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Resonance Model for Photoproduction of X Mesons on Nucleons
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An approximate one-dimensional dispersion relation of the Cini-Fubini type is assumed for the invariant
amp)itudes of the photoproduction of E mesons on nucleons on the supposition that among the various
intermediate states in the three related channels only the single-particle states and the resonant states
make appreciable contributions. The resonant states that are taken into account are the following: the
three-pion-nucleon resonances, the pion-kaon resonance, and the three pion-hyperon resonances. The
expressions for the spectral functions are derived by applying the unitarity conditions to each of the three
related channels. Sy the conservation of angular momentum and parity only certain multipole amplitudes
determined by the spin and parity of the resonances contribute to the spectral functions, and for these
nonvanishing multipole amplitudes the Breit-Wigner formula is assumed.

&. INTRODUCTION

'HE application of dispersion relations to problems
J . involving strange particles generally involves

considerable complication because of the number of
channels coupled to the process of interest both in the
physical and unphysical regions. The discussion of
photoproduction of E mesons from nucleons is no ex-
ception; certain simplifying assumptions must be made
in order to obtain any predictions.

In this paper we assume the validity of the Mandel-
stam representation, but use the (approximate) one-
dimensional representation obtained by keeping only
single particle and resonant intermediate states in the
unitarity condition. The resonances we retain are the
pion-nucleon resonances E*, the hyperon resonances
Fo~, I'0**, and I'1*, and the E-m. resonance E*.Thus,
in addition to the usual coupling constants and parities,
the various resonance energies, widths, and spins are
the parameters of the model. ' In principle, these reso-
nance parameters can be determined from the analysis
of other experiments; pion-nucleon scattering, photo-
production of pions, E* production, and associated
production. We thus have a model which correlates the
predictions of photoproduction of E mesons in terms
of the parameters obtained from these other experi-
ments. Here we present the formal results of these
considerations, while numerical results (dependent on
the A-Z parity and the spin of the E'*) will be presented
in a subsequent paper. Even if our model is not com-
pletely successful in Gtting the experimental results, the
contributions we consider enter in any dispersion treat-
ment and thus these results should suggest possible
refinements.

2. KINEMATICS AND DISPERSION RELATIONS

Although kinematical relations were given previously
by Okubo' and by Fayyazuddin, ' we will give a sum-

mary of these relations since somewhat different nota-
tion and assumptions are used in this paper. We will

denote the four-momenta of the incoming photon and
nucleon by k and pt, and those of the outgoing E meson
and hyperon by g and ps respectively. By the conserva-
tion of momentum and energy, the invariant variables
defined by

s = —(p t+ k)"-= —(ps+ q)',

u= —(pt —q)'= —(ps—k)',

t= —(pt —ps)'= —
(V

—&)'

(2.1a)

(2.1b)

(2.1c)

satisfy the following relation

s+t+u= M'+Mrs+mx' (2.2)

y+1V~ It+ I',

y+ F —+ %+X,

y+Ic —+ v+E.

(2.3)

(2 4)

The intrinsic parity of the A.-E system with respect to
the nucleon is established to be negative, 4 but the rela-
tive A-Z parity is not yet experimentally decided al-

where 3f, 3IIy, and m~ are the masses of nucleon,
hyperon, and E meson, respectively.

These invariants are the square of the total energy
in the barycentric system of the following reactions
designated by channels I, II, and III, respectively:

' Similar, models were proposed for associated production by
M. Gourdin and M. Rimpault, Xuovo cimento 20, 1166 (1961),
and by T. Tsuchida, T. Sakuma, and S. Furui, Progr. Theoret.
Phys. (Kyoto) 26, 1005 (1961). See also M. Gonrdin and M.
Rimpault (to be published).

2 S. Okubo, Progr. Theoret. Phys. (Kyoto) 19, 43 (1958).
"' Fayyazuddin, Phys. Rev. 123, 1882 {1961).See also references

6 and 7.
4 M. M. Block, E. B. Brucker, J. S. Hugh, T. Kikuchi, C.

