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The asymptotic expansion of the phase shift in inverse powers of the momentum p and the asymptotic
expansion of the scattering amplitude in inverse powers of p and the momentum transfer ¢ have been derived
for a Dirac and Klein-Gordon particle. It is shown that at high energy (i) the higher-order phase shifts
(proportional to a®, k51, where « is the coupling constant) are very small and negligible in the calculation
of the amplitude, (ii) the amplitude approaches the first Born approximation amplitude (linear in &) multi-
plied by a phase factor. Statement (ii) holds for spherically symmetric potentials V (r) for which the first &V
derivatives (the phase shift is expanded asymptotically up to p~¥) exist for every real positive value of 7,
including =0, and for which at least one derivative of odd order does not vanish at the origin. Statement
(i) is probably correct also for potentials even at the origin [V (r) =V (—7) for =~0]. The upper limit on the
coupling constant & is a<<pu1 with the additional condition pu:>>1. Here u1 is a characteristic length of the
potential. The lower limit on the scattering angle 6 is given by 3> (pus)~!, where s is another characteristic
length of the potential and is usually of the same order of magnitude as ui. The problem of the model
independence and other consequences of the theory are discussed.
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1. INTRODUCTION

HE high-energy potential scattering of a Dirac or
Klein-Gordon particle has been studied exten-
sively.’" In the present paper both the asymptotic ex-
pansion of the phase shifts in inverse powers of the
energy and the asymptotic expansion of the scattering
amplitude in inverse powers of the energy and the mo-
mentum transfer will be derived for a relativistic par-
ticle. It is known that the first Born approximation of
the phase shift is very good at high energy.?” The phase
shift approaches the limit 8,=—a /e V(r)dr inde-
pendent of the angular momentum Z; V(r) is the po-
tential in coordinate space and a measures its strength
(coupling constant). This is in contrast to the non-
relativistic case where the phase shift vanishes at high
energy.

We will restrict ourselves to local, spherical symmetric
potential functions V (r). We shall assume that the first
N derivatives (the phase shift is expanded asymptoti-
cally up to p7%) of V(r) exist for every positive real
value of 7, including =0, and that at least one deriva-
tive of odd order does not vanish at the origin. Such
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potentials have been used extensively by Hofstadter® in
his analysis of the high-energy electron nuclei scattering
experiments. To see this, one has to realize that all
smooth electric charge distributions (including distribu-
tions with a simple pole at the origin) which are not even
functions of 7 at the origin give rise to potentials with
the above mentioned properties; e.g., this is the case
with the Yukawa or Fermi distribution. Potentials
which correspond to charge distributions with a sharp
edge (like the uniform distribution) will not be con-
sidered in the present analysis because they violate the
required conditions. Potentials which are even at the
origin (called here even potentials) and which corre-
spond to even charge distributions, like the Gaussian
distribution, will be discussed briefly at the end of the
last section.

As to the scattering amplitude the following two
statements will be shown to be valid at high energy:
(i) The higher-order phase shifts are negligibly small in
the calculation of the amplitude; (ii) the amplitude ap-
proaches the product of a phase factor with the linear
term of the power series in « in which the amplitude is
expanded. (The series is often called the Born series, and
the linear term is usually referred to as the first Born
approximation.) It will turn out that the coupling con-
stant « is much less restricted in magnitude than in the
Born approximation; its upper limit is given by a<<pu
with the additional condition pu,>>1. Here p is the mo-
mentum of the scattered particle, and p; is a charac-
teristic length parameter of the potential. This means
that the phase shifts are not small, in general, and there-
fore the expansion of the .S matrix as a power series in
the phase shift is not feasible because of its slow con-
vergence. Statement (ii) is, therefore, a rather surprising

8 R. Hofstadter, Revs. Modern Phys. 28, 214 (1956); Ann. Rev.
Nuclear Sci. 7, 231 (1957).
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result. It means that all the higher-order terms are
equivalent to a phase factor. Of course, for the non-
relativistic wave equation the first-order Born approxi-
mation is always guaranteed, because the phase shift
becomes small at high energies.

Although statement (i) has been proved analytically
only for potentials which satisfy the conditions outlined
above, it is probably true also for potentials which are
even at #=0. In order to check this point, the scattering
amplitude for the Gaussian potential is worked out
numerically. The result given in Table I at the end of
the last section, strongly supports our conjecture.
[Statement (ii) is not valid for even potentials.]

The theory presented here is a large-angle scattering
theory. [No attempt has been made to prove the
equivalence of the present theory and Schiff’s (reference
4) large-angle scattering theory.] The lower limit on the
angle of scattering 6 is given by 02> (pus)~L. Here, u» is
another parameter of the potential. For many po-
tentials u1 and u, are of the same order of magnitude.
On the other hand, the Moliére-Glauber’® impact
parameter representation is a high-energy, small-angle,
scattering theory. However, both theories have a com-
mon property, namely the fact that the substitution of
the first-order (linear in @) phase shift in the S matrix is
well justified at high energy.

Recently, Nigam ef al.® have criticized Moliére’s!
scattering theory for being inconsistent. They contend
that it yields only the first Born approximation con-
sistently but not the higher Born approximation, be-
cause the higher-order phase shifts have been neglected
in the calculation of the amplitude. This argument,
though correct in principle, cannot be upheld for po-
tentials subject to the conditions outlined above in the
limit of high energies, as will become evident from the
results of the present paper. Indeed, an indication to
this effect appears in the paper by Lewis,® where it is
shown that for charge distributions with a derivative at
the origin the real part of the second-order amplitude
(which comes from the second-order phase shift) is
negligibly small compared to the first-order amplitude,
at high energies.

