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Effect of Pressure on the Energy Levels of Impurities in Semiconductors.
II1. Gold in Germanium™*{
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Gold can exist in substitutional positions in germanium in four states of ionization, with which are associ-
ated four energy levels in the forbidden energy gap. Appropriate doping and counterdoping with group V
and group III elements allow each level to ionize independently of the others in certain temperature ranges.
The separation in energy of the level from the band edges can thus be found. The pressure dependence of
these separations can also be determined from the effect of the resultant change in carrier density on the
resistivity. The measurements were carried out up to 6000 kg cm™ between 45 and 273°K. Equations
for analyzing the multi-energy level systems are developed and calculations indicating how these equations
can be used in actual situations are included in a set of appendices. Corrections for the effects of changes
in mobility and density-of-states on the resistivity are also considered. The results indicate that the pressure
coefficients of all four levels are much greater than for the hydrogenic impurities, and that the separation
from the conduction band increases much more rapidly than that from the valence band.

1. INTRODUCTION

HE first paper! of this series reported the effects
of high hydrostatic pressure on the “shallow”
energy levels due to group IIT and group V impurities
in silicon. The second? discussed a similar investigation
of the so-called ‘“‘deep-lying” levels produced by gold
in silicon. In this third, and final, article the effects of
pressure on the ‘“deep-lying” levels produced by gold
in germanium are considered.

Gold can exist in germanium in four different charge
states®* which are attainable through compensation of
the gold in the sample with other impurities which
normally produce shallow energy levels. The net charge
on the gold atom in these states is known, although the
distribution of the valence electrons among the states
in the outermost shells has not been established with
certainty.® The situation is illustrated in Fig. 1. The
difference between the energy of the lowest state in the
conduction band and the level Au(1) is that required
to ionize the gold atom to give Au~. Thus Au(l) is a
donor level, since when it is occupied by an electron,
the atom is electrically neutral. The corresponding
energy differences involving Au(2), Au(3), and Au(4)
represent the binding energies for the successive addi-
tion of one, two, and three electrons, and are additive.

* This research was supported in part by the Office of Naval
Research. The article is based on a thesis presented to Harvard
University by M. G. Holland in partial fulfillment of the require-
ments for the Ph.D. degree, May, 1958.

1 A summary of this work was presented at the Cambridge
Meeting of the American Physical Society, March, 1959.

} Present address: Research Division, Raytheon Company,
Waltham, Massachusetts.
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For ease of expression we refer to Au(2), Au(3), and
Au(4) as energy levels of the solid, which are of the
acceptor type, since they are electrically negative when
filled with an electron. However, if the samples are
suitably compensated, at low temperatures Au(1) and
Au(2) can act as “sinks” for valence band electrons
and Au(3) and Au(4) as “sources” for conduction-band
electrons. Under appropriate experimental conditions,
which will be explained, the free carrier density depends
on only one of the four ionization energies. For the two
shallower levels, Au(l) and Au(4), the temperature
must be below 50°K. For Au(2) and Au(3) the tem-
perature must be between about 100 and 170°K; the
lower limit on the temperature is required since the
occupation of one or other of the shallow levels can
vary at low temperatures. In some samples the high
resistance of the sample at very low temperatures
imposes an experimental limitation.

The change in resistivity with pressure is measured
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as in I. When pressure changes the ionization energy
of Au(3) or Au(4), the change in carrier density is so
large that the mobility corrections discussed in I are
negligible, and further, changes in the density of states
in the conduction (or valence) bands can be ignored
when compared to changes in the ionization energy.
When Au(1) or Au(2) are the controlling levels, the
corrections must be considered.

2. APPARATUS AND METHODS

The methods and equipment described in I were also
used in these experiments. Temperatures between 145
and 195°K were obtained by reducing and controlling
the vapor pressure over finely powdered CO,, which
proved to be an easy and accurate way of maintaining
constant temperatures in this range. A measurement
at 111.7°K was made using a liquid methane bath.
Stringent temperature control was not as necessary in
these experiments as in I since the changes due to
pressure were not masked by small temperature
fluctuations, but in all cases the temperature was kept
constant to £0.05°K during a measurement between
100 and 170°K and to =+0.01°K below 50°K. The
pressure was measured using a manganin wire gauge,
calibrated by assuming that mercury freezes at 7640
kg cm™2 at 0°C.!