Meltzer, F. Anderson, A. Pevsner, E. M. Harth, J. I.eitner, and
H. O. Cohn, Phys. Rev. Letters 3, 291 (1960).
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following matrices:

(2.10)

(2.11a)

(2.11b)

g(s) —1

y(&) —r.
„

(2.7)T=P A, (s,t,zt)O, ,
for A production, and

with

Og= ipse. ey. k,

k —e qk P),Oz —2zye(e P q

k — kq e z(M —Mr)—y ey k,0 =ay fey. qek yq e—'—

k — .kP e——(M+Mr)y eyey k, (2.8d)04=2y5 y eI' k —y.

tor

(2.13a)

(2.13b)houuld
A
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' 0 as ivenby

to be
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(2.9b) are
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()
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d M. Ferro-Luzzi: y .h s. Rev.. B. Watson, an' R. D. Tripp, M. B. W

. F. Chew, M. L. Goldberger, F. . o

J S. Ball, Phys. Rev.
'k Phys. Rev. 107,
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' M. Kawaguchi and
d R. E. Marsha, ys.(1957), A. Fujii and R.
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for A-production, and

g&&— &&gz(g{+)+g{—)+g{0))

eg~
E&s— (g{+)+g{—)+g{{)))

t—m~'

=l((I +) -)8"'+(~. ~-)—(8'+'+8' '))g.,

28gg
Ez)= —~gzg{ ', &zs=

t—m~'

&zs= Ezs=—gz(u4—"'+2(p+ u )8—' ')-,

&sr=I rgj (Mz Ms)g{+—),

&ss= &ss= —
Isr gsg

—{+),

(2.16)

for Z production.
In these expressions, p with suKces p, ss, 4, +, —,

and 0 represent anomalous magnetic moments of pro-
ton, neutron, A hyperon, and Z hyperon with the corres-
sponding charges, respectively. Due to charge inde-
pendence, the magnetic moments of the Z hyperons
satisfy the relation. ' ){s{)=~s (){s++)s ). ur is the magnetic
moment related to the transition between the A and Z
particles defined by

(Z
~ j„A„~A) = ,'uruza„„F„„-us. (2.17)

while the other R's are the same as the corresponding
ones in Eq. (2.16).

From Eq. (2.14), we can find the location of the
singularities of the partial wave amplitudes, " and set
up integral equations for them, but the equations thus
obtained are too complicated to give any physically
interesting solution. Therefore, in accordance with the
plan stated in the introduction, we will assume the
following one-dimensional representation:

1 {s;(s',t)
A, (s,t,u) = Born terms+ — ds'

X' S S

1 i), (u', t) 1 c;(t',s)
+— du'+ — dt,'. (2.22)I'—I m t' —t

The spectral functions u;, b;, and c; can be obtained as
imaginary parts of the amplitudes of the reactions in
channels I, II, and III, respectively. In the next three
sections, the expressions for these spectral functions
will be derived on the assumption that only resonances
in each channel make appreciable contributions.

3. m-N RESONANCES

(i) Odd K-F Parity

In the center-of-mass system of channel I, we intro-
duce the following three-momenta and energies:

(I'~ J
~
X)=gru, psu~, (2.18)

gq and g~ are the coupling constants at the EAA. and
EKE vertices, p) ——(—k, E)), k= (k,){),

p =(—q, E), q=(q, ).
(3.1)

(Z~j„A„~A)=,'p, u „„yF„„u- (2.19)

J being the E-meson current.
Since in the odd A-Z parity case, the E-A parity is

assumed negative, the residue of the poles at S=M'
and u=3I&' of the A-production amplitude are equal
to those occurring in Eq. (2.15). The only term that
has to be modified is the pole at u= M~', i.e., a contribu-
tion from the transition magnetic moment, which is
now defined by

with

iy p+M—
u( )= u(0),

[2M (E+M)]&
(3 3)

