{j}(s, x) \tag{3.7}
\end{equation*}
$$

where the dependence of the matrix $\xi_{i j}$ on the total energy $W=\sqrt{ } s$ and the scattering angle $x=\cos \theta$ has been explicitly indicated. The form of $\xi_{i j}$ can be ex-
pressed conveniently as a product of two matrices: a matrix $\eta_{i j}$ which depends on both s and x and a diagonal matrix $\zeta_{i j} \equiv \zeta_{i} \delta_{i j}$ which depends only on the energy variable s. Thus we have

$$
\begin{equation*}
\xi_{i j}(s, x)=\eta_{i k}(s, x) \zeta_{k j}(s) \tag{3.8}
\end{equation*}
$$

with

$$
\eta_{i j}=\frac{1}{2 W}\left[\begin{array}{ccc}
W+M & -(W-M) & -\left(M_{Y}-M\right)(W+M)+\frac{2 M q \cdot k}{W-M} \\
0 & 0 & -\left(M_{Y}-M\right)(W-M)+\frac{2 M q \cdot k}{W+M} \tag{3.10}\\
1 & 1 & W+M+\frac{q \cdot k}{W-M} \\
1 & \frac{q \cdot k}{W-M} & W-M+\frac{q \cdot k}{W+M} \\
1 & \zeta_{i}=\frac{8 \cdot k}{W-M}\left[\left(E_{1}+M\right)\left(E_{2}+M_{Y}\right)\right]^{-\frac{1}{2}}\left(1, \frac{E_{2}+M_{Y}}{q}, \frac{1}{q}, \frac{E_{2}+M_{Y}}{q^{2}}\right) .
\end{array}\right]
$$

The multipole expansion of the amplitudes F_{i} are given by CGLN, ${ }^{6}$ and
$F_{1}=\sum\left(l M_{l+}+E_{l+}\right) P_{l+1}^{\prime}(x)$

$$
+\sum\left[(l+1) M_{l-}+E_{l-}\right] P_{l-1}^{\prime}(x)
$$

$F_{2}=\sum\left[(l+1) M_{l+}+l M_{l-}\right] P_{l}{ }^{\prime}(x)$,
$F_{3}=\sum\left(E_{l+}-M_{l+}\right) P_{l+1}{ }^{\prime \prime}(x)+\sum\left(E_{l-}+M_{l-}\right) P_{l-1}{ }^{\prime \prime}(x)$,
$F_{4}=\sum\left(M_{l+}-E_{l+}-M_{l-}-E_{l-}\right) P_{l}^{\prime \prime}(x)$.
In our model, the contributions to a_{i} from states in channel I are assumed to come from the following pionnucleon resonances: the $P_{3 / 2}$ state with $T=3 / 2$ at $W=1238 \mathrm{MeV}$, the $D_{3 / 2}$ state with $T=1 / 2$ at $W=1510$ MeV , and the $F_{5 / 2}$ state with $T=1 / 2$ at $W=1680 \mathrm{MeV}$. From unitarity and conservation of parity and angular momentum, we see that these resonances contribute to the spectral functions $a_{i}(s, t)$ through the amplitudes $M_{1+}, E_{1+} ; E_{2-}, M_{2-} ; E_{3-}, M_{3-}$, respectively. In the case of the photoproduction of pion on nucleon ${ }^{6}$ the amplitude M_{1+} is much larger than E_{1+}. We assume that the same thing holds for the photoproduction of K-meson and only the multipole amplitudes with the lower order, i.e., M_{1+}, E_{2-}, and E_{3-} contribute to $a_{i}(s, t)$. We will represent these amplitudes by φ_{i} with $i=1,2$, and 3 , respectively. Then the relevant multipole expansion of F_{i} can be expressed in a matrix form as follows:

$$
\begin{equation*}
F_{i}=\alpha_{i j}(x) \varphi_{i} \tag{3.12}
\end{equation*}
$$

with

$$
\alpha_{i j}=\left(\begin{array}{rrr}
3 x & 1 & 3 x \tag{3.13}\\
2 & 0 & 0 \\
-3 & 0 & 3 \\
0 & -3 & -15 x
\end{array}\right)
$$

Further, from the isotopic spin of the resonances, we have the following conditions on the isotopic spin components of φ_{i} :

$$
\begin{align*}
M_{1+}(S) & =M_{1+}(V)=0 \\
M_{1+}(+) & =-2 M_{1+}(-), \quad M_{1+}(0)=0 \\
E_{2-}(+) & =E_{2-}(-) \tag{3.14}\\
E_{3-}(+) & =E_{3-}(-)
\end{align*}
$$

Now putting together Eqs. (3.7) and (3.12), we have an expression for $a_{i}(s, t)$:

$$
\begin{equation*}
a_{i}(s, t)=\xi_{i j}(s, x) \alpha_{j k}(x) \operatorname{Im} \varphi_{k}(s) \tag{3.15}
\end{equation*}
$$

and as contributions to K-meson photoproduction from the $\pi-N$ resonances, we have

$$
\begin{equation*}
A_{i}{ }^{\mathrm{I}}=\frac{1}{\pi} \int \frac{\xi_{i j}\left(s^{\prime}, x^{\prime}\right) \alpha_{j k}\left(x^{\prime}\right) \operatorname{Im} \varphi_{k}\left(s^{\prime}\right)}{s^{\prime}-s} d s^{\prime} \tag{3.16}
\end{equation*}
$$

Here x^{\prime} should be expressed in terms of s^{\prime} and t as

$$
\begin{equation*}
x^{\prime}=\left(1 / 2 k^{\prime} q^{\prime}\right)\left(t-m_{K^{2}}^{2}+2 k^{\prime} \omega^{\prime}\right) \tag{3.17}
\end{equation*}
$$

and the integration over s^{\prime} should be performed at a fixed t.