Four contacts were soldered directly to each sample.
The sample was first etched in CP4 and carefully
washed after the metal contacts had been applied. The
etching and washing are necessary to keep the surface
conductivity low, since some of the samples have
resistivities well above 10° Q cm.

3. EQUATIONS GOVERNING MULTIPLE
ENERGY LEVELS

The expressions for carrier densities given by the
Fermi statistics for deep energy levels are similar to
those for shallow levels, when the impurity produces
only one new level in the forbidden energy gap.® When
the impurity can exist in several charge states, and
these can be described by energy levels in the forbidden
gap of increasing energy, it is no longer possible in
general to write a simple Fermi factor for a particular
level. Compensation of group V and group IIT impurities
can bring the impurity atom into any of its several
charge states. When the impurity levels in the gap are
separated by several 2T, a Fermi factor, which includes
a degeneracy factor, accurately gives the probability
of filling of the level.

Figure 1 illustrates the energy level spectrum. The
lowest donor level, Au(1), can only be active when it
is partially empty of electrons and it is acting as a sink
for electrons from the valence band. If N,>Ng4 and
(Ng—Nag)>Nay, the electrons in level Au(l) are
emptied into the group III acceptor level at 0°K. As

8 H. Brooks, in Advances in Electronics and Electron Physics,

edited by L. Marton (Academic Press Inc., New York, 1955),
Vol. 7.
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the temperature is raised, electrons are excited from the
valence band, most easily into the remaining acceptor
levels, but with increasing ease into the vacated Au(1)
levels. If Na,> (N,—Na), excitation of electrons occurs
into the (N,—Na) vacated gold levels. In either case,
the gold donor states are entirely filled by 50°K and
there remain (V,—Ng) holes in the valence band at
this temperature; the crystal is p type. If Na> N, the
gold donor level will not be active at any temperature
and there will be no holes in the valence band due to
this gold donor level.

The second gold level Au(2) is an acceptor nearer
the valence band edge than the conduction band edge.
It behaves similarly to group IIT acceptors, causing
the sample to be p type. If Nay> (Na—N,)>0, there
will be [Nay— (N4—N,)] empty states in the level at
0°K; as the temperature is increased electrons from
the valence band are excited into these states until the
states are all filled, at approximately 200°K, leaving
conducting holes in the valence band. If (¥V,—N4)>0,
the Au(1) donor is filled as described above, and an
electron will not be excited into the Au(2) level of a
particular gold atom until the Au(1) level for that atom
is filled. Thus, as the temperature is increased, first the
Au(1) level is filled with electrons from the valence
band and then the Au(2) level is filled.

The third gold level Au(3) is an acceptor level nearer
to the conduction band edge, and behaves as a source
of electrons for the conduction band. If 2N,
> (Ng—N,)> Nay, the lower acceptor level Au(2) will
be completely filled with electrons and the remaining
[(Na—N,)—Nay] electrons will be in Au(3) at 0°K.
Then, the electrons from Au(3) can be thermally
excited into the conduction band and the material is
n type.

The last of the gold levels Au(4) is an acceptor level
very near the conduction band edge which behaves
similarly to Au(3), acting as a source of electrons in
n-type material. If 3Nxy>(Na—N,)>2N 4y, the two
lower acceptor levels Au(2) and Au(3) will be filled
and the remaining [(N4—N,)—2Na.] electrons will
be in Au(4) at 0°K. These electrons are thermally
excited into the conduction band, and the level is
empty of electrons at temperatures above 50°K. At
higher temperatures Au(3) supplies electrons to the
conduction band.

If (Ng—Na)>3Nay, a situation similar to that for
the Au(1) level occurs. The [(Ng—N,)— 3N ay | residual
electrons in the group V donor states are excited to the
conduction band between 0 and 15°K; the Au(4) level
continues to supply electrons to the conduction band
up to 50°K; the Au(3) level continues to supply
electrons to the conduction band at higher
temperatures.

The situation” can be described analytically using

7Equation (2) was devised independently by Holland® and
Khartsiev.? It should ‘be pointed out that in one case (Holland)
the number of electrons in each energy level is counted, and in the
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the equations®®*®

n+No+Naofr=p+Na, ¢))
Jr=(fi= D+ fifot fifefst frfefafs, (2)
1 -1
=1+ 3
4 ( giCXp[:(EF"‘Ei)/kT:]> ®)

where Na, is the number of gold atoms, E; the ioni-
zation energy of level Au(z) and the remaining symbols
are defined in I. Na,fr is the total number of excess
clectrons on the neutral gold atoms. g; is a degeneracy
factor which describes the number of ways in which
the atom can be converted from oné charge state to
another higher charge state. The expression for fr is
not rigorously correct. For the case in question, where
any pair of the gold energy levels is separated by many
times k7" at all temperatures under consideration, it
gives an accurate formulation of the problem.