In Sec. 2 the first-, second-, and third-order phase
shifts are calculated at high energies for angular mo-
menta /< pus. As the WKB method is very good in the
high-energy limit, it has been used for the derivation of
the higher-order phase shifts. (In Sec. 3 it will become
evident that this method yields the amplitude exactly
at high energy.) In Sec. 3 the asymptotic expansion of
the scattering amplitude in inverse powers of the mo-
mentum and the momentum transfer is derived, by
taking into account the results of Sec. 2. In Sec. 4 some
consequences of the theory are discussed, and in particu-
lar the problem of the model independence is dealt with.

9 B. P. Nigam, M. K. Sundaresan, and T. Y. Wu, Phys. Rev.
115, 491 (1959).
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In addition, the numerical example of the Gaussian
potential is given. Because of the simple relationship!®
between the Dirac theory and the Klein-Gordon theory
at high energy, for the most part only the latter theory
is discussed.

2. ANGULAR MOMENTUM DEPENDENCE OF THE
PHASE SHIFTS AT HIGH ENERGIES

Let us expand the phase shift of a Klein-Gordon
particle in a power series of the coupling constant a:

6l= Z Olkal(k).
k=1
We shall refer to 6, as the kth-order phase shift.

In this section the behavior of the first three orders of
the phase shifts will be derived as a function of the
momentum p and the angular momentum /, at high
energies.!! Knowledge of the explicit dependence of the
phase shift on p and / is necessary in order to derive the
asymptotic expansion of the scattering amplitude at
high energies, which is dealt with in Sec. 3.

It is well known that the WKB method for the
computation of the phase shift is very good at high
energies. In view of the results of references 2 and 7, we
expect that the main contribution to the phase shift
comes from the first order. We, therefore, will calculate
the second- and third-order phase shifts in WKB ap-
proximation only. On the other hand, the first-order
phase shift will be derived exactly, and its asymptotic
expansion at high energies will be compared with the
asymptotic expansion of the first-order WKB phase
shift. This provides us with a method to extract from
the WKB phase shift those angular-momentum-de-
pendent terms which are essential for the calculation of
the amplitude. Later it will turn out that only the terms
which depend logarithmically on / contribute in the
calculation of the amplitude.

The first-order Klein-Gordon phase shift is given by

2p%
51(1):--/3— J[o ridrj 2 (pr)V (r), 1)

where (8 is the velocity of the particle. We will assume
that the potential aV (r) satisfies the following four
conditions: (i) It is spherical symmetric; (ii) the first N
derivatives exist for every real, positive, and finite value
of 7, including =0, if the phase shift is going to be ex-
panded up to p~¥; (iii) it decreases faster than 1/r at
infinity, and (iv) the first and/or third derivative does
not vanish at the origin.

Now in order to find the behavior of §;¥ for large
momenta p, use will be made of the explicit depend-

10 GG, Parzen, Phys. Rev. 104, 835 (1956).
(11152(;6 also M. Verde, Nuovo cimento 6, 340 (1957); 8, 560
958).
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ence® of 7;(p) on p and I:
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Equation (2) represents the function j;(p) exactly for
every value of p and /. The symbol (/+%, m) denotes
some polynomial in / and is defined in reference 12.
The direct substitution of Eq. (2) in Eq. (1) will give
rise to diverging integrals. In order to avoid this, we will
introduce an auxiliary function f(r), and rewrite (1) as

gro==2p2 [ rar jerLV )~1)]

0

e [ rdr 20 0. (1)

In order to expand §;® in inverse powers of p up to the
fourth order, the function f(r) has to be chosen such
that (i) (V—f) has a zero of the fourth order at the
origin® and (ii) the second integral in Eq. (1) is ex-
plicitly known.
For f(r), we take

e—)\lr_ —Aor
——V(0)/r+a+br+cr?], 3)

2Ny

fn=

2p%

72

. 10+ =d
B0 =— f [V ()= ) Tar— ) f v~ f)1-

sin2p (l_’_%) I— 1) (l+%) l)
; | @

P (2p)7

where @, b, and ¢ are uniquely determined by the above
condition. They are explicitly given in Appendix A.

We also note that the sine and cosine terms do not
contribute up to p™* because of the well-known!
asymptotic expansion

0 N—-1
/ eZipr<p(r)d7= — Z=0 g1 ¢(n) (0) (2?)_71“1‘*—0((2?)—.”.)7

where it is assumed that ¢(r) and its first (V—1)
derivatives do exist for 07 <o,

In general, if one considers the asymptotic expansion
of 6;® up to p~¥, then f(r) has to be chosen such that
(V—f) has a zero of the Nth order at the origin. From
the above expansion formula it follows then that the
trigonometric terms contribute to terms of order p=¥—2
and higher. In other words, the integrals involving
cos(2p) and sin(2p) may be disregarded in the asymp-
totic expansion of §;V. We then obtain for §;, using

Eq. (2):
3 (1= DI0+1) (+2)
8 4

x [ Srro=go-2p [ rarseensoroe. @
0o 7 0

Using the expansion of the last integral in (4) which is given in Appendix A, one finds after some rearrangements,

for the asymptotic expansion of the first-order phase shift

v LVOWLZ(H_I)F o
@ @pt 2 L
=D+ ) +2)r =

(2p)*

The auxiliary function f(r) cancels out as expected.
¥ (1) is the logarithmic derivative of the I' function. The
subscript 0 on V', etc., means these functions are to be
evaluated at »=0. The above asymptotic expansion is
obviously a better and better approximation to the

38;‘”=—f V(r)dr—
0

12 A. Sommerfeld, Partial Differential Equations in Physics
(Academic Press Inc., New York, 1949), p. 117.
13 M. Verde, Nuovo cimento 2, 1001 (1955),

V’/I
Inrdr V" (F) 4+ Vo[ (1) —1n2p ]~ 1 Vo' —— }
(2p)?