For $\operatorname{Im} \varphi_{k}(s)$ we assume a relativistic generalization of the Breit-Wigner formula:

$$
\begin{equation*}
\operatorname{Im} \varphi_{k}(s)=(1 / 4 W)\left\{\Gamma_{k}\left(\Gamma_{k i} \Gamma_{k f}\right)^{\frac{1}{2}} /\left[\left(W-W_{r}\right)^{2}+\frac{1}{4} \Gamma_{k^{2}}^{2}\right]\right\} \tag{3.18}
\end{equation*}
$$

where $\Gamma=$ total width of $\pi-N$ resonance, $\Gamma_{i}=$ a partial width for $\gamma+N \rightarrow N^{*}$, and $\Gamma_{f}=$ a partial width for $K+Y \rightarrow N^{*} . \Gamma_{i}$ and Γ_{f} depends on the energy as
follows:

$$
\begin{align*}
\Gamma_{i} & =\gamma_{i} k^{2 L} \\
\Gamma_{f} & =\gamma_{f} q^{2 l} \tag{3.19}
\end{align*}
$$

where L and l are the orbital angular momenta of a photon and a K meson, and γ_{i} and γ_{f} are slowly varying functions of energy.

For the resonances below the threshold of $K-Y$ production, the denominator $s^{\prime}-s$ in Eq. (3.16) does not vanish in the physical region of channel I; therefore, we can make a zero width approximation for them when integrating over s^{\prime}. Then Eq. (3.18) reduces to

$$
\begin{align*}
\operatorname{Im} \varphi_{k}=(\pi / 2 W)\left(\Gamma_{k i} \Gamma_{k f}\right)^{\frac{1}{2}} \delta(& \left.W-W_{k}\right) \\
& \equiv \pi \varphi_{k 0} \delta\left(W^{2}-W_{k}^{2}\right), \tag{3.20}
\end{align*}
$$

and the integral in Eq. (3.16) reduces to

$$
\begin{equation*}
A_{i}{ }^{\mathrm{I}}=\frac{1}{s_{k}-s} \xi_{i j}\left(s_{k}, x_{k}\right) \alpha_{j k}\left(x_{k}\right) \varphi_{k 0}\left(s_{k}\right) \tag{3.21}
\end{equation*}
$$

The matrix $\bar{\xi}_{i j}(s, x)$ that relates \bar{A}_{i} to \bar{F}_{i}, as in Eq. (3.7), is represented as a product of a matrix $\zeta_{i j}(s)$ defined by Eq. (3.10) and the following matrix $\bar{\eta}_{i j}(s, x)$:
where s_{k} and x_{k} are the values of s and x at $W=W_{k}$, the energy of the k th resonance.

(ii) Even $K-Y$ Parity Case

The T matrix, defined by

$$
\begin{equation*}
T=\sum_{i=1}^{4} \bar{A}_{i}(s, t, u) \bar{O}_{i}, \tag{3.22}
\end{equation*}
$$

can be reduced to the following \bar{F} matrix:

$$
\begin{align*}
& \bar{F}=(\boldsymbol{\sigma} \cdot \boldsymbol{\varepsilon} \boldsymbol{\sigma} \cdot \mathbf{k} / k) \bar{F}_{1}+(\boldsymbol{\sigma} \cdot \mathbf{q} \boldsymbol{\sigma} \cdot \boldsymbol{\varepsilon} / q) \bar{F}_{2} \\
&+(\mathbf{q} \cdot \boldsymbol{\varepsilon} / q) \bar{F}_{3}+\left(\boldsymbol{\sigma} \cdot \mathbf{q} \boldsymbol{\sigma} \cdot \mathbf{k} \boldsymbol{\varepsilon} \cdot \mathbf{q} / q^{2} k\right) \bar{F}_{4} \tag{3.23}
\end{align*}
$$

$$
\begin{gather*}
\bar{\xi}_{i j}(s, x)=\bar{\eta}_{i k}(s, x) \xi_{k j}(s), \tag{3.24}\\
\bar{\eta}_{i j}=\frac{1}{2 W}\left(\begin{array}{cccc}
W-M & -(W+M) & -\left(M+M_{K}\right)(W-M)-\frac{2 M k \cdot q}{W+M} & -\left(M+M_{Y}\right)(W+M)-\frac{2 M k \cdot q}{W-M} \\
0 & 0 & 1 & -1 \\
-1 & -1 & -(W-M)-\frac{k \cdot q}{W+M} & -(W+M)-\frac{k \cdot q}{W-M} \\
-1 & -1 & -\frac{k \cdot q}{W+M} & -\frac{k \cdot q}{W-M}
\end{array}\right] . \tag{3.25}
\end{gather*}
$$

The multipole expansion for \bar{F}_{i} reads as follows:
$\bar{F}_{1}=\sum\left[(l+1) \bar{M}_{l+} P_{l+1^{\prime}}(x)-l \bar{M}_{l-} P_{l-1}{ }^{\prime}(x)\right]$,
$\bar{F}_{2}=\sum\left[(l+2) \bar{M}_{l+}-(l-1) \bar{M}_{l-}-\bar{E}_{l+}+\bar{E}_{l-}\right] P_{l}{ }^{\prime}(x)$,
$\bar{F}_{3}=\sum\left[\left(\bar{E}_{l+}-\bar{M}_{l+}\right) P_{l+1}{ }^{\prime \prime}(x)-\left(\bar{M}_{l-}+\bar{E}_{l-}\right) P_{l-1}{ }^{\prime \prime}(x)\right]$,
$\bar{F}_{4}-\sum\left[\bar{M}_{l+}+\bar{M}_{l-}-\bar{E}_{l+}+\bar{E}_{l-}\right] P_{l}^{\prime \prime}(x)$.
From the selection rules, we see that the first, second and the third $\pi-N$ resonances contribute to \bar{a}_{i} through $\bar{M}_{2-}, \bar{E}_{1+}$, and \bar{E}_{2+}, respectively, if only the lower multipole amplitudes are retained. We will denote these amplitudes by $\bar{\varphi}_{i}$ with $i=1,2$ and 3 respectively, then we have

$$
\begin{equation*}
\bar{F}_{i}=\bar{\alpha}_{i j} \bar{\varphi}_{j} \tag{3.27}
\end{equation*}
$$

with

$$
\bar{\alpha}_{i j}=\left(\begin{array}{crc}
-2 & 0 & 0 \tag{3.28}\\
-3 x & -1 & -3 x \\
0 & 3 & 15 x \\
3 & 0 & -3
\end{array}\right)
$$