These are related to the total energy W=gs as follows:

Es= (W'+M')/2W) Es ——(W'+Mr' —m)r' )/2W,
){=(W' —M')/2W e)= (W' Mr'+nzxs)/2W— , (3.2)

q = ([(W M&)' s)s&'][—(W+M —&)' nsx']) '*/2W. —

Using the solutions of the Dirac equation of the form

Thus, we have the following expressions for the residues
at n=3fg'. u(0) =]

(x)
koi'

(3.4)

(2 20) where x is a two-component spinor, the T matrix can
&zs= Rzs=urgzg{v). — be reduced to a matrix in Pauli spin space as follows:

For Z production, we have, for even E-Z parity:
with

u(ps)Tu(p))=4sr[W/(MMr)l]xfFx;, (3.S)

Exs= &zr4= 's((I,+I )g{"— —
+() n

—~-) (8")+8{'))gz,
Ezs= &z4= gz(&4' '+ s (&+ & )8"')——

&s)= (Ms+Mz) gslsr g"),
&s.s= &s4= gs.ur g", —

(2.21)

' E. C. G. Sudarshan and R. E. Marshak, Phys. Rev. 104, 267
(1956).

F=s{r eF&+({r qo" (kXe)/qk)Fs
+(isr kq e/qk)Fs+(i{r qq e/qs)Fs. (3.6)

"What is called a branch cut in reference 3 is actually a locus
of branch points. Although branch cuts can be chosen to coincide
with this curve, this is possible only when the path of integration
over cosg is distorted into a complex region. If the integral over
cos8 is taken on a real axis, the branch cuts form a set of quartic
curves. For a more detailed discussion on this point see J.Dreitlein
and B.W. Lee, Phys. Rev. 124, 1274 (1961).
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The relation between the amplitudes Ii; and the in-
variant amplitudes A; will be written in a matrix form:

A, (s,t,u) = P;, (s,x)F, (s,x), (3 7)

where the dependence of the matrix $;; on the total
energy W=gs and the scattering angle x=cose has
been explicitly indicated. The form of (,; can be ex- with

qv(s, g) = r);g(s, x)f'»(s), (3.8)

pressed conveniently as a product of two matrices: a
matrix q,; which depends on both s and x and a diagonal
matrix f;,=—f,8,, which depends only on the energy
variable s. Thus we have

2M' k 2M' k
W+M —(W—M) —(M r—M) (W+M)+ —(Mr —M) (W—M)+B'—3f W+M

g'k
W—M+

W+M

(3.9)

SmW E+M. 1 E
L(Eg+M)(E2+Mr)$ &i 1,8"—M q q q'

(3.10)

The multipole expansion of the amplitudes I'; are
given by CGLN 6 and

Further, from the isotopic spin of the resonances,
we have the following conditions on the isotopic spin
components of y;.

F,=Q (/M(p+E p) P(px'(x)

+g$(3+1)M( +Et $P( g'(x),

F,=P t(l +1) M(~ +M( jP)'(x), (3.11)

F,=P(E~ M)+)P(~~"(x)+—Q(E( +M) )P) g" (x),

F4 P(M,+ E——(+ M( —E( )P—("(x).—

My+( ) =lVy+. (+)=0,
M,+(+)= -2M,+(-),

jV2 (+)=jV2 (—)

jV, (+)=jV, (—)

m„(o)=0,
(3.14)

In our model, the contributions to a; from states in
channel I are assumed to come from the following pion-
nucleon resonances: the Py2 state with T=3/2 at
W= 1238 MeV, the Dy2 state with T= 1/2 at W= 1510
MeV, and the Fq~2 state with T= 1/2 at W= 1680 MeV.
From unitarity and conservation of parity and angular
momentum, we see that these resonances contribute to
the spectral functions a;(s, t) through the amplitudes