] Inrdr Vw(r)+V0"'[¢(z+1)—mzp]—(5/4)V0"']+0<p-6). (5)

exact value of §,V, the larger the value of the mo-
mentum p and the smaller the value of the angular
momentum ! (for a finite number of terms). The exact
range of validity is difficult to define. However, one can
get a rough idea about it and at the same time gain some

4 A, Erdélyi, Asymptotic Expansions (Dover Publication Inc.
New York, 1956), p. 47.
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physical insight by considering an example. Take, e.g.,
the superposed Yukawa potential V= (eMr—¢=227)/y
with Ai<<\s. Then Vo, (V)3 (V")}, etc. are all of the
order of A, which, magnitude-wise, is equal to the in-
verse of the radius of the charge distribution [see also
Eq. (6)]. For this particular case, one reads from Eq. (5)
that its range of validity is given by p>\, as well as
p>I\2. This means that both the wavelength of the
scattered particle and the classical impact parameter
p=1/p should be small compared with the dimensions
of the nuclear charge distribution. Putting 1/p=0, one
obtains Parzen’s? limit of the phase shift at infinite
energy :

5«,:-—/ V (r)dr.
JO

It is obvious that Parzen’s limit gives the main
contribution to the first-order phase shift, at high
energies. Yet in Sec. 3 it will be shown that the only
terms which contribute to the scattering amplitude are
those proportional to ¥ (I4+1) in Eq. (5). This fact
enables one to extract from the phase shift those terms
which are essential in the calculation of the amplitude.

The electromagnetic interactions are included in the

di(a)= lim[ ’

710
ro(a)

where!®
(+3)
F()=pr——;

72

Fi(r)=—2EV(r); F.=Vr);

and the lower limits 7¢(a) and 7¢(0) are the zeros of the
respective integrands.

Expanding Eq. (7) in a power series of «, one finds
that the first-order phase shift is equal to

0

1
8,V = ) / VL (*+p%)¥]dr ®)

Here, p= ({+3%)/p is essentially the classical impact
parameter. Equation (8) is just the phase shift used by
Moliere,! Schiff,* and others in their small angle, high-
energy potential scattering theory.

Repeated integrations by parts of Eq. (8) and subse-
quent expansion of V', V"' and V' gives the behavior
of ;@ for small values of p:

0

B, = — / V() dr W)
0
+302 Inp[ V' +5Vo""p*+---], (9)
where W1(p?) is a power series of p? and W(0)=0.

15 Langer [R. E. Langer, Phys. Rev. 51, 669 (1937)]and Moliere
(see reference 1) have given arguments why to substitute (I4+%)
for /(J41) in the centrifugal barrier term.
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present analysis, whereby one starts with a screened
potential and takes a limit in which the screening
vanishes, if necessary. In that case, one generally con-
siders the electric charge distribution rather than the
potential. It is well known that the nuclear charge
distribution p.(r) is defined as the Fourier transform of
the nuclear form factor F(g). On the other hand, the
Fourier transform of the potential is equal to F(q)/¢
This gives rise to a simple connection between the
potential and the charge distribution. It is easy to
verify that the following relations hold:

00

Vo=(y=dr f rdr 0.(0), ©)
0
2 V0/= —47r(7’pc)0; 3V0”= ——47r(rpc)o';
4V0N/= _471_(1,’)0 0/1; (6/)

The distribution p.(r) is normalized to unity when
integrated over the whole space. Although V() has to
be regular at the origin, p.(r) may have a simple pole.
It is also easy to show that to a potential even at »=0
corresponds an even charge density, and vice versa.
We turn now to the calculation of the phase shift in
WXKB approximation. It is well known that it is given by

[F(r)]*dr], ™

r0(0)

Equation (9) is derived in Appendix B. The above result
shows that the main contribution to the first-order
WKB phase shift, namely, the term — (1/8) /5= Vdr is
identical with the corresponding term in the Born ex-
pansion, or, in other words, the WKB method is, as
expected, very good for the computation of the phase
shift, at high energies. But what is more important, it
essentially yields the correct angular momentum de-
pendence, and in particular, those terms which con-
tribute in the calculation of the amplitude are almost
exactly reproduced. These are the terms proportional to
Y (I+1) and Inp in Egs. (5) and (9), respectively. For not
too small values of /, they are very close to each other
because (I+3)*—I(4-1), (+3)*— (—1DI(+1)(+2)
and r=y¢(I4+1)/In(l4+%) — 1. As a matter of fact,'® for
122, r is almost equal to one.