Of course, the isotopic spin dependence remains the same as the previous case.
where C is the matrix with the following properties:

$$
\begin{align*}
C \gamma_{\mu}{ }^{T} C^{-1} & =-\gamma_{\mu} \\
C^{T} & =-C . \tag{4.2}
\end{align*}
$$

Then we have
with

$$
\begin{equation*}
S_{f i}{ }^{\mathrm{II}}=-\frac{i}{(2 \pi)^{2}}\left(\frac{M M_{Y}}{4 E_{1}^{\prime} E_{2}^{\prime} k \omega}\right)^{\frac{1}{2}} \bar{u}\left(p_{1}^{\prime}\right) T u\left(p_{2}^{\prime}\right) \tag{4.3}
\end{equation*}
$$

$$
\begin{equation*}
T=\sum_{i=1}^{4} A_{i}{ }^{\prime} O_{i}{ }^{\prime} . \tag{4.4}
\end{equation*}
$$

The matrices $O_{i}{ }^{\prime}$ are the same as O_{i} except that p_{1} and p_{2} are replaced by $p_{1}{ }^{\prime}$ and $p_{2}{ }^{\prime}$. The $A_{i}{ }^{\prime}$ are related to A_{i} as follows:

$$
\begin{equation*}
A_{i}=\beta_{i j} A_{j}{ }^{\prime}, \tag{4.5}
\end{equation*}
$$

with

$$
\beta_{i j}=\left(\begin{array}{cccc}
1 & 0 & 2\left(M_{Y}-M\right) & 0 \tag{4.6}\\
0 & 1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) .
$$

In the barycentric system, we denote the energy and three-momenta of each particle as follows:

$$
\begin{array}{ll}
k=(\mathbf{k}, \kappa), & p_{2}^{\prime}=\left(-\mathbf{k}, E_{2}{ }^{\prime}\right), \\
q=(\mathbf{q}, \omega), & p_{1}^{\prime}=\left(-\mathbf{q}, E_{1}^{\prime}\right), \tag{4.7}
\end{array}
$$

with

$$
\begin{equation*}
A_{i}{ }^{\prime}=\xi_{i j}{ }^{\prime}(u, y) F_{j}^{\prime}, \tag{4.9}
\end{equation*}
$$

The T matrix (4.4) is the same as the corresponding Eq. (3.5) in channel I, except that p_{1} and p_{2} are interchanged, therefore, it can be reduced to the F^{\prime} matrix which is formally identical to the F matrix defined by Eq. (3.6) for channel I, and the matrix $\xi_{i j}{ }^{\prime}(u, y)$ that relates $A_{i}{ }^{\prime}$ and $F_{i}{ }^{\prime}$ can be obtained from Eqs. (3.8) to (3.10) by interchanging E_{1} and M for E_{2} and M_{Y}, except for those M and M_{Y} appearing explicitly in the definition of O_{3} and O_{4} given by Eqs. (2.8c) and (2.8d). Thus we have

$$
\xi_{i j}^{\prime}(u, y)=r_{i k}{ }^{\prime}(u, y) \xi_{k j}^{\prime}(u),
$$

$\left.\begin{array}{l}\eta_{i j}^{\prime}=\frac{1}{2 W} \\ {\left[\begin{array}{ccc}W-M_{Y}+2 M & -\left(W+M_{Y}-2 M\right) & -\left(M_{Y}-M\right)\left(W+M_{Y}\right)+\frac{2 M q \cdot k}{W-M_{Y}} \\ 0 & 0 & -\left(M_{Y}-M\right)\left(W-M_{Y}\right)+\frac{2 M q \cdot k}{W+M_{Y}} \\ 1 & 1 & 1 \\ 1 & 1 & \frac{q+M_{Y}+\frac{q \cdot k}{W-M_{Y}}}{W-M_{Y}}\end{array}\right]-\frac{1}{W-M_{Y}+\frac{q \cdot k}{W+M_{Y}}}} \\ 1\end{array}\right]$,
and

$$
\begin{equation*}
\zeta_{j}^{\prime}=\frac{8 \pi W}{W-M_{Y}}\left[\left(E_{1}+M\right)\left(E_{2}+M_{Y}\right)\right]^{-\frac{1}{2}}\left(1, \frac{E_{1}+M}{q}, \frac{1}{q}, \frac{E_{1}+M}{q^{2}}\right), \tag{4.11}
\end{equation*}
$$

where $y=\cos \theta^{\prime}, \theta^{\prime}$ being a scattering angle in the c.m. system in channel II. The multipole expansion of $F_{i}{ }^{\prime}$ is identical to that of F_{i} in channel I.
The spin of $Y_{1}{ }^{*}$ was recently found ${ }^{11}$ to be larger than $1 / 2$ but its parity is not yet determined. For even $\Lambda-\Sigma$ parity, the most reasonable assumption would be the values obtained from global symmetry, i.e., P wave and $J=3 / 2$. As for the other two resonances ${ }^{12} Y_{0}{ }^{*}$ and $Y_{0}{ }^{* *}$ with $T=0$ at $W=1405 \mathrm{MeV}$ and $W=1520 \mathrm{MeV}$,

[^5]these will be tentatively assumed to be in the $S_{1 / 2}$ and $D_{3 / 2}$ states, respectively. These resonances contribute to the spectral function through the amplitudes M_{1+}, E_{0+}, and E_{2-}, respectively, if only the lower multipole amplitudes are retained. We will express $F_{i}{ }^{\prime}$ as
\[

$$
\begin{equation*}
F_{i}{ }^{\prime}=\alpha_{i j}{ }^{\prime}(y) \varphi_{j}^{\prime}, \tag{4.12}
\end{equation*}
$$