E2, M2,' E~, 3f3, respectively. In the
case of the photoproduction of pion on nucleon' the
amplitude M~+ is much larger than E~+. We assume
that the same thing holds for the photoproduction of
K-meson and only the multipole amplitudes with the
lower order, i.e., M~+, E2, and E3 contribute to a, (s,t).
We will represent these amplitudes by y, with i =1, 2,
and 3, respectively. Then the relevant multipole ex-
pansion of Ii; can be expressed in a matrix form as
follows:

Now putting together Eqs. (3.7) and (3.12), we have
an expression for a, (s,t):

a, (s, f) = g;, (s,x)n, ~(x) Imyj, (s), (3.13)

Here x' should be expressed in terms of s' and t as

x'= (1/2k'q') (t—mx'+2k'(o'), (3.17)

and the integration over s' should be performed at a
fixed t.

For ImpI, (s) we assume a relativistic generalization
of the Breit-Wigner formula:

and as contributions to E-meson photoproduction from
the m.-S resonances, we have

1 $,, (s',z')n;s(x') Imp g(s')
A;I=- ds'. (3.16)

s s

with

3x
2

—3
0

3x
0 0
0 3

—3 —15m

F,=n;, (x) q;, (3.12) Im&, (s) = (1/4W) I r, (r„,r»)-:/C (W—W„)2y-,'rg7I
(3.18)

where r=total width of m.-lV resonance, r, =a partial
width for y+E —+E*, and ry ——a partial width forE+I'~E*. r; and r~ depends on the energy as
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follows:
r'=7'k"
Fy= pyg

where sI, and xI, are the values of s and x at R'= 8 ~, the

(3.19
energy of the kth resonance.

where I. and l are the orbital angular momenta of a
photon and a E meson, and p; and py are slowly varying
functions of energy.

For the resonances below the threshold of E-V
production, the denominator s' —s in Eq. (3.16) does
not vanish in the physical region of channel I; therefore,
we can make a zero width approximation for them when
integrating over s'. Then Eq. (3.18) reduces to

(ii) Even X-Y Parity Case

The T matrix, defined by

T=P A, (s,l,N)0, ,

can be reduced to the following E matrix:

(3.22)

Im(pi, = (7r/2W) (I'i,;I'ir)'8(W —Wi)
—:or &pio5 (Wo —W2) (3 20)

and the integral in Eq. (3.16) reduces to

1
A,'= (;;(si„x~)n,a(~s) o ~o(s~),

SA; S

F=(s ae k/k)Fi+(e q(r e/q)Fo

+(q e/q)Fo+(o ile ke q/q'k)F4 (3.2. 3)

The matrix &,, (s,g) that relates A, to F,, as in Eq.
(3.7), is represented as a product of a matrix i@(s)
defined by Eq. (3.10) and the following matrix g;, (s,x):

(,;(s,r) =g, i, (s,x)l i„(s),
2Mk q 2Mk q

W M —(WyM) —(M+ M ) (W—M) — —(M+M&) (W+M)—
W+M 8"—3E

(3.24)

'gij=
28' g—(W M)—

W+M

(3.25)

From Eqs. (3.7) and (3.27), we have as contributions
from mEresonances, an e.quation similar to Eq. (3.16)
with bars on $, n, and q.