Considering this fact, it suggests itself that the
following simple substitutions should be made whenever
the higher-order WKB phase shifts are used in the
calculation of the amplitude:

1(1+1)
p* In(i+3) ~—>—P;—¢(l+1),

(10)

(=DI0+1)(+2)
- Y(+1).

ot In43) —

16 JPor J=2, r=1.007, and for /=3, r=1.003.
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This conjecture is completely borne out in the next
section where it will be shown that the WKB phase
shift in conjunction with (10) yields the first- and
second-order amplitude exactly, at high energies.

The higher-order WKB phase shifts are obtained by
taking the appropriate derivatives of §;(a) [Eq. (7)]
with respect to a. In order to avoid any divergence, care
has to be taken not to differentiate under the integral
sign in the vicinity of the lower limit 7o(e). This is
accomplished by splitting the integral in two parts,
from 7¢(a) to 7/, and from #’ to infinity. The parameter 7’
is arbitrary, but supposed to be close to 7o(a). It does not
depend on «, and at the end it cancels out. The integrand
of the first integral is then expanded in powers of
[r—r¢(a)] and integrated term by term. Finally, the
derivatives with respect to « are taken.

The second-order WKB phase shift calculated in this

way is equal to
1d F12 d?’ F12
),
2dr\F' /1F% \4F'F%/,,

1 0
3 =- f K
2 r0(0)

Substituting for the functions F, F1, and F, from (7),
5,;® becomes after some rearrangements:

B8, D = /w »—d—r-<injr2—pz>
o (PHpH)Ei\p?

XVL(+p) VL7,

(1

where V' means the derivative with respect to the
square root, m is the mass of the scattered particle, and
@ is again its velocity. Integration by parts of Eq. (11)
and subsequent expansion of (VV’) then yields §;® for
small values of p:

B0 =TWa(s)+5* Inp

3—p 5—p
x[ Y (VV')o"P2+"’:|, (12)

where W (p?) is a power series of p? which vanishes at the
origin.

The third-order WKB phase shift has been found in
an analogous way. Its behavior for small values of p
becomes
5—3p2

625, = W3 (s2) -+ lnp[s V7,

7—332

+5

(V)" - } (13)

where again W is a power series of p? which vanishes at
the origin. As has been pointed out before, the functions
W1, W2, and W3 do not contribute in the calculation of
the amplitude. Their explicit dependence on p? is, there-
fore, omitted here.
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In conclusion, the explicit dependence on p and ! of
the first three-order phase shifts have been found, at
high energy. The result may be summarized as follows:
(1) the higher-order phase shifts are much smaller than
the first-order phase shift. (ii) Let 61 denote the
terms proportional to lnp in the nth-order phase shift,
then 8, P =0(p2%), in case V,@*¥ is the first non-
vanishing odd derivativeat the origin; §1,® =0 (p—@*+1),
in case (VV')o®%2 is the first nonvanishing term; and
@ =0(p~@ ) in case (V2V),®*2 is the first non-
vanishing term. This follows immediately from Egs. (5),
(9), (12), and (13). We, therefore, conclude that
0 ?/6mP=0(p™), 6n®/6:P=0(p72), etc. (provided
Vo#0; if V=0, then these ratios are of higher order in
1/$). This fact is decisive in the derivation of the ampli-
tude as will be shown in the next section.

3. HIGH-ENERGY ASYMPTOTIC EXPANSION
OF SCATTERING AMPLITUDE

We now wish to obtain the asymptotic expansion of
the scattering amplitude in inverse powers of the mo-
mentum p and the momentum transfer ¢g=2¢ sin(8/2). 6
is the scattering angle. We shall expand the scattering
amplitude in powers of the coupling constant a:

Q=2 k=1 a®Qs,

and call Q; the kth-order (Born) amplitude. The differ-
ential cross section is proportional to

RCQ 9
O

1

o 00, ]

The first term is usually referred to as the first Born
approximation cross section, the second term the second
Born approximation cross section, etc.

Let us start the discussion with an example and find
the first and second-order Klein-Gordon amplitude'” for
the superposed Yukawa potential:

aV(r)=(a/r) (e Mr—e2r),
Equation (14) corresponds to a Yukawa-type charge

distribution, p.= (A2/4w7) exp(—Asr), for A1=0. The
first-order amplitude for the above potential is equal to

QTQ=a2Q12[1+2 +a2(2

(14)

1 1
Q1=87r2< — ), 13)
)\12+q2 )\22+q2
which for >\, N2 becomes
A=A A=At
Q1=81r2(— + T > (15
q

The second-order amplitude for a Klein-Gordon particle

17 At the end of this section it will be shown that the Dirac and
Klein-Gordon amplitudes are simply related at high energy. (See
also reference 10.)
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is given by
1
(2m)*

2= d4 /Vk
¢ / B VIR 1
X[M‘;g]<lelp>, (16)

where p’—p=gq, po'=po=E, the total energy, and
@Nvip= / e'?' =V ()¢ i7" 2di.