\]

with

$$
\alpha_{i j}^{\prime}(y)=\left(\begin{array}{rrr}
3 y & 1 & 1 \tag{4.13}\\
2 & 0 & 0 \\
-3 & 0 & 0 \\
0 & 0 & -3
\end{array}\right)
$$

and $\varphi_{i}{ }^{\prime}=M_{1+}, E_{0+}, E_{2-}$ for $i=1,2,3$.
Since $Y_{1}{ }^{*}$ has an isotopic spin 1 , the $T=0$ component
of M_{1+} vanishes; therefore, we have:

$$
\begin{equation*}
M_{1+}{ }^{(S)}=0 \quad \text { for } \Lambda \text { production, } \tag{4.14a}
\end{equation*}
$$

and

$$
\begin{equation*}
M_{1_{+}}^{(+)}=0 \quad \text { for } \Sigma \text { production } . \tag{4.14b}
\end{equation*}
$$

For the contribution from the resonances with $T=0$, we have the following conditions:

$$
\begin{equation*}
\varphi_{i}{ }^{(V)}=0 \quad(i=2,3) \text { for } \Lambda \text { production, } \tag{4.15a}
\end{equation*}
$$

and

$$
\varphi_{i}^{(-)}=\varphi_{i}^{(0)}=0 \quad(i=2,3) \text { for } \Sigma \text { production. }
$$

Putting together Eqs. (4.5), (4.9), and (4.12), we obtain the following formula as a contribution from a resonant state in channel II:

$$
\begin{equation*}
A_{i}^{\mathrm{II}}=\frac{1}{\pi} \int \frac{\beta_{i j} \xi_{j k}{ }^{\prime}\left(u^{\prime}, y^{\prime}\right) \alpha_{k r}{ }^{\prime}\left(y^{\prime}\right) \operatorname{Im} \varphi_{r}{ }^{\prime}\left(u^{\prime}\right)}{u^{\prime}-u} d u^{\prime} \tag{4.16}
\end{equation*}
$$

where

$$
\begin{equation*}
y^{\prime}=\left(1 / 2 k^{\prime} q^{\prime}\right)\left(t-m_{K^{2}}^{2}+2 k^{\prime} \omega^{\prime}\right) \tag{4.17}
\end{equation*}
$$

and the integration is performed at a constant t.
In the physical region of channel I , the denominator in Eq. (4.16) does not vanish; therefore, we can make a zero-width approximation for $\operatorname{Im} \varphi_{r}{ }^{\prime}$ as follows:

$$
\begin{equation*}
\operatorname{Im} \varphi_{r}^{\prime}=(\pi / 2 W)\left(\Gamma_{r i}^{\prime} \Gamma_{r f^{\prime}}\right)^{\frac{1}{2} \delta}\left(W-W_{r}\right) \tag{4.18}
\end{equation*}
$$

$$
\begin{aligned}
& \bar{\eta}_{i j}^{\prime}=\frac{1}{2 W} \\
& {\left[\begin{array}{cccc}
W+M_{Y}-M & -\left(W-M_{Y}+2 M\right) & -\left(W-M_{Y}\right)\left(M+M_{Y}\right)-\frac{2 M q \cdot k}{W+M_{Y}} & -\left(W+M_{Y}\right)\left(M+M_{Y}\right)-\frac{2 M q \cdot k}{W-M_{Y}} \\
0 & 0 & 1 & -1 \\
-1 & -1 & -W+M_{Y}-\frac{q \cdot k}{W+M_{Y}} & -W+M_{Y}-\frac{q \cdot k}{W-M_{Y}} \\
-1 & -1 & -\frac{q \cdot k}{W+M_{Y}} & -\frac{q \cdot k}{W-M_{Y}}
\end{array}\right.}
\end{aligned}
$$

and $\bar{\zeta}_{j k}{ }^{\prime}=\zeta_{j k}{ }^{\prime}$ in Eq. (4.11). The multipole expansion of \bar{F}_{i}^{\prime} is given by Eq. (3.26). In the even $K-Y$ parity case, we will take into account the possibility of both a $P_{3 / 2}$ and a $D_{3 / 2}$ state for $Y_{1}{ }^{*} . Y_{0}{ }^{*}$ and $Y_{0}{ }^{* *}$ will be assumed to be in $S_{1 / 2}$ and $D_{3 / 2}$ states. If only the lower multipole amplitudes are retained, $P_{3 / 2}, S_{1 / 2}$, and $D_{3 / 2}$ states can contribute only to $\bar{M}_{2-}, \bar{E}_{1-}$, and \bar{E}_{1+}, which will be denoted by $\bar{\varphi}_{i}$ with $i=1,2,3$. Then we have

$$
\begin{gather*}
\bar{F}_{i}^{\prime}=\bar{\alpha}_{i j}{ }^{\prime}(y) \bar{\varphi}_{j}{ }^{\prime}(u), \tag{4.24}\\
\bar{\alpha}_{i j}=\left[\begin{array}{ccr}
-2 & 0 & 0 \\
-3 y & 1 & -1 \\
0 & 0 & 3 \\
3 & 0 & 0
\end{array}\right] . \tag{4.25}
\end{gather*}
$$

where $\Gamma_{i}{ }^{\prime}=$ a partial width for $\gamma+Y \rightarrow Y^{*}$ and $\Gamma_{f}{ }^{\prime}=\mathrm{a}$ partial width for $\bar{K}+N \rightarrow Y^{*}$.