The multipole expansion for F; reads as follows:

4. e-Y RESONANCE

(i) Even X-Y Parity

In order to derive the contribution from the x-I'
resonances, we introduce the 5-matrix for the reaction
in channel II, &+ Y +X+X, which b—y the invariance
under charge conjugation is equivalent to y+Y~
X+K. By the substitution rule, we can obtain the
5-matrix element for y+ Y—+ X+X from that of'
&+AT-+E+Y by replacing pi, p&, oi(p&) and N(p&) by—p, ', —p, ', v(p&') and 8(p, ') respectively. Further, we
express the wave function v in terms of u as follows:

From the selection rules, we see that the first, second
and the third m-S resonances contribute to a; through

Mo, E&~, and Eo+, respectively, if only the lower multi-

pole amplitudes are retained. We will denote these
amplitudes by g; with i=1, 2 and 3 respectively, then
we have

(3.27)Eq= 0!gg Pj)
with

Fl —+$(l+ 1)Mi+Pl+1 (X) lMl Pi—1 (+)])—
F,=+/(l+2)Mi+. (l 1)Mi E——&~+Ei ]—Pi'(x),

Fo= QL(Eiy Ml+)Pl+1 (&) (Ml +El )Pi 1(&)]-— —

F4 ggll7i++Mi —Ei++Ei ]Pi"(—x). (3.26)

—3X
0
3

0 0
—3X

3 15x '

0 —3.
(3.28)

~(pi') =~~'(pi'),
~(p ')=I'(p ')~ "

where C is the matrix with the following properties:

Of course, the isotopic spin dependence remains the
same as the previous case.

Cy„~C '= —y„,
C~= —C.

(4.2)
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Then we have

with
4

T=Q A,'0,'. (4.4)

Ei' (W'——+M' mrr'—)/2W, cv = (W'+mrs' —M')/2W

E,'= (W'+My')/2W, v= (W' —My')/2W, (4.8)

q
= (L(W—M)' —mrrs]((W+M)' —mrs']) '/2W.

where the energies and the magnitudes of the momenta

z ~~ & are related to the total energy of channel II by the

I +(p, ') T+(P,'), (4.3) following formula:
(2s.)' 4F,'Es'k(sl'

The matrices 0 are the same a,s 0, except that P& and

ps are replaced by p&' and ps'. The A, ' are related to A,
as follows:

(4 5)A, =P,;A, ',

wit;h
'1 0 2(My —M) 0'
0 1 0 0
0 0 —1 0
.0 0 0

(4.6)

In the barycentric system, we denote the energy and
three-momenta of each particle as follows:

(4.t&)A„'=g;,'(N, y, )P,',

6~ (~,y) =n's (N,y)i.g (I),
(4 7) with.

The T matrix (4.4) is the same as the corresponding
Eq. (3.5) in channel I, except that pr and ps are inter-
changed, therefore, it can be reduced to the Ii' matrix
which is formally identical to the Ii matrix defined by
Eq. (3.6) for channel I, and the matrix P;, '(u, y) that
relates A, ' and F can be obtained from Eqs. (3.8) to
(3.10) by interchanging E& and M for Es and Mi.,
except for those M and M& appearing explicitly in the
definition of Os and 04 given by Eqs. (2.8c) and (2.8d).
Thus we have

1
nv'=

2W
23fq- k

W—My+2M —(W+My —2M) —(My —M) (W+My)+
W—M~

2M( k—(My —M) (W—My)+
W+My

q. k
W My+-

W+My

and
Sm.W Er+M 1 Et+M

$(Er+M)(Es+My)j &~ 1,
W—My q q q

(4.10)

(4.11)

where y=coso', 0' being a scattering angle in the c.m.
system in channel II. The multipole expansion of Ii, '

is identical to that of F; in channel I.
The spin of I'&* was recently found" to be larger

than 1/2 but its parity is not yet determined. For even
A-Z parity, the most reasonable assumption would be
the values obtained from global symmetry, i.e., I' wave
and 1=3/2. As for the other two resonances" I's* and
I'p** with T=O at W=1405 MeV and W=1520 MeV,

"R.P. Ely, S. Y. Fung, G. Gidal, Y. L. Pan, W. M. Powell,
and H. S. White, Phys. Rev. Letters 7, 461 (1961).