If only one level is active, the Fermi energy will be
very near that level and the f; for other levels will be
either 0 or 1. If two levels are active, the Fermi level
can be between the levels or near one or the other
levels, depending on the temperature. Using Egs. (1)
through (3) we can find the following four equations,
giving the carrier densities when the Fermi level is
close to one of the four levels:

p(p+Naw—NJ) (E,—E4)
—-—E\?_—P—zglA,, eXP[T:I=g1¢1m 4)
p(p—NJ) I:(Ev_EZ):'
A, exp| " =gy, (5
Nt Ni—p g24 5 exp T go¢2 (5)
n(n+2Naw—NJ)

(Es—E,)
=gy 14, exp Tr = g5 'P3n, (6)

Nd—=Npu—n

n(n+3Nau—NJ) 9 {(E;—EQ] on, ()

= gi A, eXp| ——— |= g4 Pun,
Ard, - Z;VA““ n kT

where N,/=N,—Ngs=—Ng, and the remaining sym-

bols are defined in I.

second (Khartsiev) the number of gold atoms in each state of
ionization is counted. Both approaches fail to take into account
the ionization of a level E; when E;_; is not completely filled. For
the case of gold in germanium this ionization is negligible but for
a case where the levels are within a few &7 of each other the above
expressions are best replaced by other more complete expressions
[C. A. Klein and P. P. Debye, Proceedings of the International
Conference on Semiconductor Physics, Prague, 1960), (Czechoslo-
vakian Academy of Sciences, Prague, 1961), p. 278; C. A.
Klein, P. P. Debye, and G. Rupprecht, Bull. Am. Phys. Soc. 5,
62 (1960); Raytheon Company Research Division Technical
Memorandum-T-213, 1960 (unpublished); H. Brooks (private
communication)], which can be obtained from the grand canonical
ensemble or simply by more careful counting of states.

8 M. G. Holland, Technical Report HP4, Gordon McKay
Laboratory, Harvard University, 1958 (unpubhshe ).

9V. E. Khartsiev, Soviet Physics—Tech. Phys. 3, 1522 (1958).
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These equations can be solved under certain con-
ditions on Nay, N/, #, and p. The solutions will be
discussed specifically for each sample.

Information on the number of carriers, and hence
on the number of impurities is found from Hall coeffi-
cient and resistivity measurements as a function of
temperature using the following relations®10:

=r/ne, 8)
o=1/neu, 9
r=pu/u, (10)

where R is the Hall coethicient, uy the Hall mobility,
p the resistivity, u the conductivity mobility, and e the
electronic charge. 7, the Hall coefficient factor, is
approximately equal to 1, but the values actually used
are indicated for each sample.

These expressions will be used for p-type material
as well as #-type material, since the value of 7 has been
experimentally determined':*? even though the mo-
bilities are complicated due to the presence of two
valence bands.

4. EXPERIMENTAL RESULTS AND
INTERPRETATION

Under certain conditions on Nay, N/, N4, and the
temperature, Eqs. (4) to (7) can be written

n=Ce EI}T (11)

where C is a constant and E the ionization energy.
Then if E= E¢+aP, the change in number of carriers
with pressure at constant temperature gives the pressure

coefficient a.
dInn/dP=—a/kT. (12)

The condition on the temperature is that it be below
some maximum value, this maximum being different
for each case. It was not always possible to do a pressure
measurement at the desired temperature due to limi-
tations of the existing equipment. At temperatures at
which the experiments are feasible the necessary cor-
rections to Eq. (11) involve terms in E;, gi, and Nay,
N, and N,'. The determination of these quantities is
quite difficult and their values uncertain so that, where
possible, we sought experimental conditions that give
the pressure coefficients of the ionization energies
without requiring precise knowledge of E; and g;.

a. Donor Level Au(1)

The Hall coefficient and Hall mobility of a sample
of p-type gold-doped germanium, counterdoped so that
the level Au(1) is only partially filled at 0°K, are shown
in Figs. 2 and 3. In Appendix A we show that at tem-

W H. Y. Fan, Solid State Physics, edited by F. Seitz and D.
Turnbull, (Academic Press Inc., New York, 1955), Vol. 1.