(ii) Even $K-Y$ Parity

In this case, the crossing of baryon lines and the charge conjugation operation give the following T matrix for $\gamma+Y \rightarrow \bar{K}+N$:

$$
\begin{equation*}
\bar{T}=\sum_{i=1}^{4} \bar{A}_{i}^{\prime} \bar{O}_{i}^{\prime} \tag{4.19}
\end{equation*}
$$

with

$$
\begin{equation*}
\bar{A}_{i}=\bar{\beta}_{i j} \bar{A}_{j}^{\prime} \tag{4.20}
\end{equation*}
$$

and

$$
\bar{\beta}_{i j}=\left(\begin{array}{cccc}
1 & 0 & 0 & 2\left(M+M_{Y}\right) \tag{4.21}\\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right) .
$$

This T matrix can be reduced to the \bar{F}^{\prime} matrix defined by Eq. (3.23) with primes on \bar{F}_{i} to denote that it is a quantity in channel II. The relation between the $\bar{A}_{i}{ }^{\prime}$ amplitudes and the \bar{F}_{i}^{\prime} amplitudes is given by

$$
\begin{equation*}
\bar{A}_{i}^{\prime}=\bar{\xi}_{i j}^{\prime}(u, y) \bar{F}_{j}^{\prime}=\bar{\eta}_{i j}^{\prime}(u, y) \bar{\zeta}_{j k}^{\prime}(u) \bar{F}_{k}^{\prime}, \tag{4.22}
\end{equation*}
$$

with

From Eqs. (4.20), (4.22), and (4.24), we have equations similar to (4.16) as contributions from the $\pi-Y$ resonances in the even $K-Y$ parity case.

5. $K-\pi$ RESONANCE

(i) Odd $K-Y$ Parity

In order to take into account the contributions from the π - K resonance, we have to consider the reaction in channel III, i.e., $\gamma+\bar{K} \rightarrow \bar{N}+Y$. The S matrix for this process can be obtained from that for the reaction in channel I by replacing p_{1}, q, and $u\left(p_{1}\right)$ by $-p_{1}^{\prime \prime},-q^{\prime \prime}$,
and $v\left(p_{1}{ }^{\prime \prime}\right)$, respectively. Thus we have

$$
\begin{align*}
S_{f i}{ }^{\mathrm{III}}=-[i / & \left.(2 \pi)^{2}\right]\left(M M_{Y} / 4 E_{1} E_{2} k \omega\right)^{\frac{1}{2} \delta} \delta\left(P_{i}-P_{f}\right) \\
& \times \bar{u}\left(p_{2}\right) T\left(p_{2},-q^{\prime \prime} ;-p_{1}^{\prime \prime}, k\right) v\left(p_{1}^{\prime \prime}\right) . \tag{5.4}
\end{align*}
$$

In the center-of-mass system, we introduce the following three-momenta and energies:

$$
\begin{align*}
k & =(\mathbf{k}, \kappa), & & q^{\prime \prime}
\end{align*}=(-\mathbf{k}, \omega),
$$

and these can be expressed as functions of total energy $W=\sqrt{ } t$ in channel III as follows:

$$
\begin{array}{rlrl}
\kappa & =\left(W^{2}-m_{K^{2}}\right) / 2 W, & \omega & =\left(W^{2}+m_{K^{2}}\right) / 2 W, \\
E_{1} & =\left(W^{2}+M^{2}-M_{Y^{2}}\right) / 2 W, & E_{2} & =\left(W^{2}-M^{2}+M_{Y^{2}}\right) / 2 W, \tag{5.6}\\
p & =\left\{\left[(W-M)^{2}-M_{Y^{2}}\right]\left[(W+M)^{2}-M_{Y^{2}}\right]\right\}^{\frac{1}{2}} / 2 W .
\end{array}
$$

We also define the following $F^{\prime \prime}$ matrix:

$$
\begin{equation*}
\bar{u}\left(p_{2}\right) T v\left(p_{1}^{\prime \prime}\right)=4 \pi \frac{W}{\left(M M_{Y}\right)^{\frac{1}{2}}} \chi_{f} F^{\prime \prime} \chi_{i}, \tag{5.1}
\end{equation*}
$$

and

$$
\begin{aligned}
F^{\prime \prime} & =[\boldsymbol{\varepsilon} \cdot \mathbf{p} / p] F_{1}^{\prime \prime}+[i \boldsymbol{\sigma} \cdot(\mathbf{p} \times \boldsymbol{\varepsilon}) / p] F_{2}^{\prime \prime} \\
& +\left[i \boldsymbol{\sigma} \cdot \mathbf{p} \cdot(\mathbf{k} \times \mathbf{\varepsilon}) / p^{2} k\right] F_{3}^{\prime \prime}+[i \boldsymbol{\sigma} \cdot(\mathbf{k} \times \boldsymbol{\varepsilon}) / k] F_{4}^{\prime \prime}
\end{aligned}
$$

Then the matrix $\xi_{i j}{ }^{\prime \prime}(t)$ that expresses A_{i} in terms of $F_{i}{ }^{\prime \prime}$ depends on only the energy variable t, and, as before, $\xi_{i j}{ }^{\prime \prime}$ will be written as a product of two matrices:

$$
A_{i}=\xi_{i j}{ }^{\prime \prime}(t) F_{j}^{\prime \prime}=\eta_{i k}{ }^{\prime \prime}(t) \zeta_{k j}^{\prime \prime}(t) F_{j}^{\prime \prime}
$$

with
$\left.\begin{array}{cc}\frac{W^{2}-\Delta^{2}}{W(W+2 \bar{M})} & \frac{W^{2}-\Delta^{2}}{W^{2}(W+2 \bar{M})} \\ \frac{-1}{W(W+2 \bar{M})} & \frac{-1}{W^{2}(W+2 \bar{M})} \\ \frac{\Delta}{W(W+2 \bar{M})} & \frac{\Delta}{W^{2}(W+2 \bar{M})} \\ \frac{2 \bar{M}}{W(W+2 \bar{M})} & \frac{-1}{W(W+2 \bar{M})}\end{array}\right]$
and

$$
\eta_{\imath j}^{\prime \prime}=\left[\begin{array}{cc}
0 & \frac{\Delta}{W^{2}} \tag{5.7}\\
-\frac{1}{W^{2}-\Delta^{2}} & \frac{-\Delta}{W^{2}\left(W^{2}-\Delta^{2}\right)} \\
0 & -\frac{1}{W^{2}} \\
0 & 0
\end{array}\right.
$$

$$
\begin{equation*}
\zeta_{j}^{\prime \prime}(t)=\frac{8 \pi W\left[\left(E_{1}+M\right)\left(E_{2}+M_{Y}\right)\right]^{\frac{1}{2}}}{2 p^{2} k(W+2 \bar{M})}\left(2 p, \frac{2 p}{W}, W+2 \bar{M}, W^{2}-4 \bar{M}^{2}\right), \tag{5.8}
\end{equation*}
$$

where the following abbreviations are used:

$$
\begin{equation*}
\bar{M}=\frac{1}{2}\left(M+M_{Y}\right), \quad \Delta=M_{Y}-M \tag{5.9}
\end{equation*}
$$