Q: has been evaluated by a method described in detail
by Dalitz.!® The explicit expression of Q, is a long and
. cumbersome function of  and ¢. Here, we are interested

4n%
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only in the leading term for p, ¢>>Ay, s

(4m)?3—p2
ReQ:= A=) AP—=2s), 17)
(47)
Isz‘: - (Alz—'}\zg) an\l/)\g), (17’)
Be*
and, therefore, taking 8 — 1,
ReQyo/Q1=—2(M—N\2)/2, (18)
ImQ2/Q1=2 111()\1/)\2). (18’)

Suppose now we make a partial-wave expansion of the
Klein-Gordon amplitude at high energies,

Q=— 3 (I+3)Pi(cosh)[exp2i X a8, —1]
P %

2

8

82 8 2
= o (D PO ——at T PO——ic? TUHDPLIOT+
P p P

=a(Q;+a? ReQy+ic? TmQa+t - - -,

then it follows immediately, that Qi, ReQ,, and ImQ,
arise from 6,9, 6,®, and (6,V)?, respectively. Thus, Eq.
(18) suggests that 6, may be neglected in the calcula-
tion of the amplitude at high energies, at least in the
case of the present example. In what follows it will be-
come clear that not only the linear §;® term, but also
its higher powers (the same is true for §,, - - -) may be
neglected. Furthermore, we will see that the first Born
approximation cross section becomes the dominant term
at high energy. This seems to follow from Eq. (18),
because R=2(ReQ»)/(01<1, and this is just the ratio of
the second to the first Born approximation cross section.
But this conclusion is by no means self-evident since
from Eq. (18') it follows that the third and higher Born
approximation cross sections are of the same order of
magnitude as the first-order term.

Let us now turn to the general case. The first-order
Klein-Gordon amplitude is given by the Fourier trans-
form of the potential V (r):

Q1=2w/eiq"V(r)d3r. (19)

Its asymptotic expansion in inverse powers of ¢ is

F.=

z-1,z<1 1

Go= lim 3 (42)fa(DxY (+1)P(coss) = (= D[ (Gn) L] sin—"2(6/2),

z—l,z<l 1

18 R. H. Dalitz, Proc. Roy. Soc. (London) A206, 509 (1951).

lim X (H3) fo(D)x'Pi(cosh) =0,

readily obtained by repeated integrations by parts:

Vol VOIII

o=~ | @
¢

Obviously, Eq. (15") agrees with Eq. (20). From the
derivation of (20) from (19) follows: (i) The sufficient
and necessary condition for the expansion of Q; up to
¢ ¥1is that V(r) is N times continuously differentiable
for 07 <. (See reference 14 for a rigorous proof.)
(ii) At least one derivative of odd order of V (r) has to
be different from zero at the origin. Since other cases
can be treated in a similar way, we shall continue to
assume that V¢’ and/or V¢’ do not vanish. In case all
odd derivatives of V() do vanish at the origin, i.e.,
potentials which are an even function of 7 at the origin,
an asymptotic expansion of Q; in inverse powers of ¢
does not exist. In that case Q falls off faster than any
power of ¢, i.e., at least exponentially. A potential of
this class will be discussed at the end of Sec. 4.

We now proceed to calculate the asymptotic expan-
sion of the scattering amplitude Q in inverse powers of
the momentum p and the momentum transfer ¢. Use
will be made of the following six infinite series, valid
for 6£0:

@1

(21)
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where

So@=1, fu(h=1(+1),

463

Ja=(—=1)I0+1) (+2).

The proof of Egs. (21) and (21') is given in Appendix C."

We start with the partial wave expansion:
4n%B
pZ

0=

(I+32)Pi(cost)[exp(2i Y akd, M) —17.
. %

Inside the square brackets only the exponential function may be retained because of Eq. (21). It is, therefore,
possible to factor out the phase factor which comes from the I-independent term of 6. Expansion of the exponential

function then gives

8% 1
o=ty [
P B /o

1 0 2
Vdr+6,‘”)-I—iazél@)-!—ia%l(”—a2<[—g / Vdr+a,<l>)+---],
0

where 7 is the phase factor n=exp[ —2ia/s® Vdr-+0(p~2)]. If now the asymptotic expansions of the phase shifts,
(obtained in Sec. 2) are introduced® and use is made of Egs. (21) and (21’), one obtains

g - VY (VV")o3—p2
Q0= ———nl:ia—— sin(0/2)+1ia?
P2 4'3 P2 2 PS 2 62
which becomes
(4m)2aVy I‘ 3—62V, 5—382 V¢
= IIL 1 Qa Y44 -_
p g* P

V"V 5= (VV)'/VY 2a
2 20 +—L

sin~*(6/2)-+terms of order p~* and higher:I,

8 1

¢ B

The function f(f) has not been calculated explicitly. It
arises from [3(I4+1)]? of (§,V)2. The term proportional
to U also comes from (§;)2. U is equal to [cf. Appendix
B and Eq. (5)]

U=Vy(G+In2p)— / V" (r) Inrdr.
0

The first and fourth terms in Eq. (22) are derived from
6®, The second and fifth terms come from §® and from
all cross terms between 6% and 6, which are linear in

1The notation lim means that we include the converging
x—1,x<1

factor x! to begin and take the limit x — 1 at the end. This de-
fines the limit of the series on its radius of convergence (Abel’s
sum). See, e.g., G. H. Hardy, Divergent Series (Oxford University
Press, New York, 1949), p. 7. The definition of the amplitude Q
just below should be understood in this sense although we omit
the limit symbol.

2 The convergence of the expression 2;(I+%)(6:)"Pi(cosd) is
realized by the rapid oscillation of P; for large /. The asymptotic
expansion of this expression in inverse powers of ¢ is completely
analogous to the asymptotic expansion of the Fourier integral
So° f(p) cospgdp in inverse powers of ¢. It has been rigorously
shown that the latter is obtained by expanding the slowly varying
function f(p) as an ascending power series of p [provided f(p) and
all its derivatives vanish at infinity], and integrating term by
term. See, e.g., reference 14. This result is true even if the expan-
sion of f(p) is not valid for large values of p. Here, f(p) and cospg
correspond to (J4%)(8:)" and P;(cosd), respectively. Note that the
asymptotic expansion of §; is essentially an ascending power series
of /. The summability of the series is guaranteed in the sense that
Egs. (21) and (21’) can be used.