~'M. H. Alston, L. W. Alvarez, P. Eberhand, M. L. Good,
W. Graziano, H. K. Ticho, and S. G. Wojcicki, Phys. Rev. Letters
6, 698 (1961);P. Bastien, M. Ferro-Luzzi, and A. H. Rosenfeld,
ibid. 6, 702 (1961); M. E'erro-Luzzi, R. D. Tripp, and M. B.
Watson, ibid. 8, 28 (1962).

these will be tentatively assumed to be in the S&~2 and
D&~2 states, respectively. These resonances contribute
to the spectral function through the amplitudes M~+,
Ep+, and E2, respectively, if only the lower multipole
amplitudes are retained. We will express F as

with
F''=~* '(y)9 ', (4.12)

~.,'(y) =
3y1 1
2 0 0

—3 0 0
0 0 —3,

(4.13)

and q7 =Mi+, Ep+, Ep for z= 1, 2, 3.
Since I'~* has an isotopic spin 1, the T=O component
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of M~+ vanishes; therefore, we have:

3I~+' ) =0 for A production,

where P =a partial width for y+Y —+ Y* and Fq' ——a
partial width for K+X —+ Y*.

4.14a)

M~+&+' = 0 for Z production. (4.14b)

For the contribution from the resonances with 2"=0,
we have the following conditions:

v„~r&=0 (i=2, 3) for A production, (4.15a)

(ii) Even K-Y Parity

In this case, the crossing of baryon lines and the
charge conjugation operation give the following 2

matrix for y+ V —& E+tV:

where

1 P,,&,&'(u', y')n&, '(y') Imp, '(u')
du', (4.16)

/

and

q, ~ &= y, &0&=0 (i =2, 3) for Z production. (4.15b)

Putting together Eqs. (4.5), (4.9), and (4.12), we
obtain the following formula as a contribution from a
resonant state in channel II:

4

T=PA 0,

1 0 0 2 (M+M y.)
0 1 0 0
0 0 & 0
.0 0 0 —1

(4.19)

(4.20)

(4.21)

y' = (1/2k'q') (t mx2+2—k'a&'), (4.17)

and the integration is performed at a constant t.
In the physical region of channel I, the denominator

in Eq. (4.16) does not vanish; therefore, we can make a
zero-width approximation for Imp „'as follows:

This T matrix can be reduced to the F' matrix defined

by Eq. (3.23) with primes on F; to denote that it is a
quantity in channel II. The relation between the 2
amplitudes and the F amplitudes is given by

= $;,'(u, y) F,' = rt,,'(u, y) f', g'(u) Fg', (4.22)
Imp„'=(m/2W)(I'„ I',f')'5(W —W„), (4.18) with

2Mq k
W+Mr M —(W——Mr+2M) —(W Mr) (M+M—r)—

W+Mr

2Mq k—(W+Mr) (M+Mr) 8'—M'y

q k—W+Mr-
W+My.

q k—W+Mr—

W+Mr
(4.23)

From Eqs. (4.20), (4.22), and (4.24), we have equations
similar to (4.16) as contributions from the m.-Y reso-

nances in the even E-I parity case.

and i;I,
' t, z' in Eq——. (4.11). The multipole expansion

of F is given by Eq. (3.26). In the even E Ypar--
ity case, we will take into account the possibility of
both a I'3/~ and a D3/~ state for I"~"'. Yo* and I'0** will

be assumed to be in S&/2 and D3/2 states. If only the
lower multipole amplitudes are retained, P3/2, Sy/~, and
D3/2 states can contribute only to 3f2, E&, and E&+,
which will be denoted by p; with i = 1, 2, 3. Then we have

F''=~"'(y) ~ '(u),

5. Km RESONANCE

(i) Odd K-YParity

—2 0 0
—3y 1 —j,

0 0 3
3 0 0,

(4.24) In order to take into account the contributions from
the x-E resonance, we have to consider the reaction in
channel III, i.e., 7+X~X+Y. The S matrix for this
process can be obtained from that for the reaction in(4.25

channel I by replacing P~, q, and u(P&) by —P&", —q",
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and n(pi"), respectively. Thus we have