The multipole expansion of the amplitudes $F_{i}{ }^{\prime \prime}$ is identical to the expansion of the amplitudes for $\gamma+\pi \rightarrow$ $N+\bar{N}$ given by Ball ${ }^{\text {: }}$

$$
\begin{align*}
& F_{1}{ }^{\prime \prime}=-\sum\left(J+\frac{1}{2}\right) E_{J 0} P_{J^{\prime}}{ }^{\prime}(z), \\
& F_{2}{ }^{\prime \prime}=-\sum\left\{E_{J 1 \frac{1}{2}}\left[J P_{J+1}{ }^{\prime \prime}(z)+(J+1) P_{J-1}{ }^{\prime \prime}(z)\right]\right. \\
& \left.-\left(J+\frac{1}{2}\right) M_{J 1} P_{J}{ }^{\prime \prime}(z)\right\}, \\
& F_{3}{ }^{\prime \prime}=\sum\left\{\frac{1}{2} M_{J_{1}}\left[J P_{J_{+1}}{ }^{\prime \prime}(z)+(J+1) P_{J-1}{ }^{\prime \prime}(z)\right]\right. \tag{5.10}\\
& \left.-\left(J+\frac{1}{2}\right) E_{J_{1}} P_{J}{ }^{\prime \prime}(z)-\left(J+\frac{1}{2}\right) \mathscr{M}_{J_{1}} P_{J}{ }^{\prime}(z)\right\}, \\
& F_{4}{ }^{\prime \prime}=-\sum\left\{\frac{1}{2} M_{J_{1}}\left[J P_{J+1}{ }^{\prime \prime}(z)+(J+1) P_{J-1}{ }^{\prime \prime}(z)\right]\right. \\
& \left.-\left(J+\frac{1}{2}\right) E_{J 1} P_{J}{ }^{\prime \prime}(z)\right\},
\end{align*}
$$

where $M_{J 1}$ and $\mathfrak{T}_{J 1}$ (or $E_{J 1}$ and $E_{J 0}$) represent magnetic (or electric) transitions, the first and second suffixes indicating the total angular momentum and total spin, respectively, of the antinucleon-hyperon pair in the final state. The parities of the triplet final states are $(-1)^{J}$ for $M_{J 1}$ and $\mathscr{T}_{J_{1}}$ and $(-1)^{J+1}$ for $E_{J 1}$.

So far the spin of $K-\pi$ resonance at total energy $W=884 \mathrm{MeV}$ is known only to the extent that it is either 0 or $1 .{ }^{13}$ But since we cannot construct a gaugeinvariant scalar out of a photon polarization vector ϵ and two independent four-momenta, the $K-\pi$ resonance with $J=0$ can give no contribution to the reaction $\gamma+\bar{K} \rightarrow \bar{N}+Y$ and, hence, to the photoproduction of the $K-Y$ pair either. Therefore, the $K-\pi$ resonance will contribute only if it has $J=1$, and, in this case, contributions to c_{i} comes only from M_{11} and \mathfrak{M}_{11}, which will be denoted by $\varphi_{i}{ }^{\prime \prime}$ with $i=1$ and 2 . The relevant multipole expansion reduces to

$$
\begin{equation*}
F_{i}^{\prime \prime}=\alpha_{i j}^{\prime \prime} \varphi_{j}^{\prime \prime} \tag{5.11}
\end{equation*}
$$

with

$$
\alpha_{i j}^{\prime \prime}=\left(\begin{array}{rr}
0 & 0 \tag{5.12}\\
0 & 0 \\
\frac{3}{2} & -\frac{3}{2} \\
-\frac{3}{2} & 0
\end{array}\right] .
$$

[^6]Since the isotopic spin of the $K-\pi$ resonance is $1 / 2, \quad K^{*}$ has $J=1$ and, if it has spin 0 , we have only $T=1 / 2$ components of $\varphi_{i}{ }^{\prime \prime}$ contributes.

Gathering Eqs. (5.6) and (5.11), we have the following contribution from the $\pi-K$ resonance:

$$
\begin{equation*}
A_{i}{ }^{\mathrm{III}}=\frac{1}{\pi} \int \frac{\xi_{i j}{ }^{\prime \prime}\left(t^{\prime}\right) \alpha_{j k}{ }^{\prime \prime} \operatorname{Im} \varphi_{k}{ }^{\prime \prime}\left(t^{\prime}\right)}{t^{\prime}-t} d t^{\prime} \tag{5.13}
\end{equation*}
$$

Since $t^{\prime}-t \neq 0$ in the physical region of channel I, we can again use a zero-width formula for $\operatorname{Im} \varphi_{k}{ }^{\prime \prime}$:

$$
\begin{equation*}
\operatorname{Im} \varphi_{k}{ }^{\prime \prime}=(\pi / 2 W)\left(\Gamma_{i}{ }^{\prime \prime} \Gamma_{f}{ }^{\prime \prime}\right)^{\frac{1}{2} \delta} \delta\left(W-W_{r}\right), \tag{5.14}
\end{equation*}
$$

where $\Gamma_{i}{ }^{\prime \prime}=$ a partial width for $\gamma+\bar{K} \rightarrow \bar{K}^{*}$ and $\Gamma_{f}{ }^{\prime \prime}$ = a partial width for $\bar{N}+Y \rightarrow \bar{K}^{*}$.