¢

J(————)+ia£)—;[f(0) —-1]+0 (p‘s)]. (22)

8 ¢ 7

8@, Finally, the third term comes from 6® and again
from cross terms between §® and 6, linear in 6®. We
therefore conclude that 6 and only 6® contributes to
the leading term in the asymptotic expansion of the
amplitude. Its magnitude is given by the first-order
amplitude (first Born approximation). The reason for
this is simple. The only contributing terms of the phase
shift in the calculation of the amplitude are the terms
81n defined at the end of the last section. Now §1,,®
=0(p), @ =0(p?), etc. This, however, is the suffi-
cient condition for the validity of the first Born ap-
proximation, and therefore explains why at high ener-
gies the magnitude of the dominant term of the
scattering amplitude is given by the first Born ap-
proximation.
From Eq. (22), it follows that

(i) The term linear in the coupling constant « is
identical with Eq. (20).
(ii) The term proportional to ia? is given by

2(4ar)?

Isz =
Bq*

Vo / i Vdr+0(p"). (23)

This expression agrees with the corresponding expres-
sion, Eq. (17’) derived for the potential (14), since
V0’= (}\12'—)\22)/2 a.nd _/5” Vd1‘= ——11'1()\1/)\2)
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(iii) The term proportional to o? is given by
2(4m)?r3—p2 S—=p2 (VV')"
[ VVo— :] (24)
pgt L 28 B¢

Again the leading term agrees with the corresponding
term Eq. (17), because Vo= — (A\1—\s). In case, V=0,
Eq. (24) becomes

RCQ2 =—

5—82 (VV'""),
ReQ,=2(4r)2 )
B ?q¢°

The corresponding first-order term is according to
Eq. (20) given by

O1=2(4x V"' /¢,

and therefore the ratio, assuming the velocity 8 — 1
Rng Vo (r—l) N
(CTR 2 p

In the last step Eq. (6) has been used. This result
coincides with the expression calculated exactly by
Lewis® for charge distributions with a finite derivative
at the origin; the latter means V’=0, according to (6').
Therefore, as mentioned already in the last section, the
WKB phase shifts in conjunction with conjecture (10)
indeed yield the correct amplitude, at high energy.

Finally, a word about the Dirac amplitude. Parzen'®
has shown that at high energy the Dirac phase shifts 7,
are related to the Klein-Gordon phase shifts §; by
2m1=06;+06141, provided &;4.1—8,;<<1. This condition is
obviously satisfied by the phase shifts discussed in
Sec. 2. The Dirac amplitude at high energies is given'?
by

(24)

R=2 ) (25)

4%

Qp=—sec(6/2)
PZ
X‘? [(@41) (en—1)+1(e2im-1—1)]P;(cosh).

This simplified expression for the Dirac amplitude
follows from the fact that at high energy the helicity is
a constant of the motion. If now use is made of the
asymptotic expansion of §; derived in Sec. 2, it is easy
to verify that

Op=0Qx cos(6/2), (26)

where Qg, the Klein-Gordon amplitude, is given by
Eq. (22). From (26) then the relationship between the
respective cross sections,

op=og cos2(0/2),

follows. This has also been found by Schiff.

4. DISCUSSION

It follows from the foregoing analysis that at high
energy: (i) The higher-order phase shifts do not con-

ROSENDORFEF AND S.
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tribute to the dominant term of the scattering ampli-
tude, or, in other words, the substitution of 6% for § in
the S matrix is a good approximation. (ii) The dominant
term of the amplitude is given by the first Born ap-
proximation term, multiplied by a phase factor. How-
ever, this result is independent of the magnitude of the
phase shift.

If the cross section is measured at all angles, the phase
factor n may be determined by the unitarity condition
for the scattering amplitude.?!-?

Statement (ii) is correct for all potentials subject to
the conditions outlined at the beginning of Sec. 2.
Statement (i) is probably correct also for potentials
which are even at the origin. Also, from Eq. (22) it
follows that V () may have a 1/r dependence at infinity,
because only the phase # will be affected. It becomes
logarithmically divergent.

Conclusion (i) seems trivial on first sight, because it
has been proved in Sec. 2 that § is well approximated by
6®. However, Ravenhall and Yennie?® have shown,
with the aid of some numerical examples, that tiny
differences in the phase shifts may give rise to con-
siderable differences in the amplitude, and vice versa.
Conclusion (i), therefore, means that small differences in
6 due to the higher-order phase shifts have only a very
small effect on the amplitude. The sensitive dependence
of Q on & observed in reference 23 is explained as
follows: According to Eq. (5) the value of & almost
entirely comes from —a fo® Vdr. On the other hand,
only the small “correction” terms (§1n) proportional to
¥(I41) do contribute to Q. Therefore, charge distribu-
tions which give rise to the same o fo® Vdr, but to
different ¢ (/4+1) terms may have quite different ampli-
tudes, although their corresponding phase shifts are
almost identical. Conclusion (i) also implies that the
cross section is independent of the sign of the coupling
constant « at very high energy.