5 '"= [i—/(2n)'](. MMr/4E1E9k~)~b(P, P—r)
X ~(p2) 2'(p2, —0"; pi—",k)~(pi") (5 1)

In the center-of-mass system, we introduce the fol-
lowing three-momenta and energies:

We also define the following Ii" matrix:

u(pg) Tv(pi") =4ir xrF"x;,
(MMr) &

(5.4)

k = (k,~), q"= (—k, co),

pi"= (—p, Ei), p2= (y,E2),
(5.2)

F"=L'y/p]F i"+[i~ (yX e)/p]F, "
+[ie py (kXe)/p k]F3"+[ie (kXe)/k]F4". (5.5)

and these can be expressed as functions of total energy
W=gt in channel III as follows:

~= (W' —ming)/2W, ar = (W2+mx')/2W

Ei= (W'+M2 Mr'—)/2W E2= (W' M'+Mr'—)/2W

P= {[(W M) Mr'7[(W+M)' Mr ])*/2W (5 3) with

A, = p, ,"(t)F,"=q;,"(t)i-„"(t)F,", (5 ti)

Then the matrix f;,"(t) that expresses A; in terms of
F," depends on only the energy variable t, and, as
before, P;;"will be written as a product of two matrices:

pe g2 B2—a2

W (W+2M) W'(W+2M)

W' —d2 W'(W' —LV) W(W+2M) W'(W+23II)
(5 7)

W(W+23II) W'(W+2M)

W(W+23II) W(W+2M)

8+W[(Ei+M) (E2+Mr)]' 2p
"(t)= 2p, —,W+2M W' —4M'

~,

2p'k(W+2M) W
(5.8)

where the following abbreviations are used:

M= —', (M+Mr), A=Mr —M. (5.9)

The multipole expansion of the amplitudes F;" is
identical to the expansion of the amplitudes for y+vr —+

3/+X given by BalP:

Fi" —Q (I+-,')EgpP g'(s——),
F "=—Z{E~ l[JP~+i"(s)+ (~+1)P~-i"(s)]

—(I+,')M»P&" (s)), -
F3"=K{4M»PP~+i"(s)+(1+1)P~-i"(s)]

—(I+2)E»P~"(s)—(I+2)~»P~'(s)),
F4" —P {-',M gi[JP g+i"(s)+——(1+1)Pg,"(s)]

—(I+-')E P "()~,

(5.10)

where Mgi and ORqi (or Eqi and Eqo) represent mag-
netic (or electric) transitions, the first and second
su%xes indicating the total angular momentum and
total spin, respectively, of the antinucleon-hyperon
pair in the final state. The parities of the triplet final
states are (—1) for Mqi and JR» and (—1) +'
for Egj.

with

~ // 1/ 11
v'

0
0
3
2
3
2

01

0
3 ~

2

0.

(5»)

(5.12)

» M. H. Alston, L. W. Alvarez, P. Eberhard, M. L. Good,
W. Graziano, H. K. Ticho, and S. J. Wojcicki, Phys. Rev. Letters
6, 300 (1961).

So far the spin of E-x resonance at total energy
H/"=884 MeV is known only to the extent that it is
either 0 or 1."But since we cannot construct a gauge-
invariant scalar out of a photon polarization vector e

and two independent four-momenta, the E-z resonance
with J=O can give no contribution to the reaction
y+E +3I+P' and, h—ence, to the photoproduction of
the E-I pair either. Therefore, the E-m resonance will

contribute only if it has J=1, and, in this case, con-
tributions to c; comes only from MIg and ORgg, which
will be denoted by q;" with i =1 and 2. The relevant
multipole expansion reduces to
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Since the isotopic spin of the E 2c -resonance is 1/2,
only T=1/2 components of y,"contributes.