It should be noted that Eq. (5.13) holds only when

$$
\begin{equation*}
A_{i}^{\mathrm{III}}=0 \tag{5.15}
\end{equation*}
$$

(ii) Even $K-Y$ Parity

For even $K-\Sigma$ parity, the $\bar{F}_{i}^{\prime \prime}$ matrix corresponding to (5.5) in the previous subsection will be defined by

$$
\begin{gather*}
\bar{F}^{\prime \prime}=[i \mathbf{p} \cdot(\mathbf{\varepsilon} \times \mathbf{k}) / p k] \bar{F}_{1}^{\prime \prime}+[\boldsymbol{\sigma} \cdot\{\mathbf{p} \times(\boldsymbol{\varepsilon} \times \mathbf{k})\} / p k] \bar{F}_{2}^{\prime \prime} \\
+\left[\mathbf{p} \cdot \boldsymbol{\varepsilon \sigma} \cdot \mathbf{p} / p^{2}\right] \bar{F}_{3}^{\prime \prime}+\boldsymbol{\sigma} \cdot \boldsymbol{\varepsilon} \bar{F}_{4}^{\prime \prime} . \tag{5.16}
\end{gather*}
$$

Then we have the following relation between A_{i} and $\bar{F}_{i}^{\prime \prime}$:

$$
\begin{equation*}
A_{i}=\bar{\xi}_{i j}^{\prime \prime}(t) \bar{F}_{j}^{\prime \prime} \tag{5.17}
\end{equation*}
$$

with

$$
\begin{equation*}
\bar{\xi}_{i j}^{\prime \prime}(t)=\bar{\eta}_{i k}^{\prime \prime}(t) \bar{\zeta}_{k j}^{\prime \prime}(t) \tag{5.18}
\end{equation*}
$$

$$
\bar{\eta}^{\prime} i^{\prime \prime}=\left[\begin{array}{cccc}
-\frac{W^{2}-4 \bar{M}^{2}}{W^{2}-\Delta^{2}} & \frac{\Delta\left(W^{2}-4 \bar{M}^{2}\right)}{W^{2}\left(W^{2}-\Delta^{2}\right)} & 0 & -\frac{2 \bar{M}}{W} \\
\frac{1}{W^{2}-\Delta^{2}} & \frac{-\Delta}{W^{2}\left(W^{2}-\Delta^{2}\right)} & \frac{-1}{W(W+2 \bar{M})} & \frac{-1}{W^{2}(W+2 \bar{M})} \tag{5.20}\\
\frac{2 \bar{M}}{W^{2}-\Delta^{2}} & \frac{-2 \Delta \bar{M}}{W^{2}\left(W^{2}-\Delta^{2}\right)} & 0 & \frac{-1}{W^{2}} \\
\frac{\Delta}{W^{2}-\Delta^{2}} & \frac{-1}{W^{2}-\Delta^{2}} & 0 & 0
\end{array}\right]
$$

The multipole expansion of $\bar{F}_{i}^{\prime \prime}$ can be obtained from Eq. (5.10) for the odd $K-Y$ parity case by exchanging the roles of electric and magnetic amplitudes, i.e., by replacing $M_{J 1}$ and $\mathscr{T}_{J 1}$ by $\bar{E}_{J 1}$ and $\overline{\mathcal{E}}_{J 1}$ and also replacing $E_{J 1}$ and $E_{J 0}$ by $\bar{M}_{J_{1}}$ and $\bar{M}_{J 0}$, respectively.

As in the odd $K-Y$ parity case, there is no contribution from the $K-\pi$ resonance unless its spin is 1 , in which case only the $\bar{M}_{J 0}$ and $\bar{M}_{J 1}$ amplitudes can contribute to \bar{c}_{i}. Denoting these amplitudes by $\bar{\varphi}_{i}{ }^{\prime \prime}$ with $i=1$ and 2 respectively, we have

$$
\begin{equation*}
\bar{F}_{i}^{\prime \prime}=\bar{\alpha}_{i j}{ }^{\prime \prime} \bar{\varphi}_{j}^{\prime \prime} \tag{5.21}
\end{equation*}
$$

with

$$
\bar{\alpha}_{i j}^{\prime \prime}=\left(\begin{array}{rr}
-\frac{3}{2} & 0 \tag{5.22}\\
0 & -\frac{3}{2} \\
0 & 0 \\
0 & 0
\end{array}\right]
$$

Combining Eqs. (5.17) and (5.21), we obtain an equation similar to Eq. (5.13) but "with bars" as a
contribution from the $K-\pi$ resonance for even $K-\Sigma$ parity.

6. CROSS SECTION AND POLARIZATION

Now putting together the results of the three preceding sections, we have the following expressions for the K-meson photoproduction amplitude:

$$
\begin{equation*}
A_{i}=A_{i}{ }^{\mathrm{I}}+A_{i}{ }^{\mathrm{II}}+A_{i}{ }^{\mathrm{III}}+A_{i}{ }^{\mathrm{B}} \tag{6.1}
\end{equation*}
$$

where $A_{i}{ }^{\mathrm{I}}, A_{i}{ }^{\mathrm{II}}$, and $A_{i}{ }^{\text {III }}$ are defined by Eqs. (3.16), (4.16), and (5.13), respectively (or the corresponding equations with bars for even $K-Y$ parity).

For the calculation of cross sections and polarizations, it is more convenient to work with the F_{i} amplitudes defined by Eq. (3.5). By taking the inverse of Eq. (3.7), we have
with

$$
\begin{equation*}
F_{i}=\left(\xi^{-1}\right)_{i j} A_{j} \tag{6.2}
\end{equation*}
$$

$$
\begin{equation*}
\xi^{-1}=\zeta^{-1} \eta^{-1} \tag{6.3}
\end{equation*}
$$

$$
\begin{gather*}
\left(\zeta^{-1}\right)_{i}=\frac{W-M}{8 \pi W}\left[\left(E_{1}+M\right)\left(E_{2}+M_{Y}\right)\right]^{\frac{1}{2}}\left(1, \frac{q}{E_{2}+M_{Y}}, q, \frac{q^{2}}{E_{2}+M_{Y}}\right), \tag{6.4}\\
\left(\eta^{-1}\right)_{i j}=\left[\begin{array}{cccc}
1 & 0 & M_{Y}-M-\frac{q \cdot k}{W-M} & W-M_{Y}+\frac{q \cdot k}{W-M} \\
-1 & 0 & M-M_{Y}-\frac{q \cdot k}{W+M} & W+M_{Y}+\frac{q \cdot k}{W+M} \\
0 & W+M & 1 & -1 \\
0 & -(W+M) & 1 & -1
\end{array}\right] \tag{6.5}
\end{gather*}
$$

for odd $K-Y$ parity, and
with

$$
\begin{equation*}
\bar{\xi}^{-1}=\bar{\zeta}^{-1} \bar{\eta}^{-1} \tag{6.6}
\end{equation*}
$$