Another interesting result which follows from Eq. (22)
is what one may call the conditional model independ-
ence. By this we mean that there is a limitation on the
amount of detail of the nuclear-charge distribution
which can be obtained in the very high energy region.
For instance, the scattering amplitude will have the
same 1/¢* dependence for all charge distributions for
which Vy'5#0 is the same, or, it will have a 1/¢® depend-
ence for all distributions for which V=0, but V"0
is the same, etc. Of course, the above statements are
true only for a limited group of potentials, namely,
those subject to the conditions outlined in Sec. 2. Po-
tentials which do not satisfy these conditions, like the
potentials which are even at =0, or potentials which
correspond to charge distributions with a sharp edge
(e.g., uniform or shell) most probably are not subject to

L. Puzikov, R. Ryndin, and I. Smorodinskii, J. Exptl.
Theoret. Phys. U.S.S.R. 5, 489 (1957).

22 We are indebted to Dr. E. C. G. Sudarshan for this remark.

2 D. G. Ravenhall and D. R. Yennie, Proc. Phys. Soc. (London)
A70, 857 (1957).
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TaBLE I. The different amplitudes as explained in the text as a function of the coupling constant «. The energy and scattering angle
are chosen such that ¢2/4a2=10 and p/¢=10.

01 < 4a%a(30)

ReQ; x 4a%a2(5®)

20| [e?ied® — 1]] 2a2| [ezi(aa(l)+a2s(2)_1]|

0.01 0.091X10-5 0.0034X10-5
0.10 0.091X10™* 0.0340X 10~
1.00 0.091X1073 0.3400X 1073

0.112X1075 0.115X1078
0.663X10~ 0.670X10~*
10.33 X107 10.390X 1073

any model independence. This has been demonstrated in
reference 23. From what has been shown in the present
paper, it is obvious that the arguments given by
Reignier® and others in favor of model independence,
essentially the equality of the values of a /5® Vdr, do not
hold. The equality of a fo® Vdr is no guarantee whatso-
ever of the equality of the amplitudes.

As to the range of validity of our result, no attempt
has been made to find the exact conditions. Obviously
the scattering amplitude Eq. (22) is an asymptotic ex-
pansion in both the momentum p and the momentum
transfer g. The reason why its validity is limited to large
values of ¢ is that the expansion of the phase shift is
valid only for a certain range of / from 0 to some value
luax. It is therefore reasonable to assume that both p and
garemuch larger than some characteristic inverse length
of the potential. Call it 1/us. It then follows that:
(1) Bo= (pus)"<1 and 6>8,. (ii) The higher-order phase
shifts in Eq. (22) are negligible for a/Bpu1<<1, where u,
is another characteristic length of the potential. This
means that our result is valid for a large range of the
coupling constant «. For many potentials the two
parameters u; and u, are of the same order of magnitude.
When the potential is such that V,, V¢'5£0, the corre-
sponding charge distribution has a simple pole at the
origin. In this case it follows from Eqs. (22) and (6”) that

p2=Vo/Vy"=2(rpc)o/ (rpc)o”,
and from Egs. (22) and (6) that
1/[,(12 Vo=<7’_1>N.

Similar conditions hold in the case that Vo'=0 V"0,
for which the charge distribution has a finite first-order
derivative at the origin. Extension to other cases is
obvious. The condition (ii) means that the energy
should be much larger than the potential depth. Our
result is similar to the nonrelativistic Coulomb scattering
amplitude which also, for every value of «, is given by
the first-order term times a phase factor. Finally, it
should be mentioned, that the often quoted condition
for the validity of the Born approximation, namely,
|afo® Vdr|<<1, is'sufficient but is by no means necessary
as follows from the results of the present paper.

So far, we have dealt with potentials which have at
least one nonvanishing odd derivative at the origin. For
potentials which are even at the origin the first Born
approximation for the amplitude most probably is not

24 J. Reignier, Nuclear Phys. 3, 340 (1957).

valid in the high-energy limit (except, of course, for very
small coupling constants). This follows from the calcu-
lations performed for the Gaussian charge distribution
by Lewis,® and for the Gaussian potential by Wu,?® who
showed that, in contrast to the noneven potentials, the
ratio (ReQ,)/Q1 increases exponentially with the energy,
at high energies. This seems to be an indication that the
second-order phase shift contributes more to the ampli-
tude than does the first-order phase shift. On the other
hand, calculations analogous to those of Sec. 2 show,
that also for potentials which are even at the origin the
phase shift at high energies is well approximated by the
first term of its expansion in a power series of the
coupling constant a. (The main difference between the
noneven and even potentials is that in the latter case no
¥ (lI+1)-dependent terms appear in the asymptotic ex-
pansion of the phase shifts.) Probably the answer to the
problem is that the first Born approximation amplitude
provides a much too small value to the exact amplitude.
However there are strong indications that the higher-
order phase shifts are negligible in the calculation of the
amplitude, just as in the case of noneven potentials, and
that the substitution of 6% for § is a very good ap-
proximation.