Gathering Eqs. (5.6) and (5.11), we have the fol-

lowing contribution from the ~-E resonance:

E*has J=1 and, if it has spin 0, we have

(ii) Even K-Y Parity

(5.15)

1 P,;"(t')~;,"Im~, "(t')
g .III dt'.

7r t' —t
(5.13) For even E-Z parity, the E;"matrix corresponding to

(5.5) in the previous subsection will be defined by

Since t' —t/0 in the physical region of channel I, we ~"=(2p. (eX~)/p&/&i"+L42 {pX(eX&))/p&j~2"
can again use a zero-width formula for Imp/, ". +(p «p/p2)j"2"+ir eP4" (516)

Imps"= (2r/2W)(l', "&/")*&(W—W„), (5.14) Then we have the following relation between A, and
P I/.

where I',"=a partial width for y+K —&E" a.nd I'f"
=a, partial width for X+Y —+X~.

It should be noted tha. t Eq. (5.13) holds only when

with
(5.17)

(5.18)

W2 —4~2 A (W2 —4M2)

W2 A2 W2 (W2 A2)

23f

W'(W'-—62) W(W+2M) W2(W+2M)

—2aM

W'(W' —A2)

(5.19)

(5.20)

with

P I/ II —ff&'i =~ij g'j ) (5.21)

3

0
A'ig 0

0

0'
3
2

0
0,

(5.22)

The multipole expansion of I/, " can be obtained from

Eq. (5.10) for the odd IC Yparity case b-y exchanging

the roles of electric and magnetic amplitudes, i.e., by
replacing Mz& and 5R» by EJ& and 8,» and also re-

placing Ez& and Ezo by Mz& and M +0, respectively.

As in the odd E-I' parity case, there is no contribu-

tion from the E-m resonance unless its spin is 1, in

which case only the M Jo and Mz& amplitudes can con-

tribute to c;. Denoting these amplitudes by p," with

i=1 and 2 respectively, we have

contribution from the E-m resonance for even E-Z
parity.

6. CROSS SECTION AND POLARIZATION

Now putting together the results of the three pre-
ceding sections, we have the following expressions for
the E-meson photoproduction amplitude:

A;= A,'+A,"+A;"'+A;, (6.1)

where A;r, A,", and A,'" are defined by Eqs. (3.16),
(4.16), and (5.13), respectively (or the corresponding
equa, tions with bars for even E Yparity). -

For the calculation of cross sections and polarizations,
it is more convenient to work with the Ii; amplitudes
defined by Eq. (3.5). By taking the inverse of Eq.
(3.7), we have

Combining Eqs. (5.17) and (5.21), we obtain an with

ecluation similar to Eq. (5.13) but "with bars" as a

F,= (Q')gA;,

(—1 ~1~—i

(6.2)

(6 3)
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O' —M
[(Eg+M)(22+Mr)]&~ 1, , q,

SxW F2+Mr Fan+My)
(6 4)

(n ')v= —1

0 W+M

0 —(W+M)

with

and

for odd E-Y parity, and

q k
My —M—

k
W—Mr+ 8'—M

q k
W+Mr+

W+M

q. k

(6.5)

(6.6)

(6.7)

(n') = —1
qk

Mr+M— (6 8)

0 W+M

0 —W+M

for even E-V parity.
The cross section do/dQ can be expressed in terms of

Ii, as follows:

(da./dQ) (P= (q/k) (1—x')'* Im{2FgFg*+FgF3*—FgF4*

+x(F)F4* F2F3*) (1——x')FSF—4*} (6.10)

for both odd and even E-V parity.
d~/do, = (q/e){ ~F, ) + )F,

~

—2*Re(F,*F,)
+ (1—~')[l I

F3 I'+r'I F4 I'+Re(F 4*F,+F3*F,)
+x Re(F3*F4)]} (6.9)
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