$\zeta^{-1}=\zeta^{-1}$
and

$$
\left(\bar{\eta}^{-1}\right)_{i j}=\left[\begin{array}{cccc}
1 & 0 & -M_{Y}-M-\frac{q \cdot k}{W+M} & -W+M-\frac{q \cdot k}{W+M} \tag{6.7}\\
-1 & 0 & M_{Y}+M-\frac{q \cdot k}{W-M} & -W-M_{Y}-\frac{q \cdot k}{W-M} \\
0 & W+M & -1 & 1 \\
0 & -W+M & -1 & 1
\end{array}\right]
$$

for even $K-Y$ parity.
The cross section $d \sigma / d \Omega$ can be expressed in terms of F_{i} as follows:

$$
\begin{align*}
d \sigma / d \Omega=(q / k)\left\{\left|F_{1}\right|^{2}+\left|F_{2}\right|^{2}-2 x\right. & \operatorname{Re}\left(F_{1}{ }^{*} F_{2}\right) \\
+\left(1-x^{2}\right)\left[\frac{1}{2}\left|F_{3}\right|^{2}+\frac{1}{2}\left|F_{4}\right|^{2}\right. & +\operatorname{Re}\left(F_{4}^{*} F_{1}+F_{3}^{*} F_{2}\right) \\
& \left.\left.+x \operatorname{Re}\left(F_{3}{ }^{*} F_{4}\right)\right]\right\} \tag{6.9}
\end{align*}
$$

for both odd and even $K-Y$ parity.
The polarization \mathcal{P} of the produced hyperon is given by

$$
\begin{align*}
(d \sigma / d \Omega) \mathcal{P}= & (q / k)\left(1-x^{2}\right)^{\frac{1}{2}} \operatorname{Im}\left\{2 F_{1} F_{2}^{*}+F_{1} F_{3}^{*}-F_{2} F_{4}{ }^{*}\right. \\
& \left.+x\left(F_{1} F_{4}^{*}-F_{2} F_{3}^{*}\right)-\left(1-x^{2}\right) F_{3} F_{4}^{*}\right\} \quad \tag{6.10}
\end{align*}
$$

for both odd and even $K-Y$ parity.

ACKNOWLEDGMENTS

The authors wish to thank Professor R. E. Marshak for suggesting this problem and for many valuable remarks. They are also indebted to Professor E. C. G. Sudarshan for discussions.

[^0]: ${ }^{1}$ Similar models were proposed for associated production by M. Gourdin and M. Rimpault, Nuovo cimento 20, 1166 (1961), and by T. Tsuchida, T. Sakuma, and S. Furui, Progr. Theoret. Phys. (Kyoto) 26, 1005 (1961). See also M. Gourdin and M. Rimpault (to be published).

[^1]: ${ }^{2}$ S. Okubo, Progr. Theoret. Phys. (Kyoto) 19, 43 (1958).
 ${ }^{3}$ Fayyazuddin, Phys. Rev. 123, 1882 (1961). See also references 6 and 7.
 ${ }^{4}$ M. M. Block, E. B. Brucker, J. S. Hugh, T. Kikuchi, C. Meltzer, F. Anderson, A. Pevsner, E. M. Harth, J. Leitner, and H. O. Cohn, Phys. Rev. Letters 3, 291 (1960).

[^2]: ${ }^{5}$ R. D. Tripp, M. B. Watson, and M. Ferro-Luzzi : Phys. Rev. Letters 8, 175 (1962).
 ${ }^{6}$ G. F. Chew, M. L. Goldberger, F. E. Low, and Y. Nambu, Phys. Rev. 106, 1345 (1957).
 ${ }^{7}$ J. S. Ball, Phys. Rev. 124, 2014 (1961).
 ${ }^{8}$ M. Kawaguchi and M. J. Moravcsik, Phys. Rev. 107, 563 (1957), A. Fujii and R. E. Marshak, Phys. Rev. 107, 570 (1957).

[^3]: ${ }^{9}$ E. C. G. Sudarshan and R. E. Marshak, Phys. Rev. 104, 267 (1956).

[^4]: ${ }^{10}$ What is called a branch cut in reference 3 is actually a locus of branch points. Although branch cuts can be chosen to coincide with this curve, this is possible only when the path of integration over $\cos \theta$ is distorted into a complex region. If the integral over $\cos \theta$ is taken on a real axis, the branch cuts form a set of quartic curves. For a more detailed discussion on this point see J. Dreitlein and B. W. Lee, Phys. Rev. 124, 1274 (1961).

[^5]: ${ }^{11}$ R. P. Ely, S. Y. Fung, G. Gidal, Y. L. Pan, W. M. Powell, and H. S. White, Phys. Rev. Letters 7, 461 (1961).
 ${ }^{12}$ M. H. Alston, L. W. Alvarez, P. Eberhand, M. L. Good, W. Graziano, H. K. Ticho, and S. G. Wojcicki, Phys. Rev. Letters 6, 698 (1961) ; P. Bastien, M. Ferro-Luzzi, and A. H. Rosenfeld, ibid. 6, 702 (1961); M. Ferro-Luzzi, R. D. Tripp, and M. B. Watson, ibid. 8, 28 (1962).

[^6]: ${ }^{13}$ M. H. Alston, L. W. Alvarez, P. Eberhard, M. L. Good, W. Graziano, H. K. Ticho, and S. J. Wojcicki, Phys. Rev. Letters 6, 300 (1961).