We would like to demonstrate these points by a
numerical example. Let us take the Gaussian potential:

aV (r)=— (2a/r/m)ae (27)

It will suffice to use the WKB method for the computa-
tion of the phase shifts. The first- and second-order
phase shifts are then given by

5,0 = a2, (28)
and

8.9 = — (8/m)H(a/ pyPerei,

using Egs. (8) and (11), respectively. Thus, §®/6® — 0
when p— o for every /. In the evaluation of the
amplitude the summation over / has been approximated
by an integration, which should provide a very good
approximation for small scattering angles. We have
calculated (i) the amplitude in which § is approximated
by aé®, (ii) the amplitude in which § is approximated by
(0P +a2®), as well as (iii) the first-order amplitude
and the real part of the second-order amplitude, for
comparison. This has been done for three different
values of a. The results are given in Table I. There is a
difference of less than 19, between the amplitude de-

(28')

2T, Y. Wu, Phys. Rev. 73, 934 (1948).
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rived from [exp(2:a6®)—17] and the amplitude derived
from [exp2i(ad®+a25®@)—17, thus indicating strongly
that the higher-order phase shifts are negligible in the
calculation of the amplitude, at high energies. On the
other hand, there is a marked discrepancy between the
exact amplitude and its first-order term.

Even for «=0.01 there is some discrepancy. This
might be an indication that for potentials which are
even at the origin the first Born approximation is rather
bad even for relatively weak couplings. But more work
is needed to clarify this point.

2p*(Na—N) / r’dr j2(pr) f () =V (Qu— sz)+d[
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APPENDIX A
The parameters a, b, and ¢ of Eq. (3) are given by

2a= (\1+N) V42V, (A1)
126=[ M+ 20N V6 A+ A) V-6V, (A1)
126=)\1>\2()\1+)\2) V+[O\1+)\2)2+2)\1>\2]VI
+30AHN) V2V, (A1)
V, V', V" and V' are all taken at »=0.
The last integral in Eq. (4) is given by
+dQ’2]+b[d2Q“—d2Ql2]+c[—d3Q“ daQ”], (A2)
s d\?  dN? o AN\

where Q, is the Legendre function of the second kind, and Q;=Q;(14-7#/2p%). The asymptotic expansion of Q, is

Qz(1+z)=(% ln—z-—zl 1) [I—I—Z(H-l)(Z-Hng——Z b

zZ 1n

Z 1 n

gl

+(£>2[— 142104+ 1)+(—-1)10+1) (l+2)(%+% lng—;l —:;)]—!—0(23)- (A3)

APPENDIX B

We wish to obtain the behavior of the first-order
WKB phase shift §;, for small values of p. Calling
s=(r"+p?)* and assuming that V(r) decreases faster
than 1/7 at infinity, one finds on integrating Eq. (8) by
parts twice, that

00 0 »2dy
B8 =— /- V(s)dr= [ —V'(s)
0 0o s

=30V (p) Inp

II()

! 2 | d B1
- / [rs—p? In(r+s)]—2dr.  (B1)

Additional integration by parts of the last integral gives
B8 =3p*V"(p) Inp—30*V" () Inp

III( )

+- / 34— sln(r+s))p2:| dr. (B2)

The last integral becomes, at p?=0,

1 0 0
- / V" (r)dr=— / V (r)dr.
6Jo 0

Therefore, the consistent expansion of §,%¥ up to p? is
given by

(B3)

B8,V =2p2Vy Inp+W,(p?), (B4)

where

III( )

N

W (o) =— / rt[r—s n(r+5) 1)

00

= —/; V(r)dr

1 00
+§( —1V+ / V' (r) ln2rdr>p2+' . (BS)
0

By continuing this process one finds that the next term
of W1 is of the form (as+b4 Inp)p* with by=V,""’/16, the
next term of the form (as+b¢ Inp)p®, etc. In this way one
finds the result quoted in Eq. (9). The expansions of
6@ and §® given by Eqgs. (12) and (13) are obtained by
the same method.

APPENDIX C

In order to prove Egs. (21) and (21’), we start with
the generating function of the Legendre polynomials,
P;(cosh) :

f@)=21 2P (cosf) = (14a2—2x cosf)~}, (C1)

valid for x<1. Hereafter we will always assume that
65£0. From (C1) it follows immediately that

Fo(x)=221(1+3)x'P (cosh) (C2)

is given by

£/ () +3 /(@) =

1—2a?

2(1422—2x cost)t

(C2)
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This takes care of the first equation of (21). The second
equation of (21) is

Fo(x)=2 (04514 1)x' P (cosh)

=02Fy" (x)+2xF ' (%), (C3)

which gives F5(1)=0. In a similar way it is found that
Now, in order to derive Eq. (21") use will be made of
the integral representation of ¥ (I41):

o0 di
e e R R
Therefore, ’

Go(%) =22:(43)¥ I+ 1)x'P 1 (cosh)

=1§gg[ / ———ttho(x) f Fols/ (1+1)] tJ

t(1+2)
. ~z(l—€) FD d
=_@ﬂ}d@Eu—a+/ @t} (C5)

—1
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The calculation of the integral is quite long but straight-
forward. After inserting (C2’) for Fo(¢) it becomes

1/wﬂ>a—mm
0

2 (@— A%

e(A+1—x cosé)
*———:l, (Co)
AZ

=A"2(x)—F0(x)|:2+ln

where A%(x) = 14a2— 2« cosf. Finally, the desired func-
tion Go(x) becomes

A+1—x cosh
Go(x)=F0(x)[2+ln~——:|~A—2(x), (ChH

2vA

where Iny=0.577 is “Euler’s constant.” The first equa-
tion of (21’) then follows directly : Go(1) = — [sin~2(6/2) ]/
4, because Fy(1)=0. G, and G4 are derived from G, by
the same method as Fs and F4 were derived from Fy. It
should be mentioned that the integral representation
(A4) and (A4”) in reference 1 coincide with the present
formulas for small values of § and x=1.