1L A, C. Smith, Technical Report HP2, Gordon McKay Labora-
tory, Harvard Umver51ty, 1958 (unpubhshed)

12 C. A. Klein and P. P. Debye, reference 7.
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Fi16. 2. Hall coefficient vs temperature for samples showing
energy levels Au(1) and Au(4).

peratures below 50°K, the carrier density is given by

Aral
_ _ 2
P*NA“_Na/g@lp(l Y1+Cry1?), (13)
where
Naug191p Nawt+NJ
’Y ——3 9 = .
' (]VAu - A7al)2 JVA\x

At temperatures below 40°K, v;~0, so that the energy
E,\—E, can be obtained from the slope of the Hall
coefficient curves of Fig. 2. A value of 0.0424-0.002 eV
is found. This is in good agreement with the values of
0.041 and 0.05 eV found by other workers.®1

In Appendix A we show that for temperatures near
50°K

+

dlnp d lnpp)
aP apP

m,,=;(-i1—)(E1—E,,)= kT[f1(71)<

dInd,
+—=] ay
dP
where
f1(’)'1)= (1*71+C1’)’12)/(1—2’71+3C1‘Y12).

When v; is negligible at low enough temperatures,
fi(y1)=1 and a1, is accurately determined, provided
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F16. 3. Hall mobility vs temperature for samples showing
energy levels Au(1) and Au(4).

the corrections for mobility and density-of-states
factor can be applied. In our case the lowest tempera-
ture available, through pumping on liquid nitrogen,
was about 50°K, and an estimation of fi(y1) was
necessary. This is discussed in Appendix A.

The results of the pressure measurements at 49.5°K
are shown in Fig. 4. The corrections for the second and
third terms in Eq. (14) will now be discussed. The
mobility u, is the average mobility of light and heavy
holes and is determined by lattice and impurity
scattering in an unknown combination.® We can,
however, place limits on the pressure coefiicient by
observing the pressure coefficient of the mobility due
to lattice scattering only, and to ionized impurity
scattering only. These were determined by Smith!
and Bridgman,® respectively. We can also calculate the
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Fi16. 4. Resistivity vs pressure for sample showing energy
level Au(1).

13 P. W. Bridgman, Proc. Am. Acad. Arts Sci. 79, 177 (1951).
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size of the effect from the known effect of pressure on
the effective masses, elastic constants, and dielectric
constant. The result is the estimate arrived at in
Appendix A that

dInp,/dP=—1.7X10"% kg™ cm?.

The change in 4, with pressure is due to changes in
both the light- and heavy-hole masses. Some of this
evidence comes from experimental observation of
effective-mass changes with pressure, other from
theoretical argument. From Appendix A we quote

d1nd ,/dP=3.9X10~% kg~ cm?
Figure 4 gives
d Inp/dP= (23.0-£0.7) X 10~6 kg1 cm?.
It is shown in Appendix A that fi(y1)=1.040.1 so that
a1,=(0.1140.02) X 10-¢ kg~ cm?,

where the 209, error represents the experimental error
plus the crudely estimated errors in the correction
factors to Eq. (14).

b. Acceptor Level Au(2)

Curves of the Hall coefficient and Hall mobility
versus temperature of a sample of p-type gold-doped
germanium, counterdoped so that level Au(2) is
partially filled at 0°K, are shown in Figs. 5 and 6. In
Appendix B, we show that below 200°K the carrier
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density is given by
p=L(Nau—Nd)/NdIgp2r(1+72)7,  (15)

where

72=g2¢217/1\7d/) N = _Jva,=Nd_A7a-

At temperatures below 170°K, v,~0 so that the energy
E,—E, can be obtained from the slopes of the Hall
coefficient curves of Fig. 5. Using values for the Hall
coefficient factor found for samples having a similar
number of group IIT impurities®? (i.e., having a similar
mobility in the range 100 to 200°K, a value of E,—E,
=0.14640.005 eV is derived, in good agreement with
the values of 0.15 and 0.145 eV found by other
workers.3:412

In Appendix B we show that for temperatures near
200°K

d
dP

A2p=

dInp dlny,
(Ez—Ev)=kT<(1+'yg)[—+ } -
dP dP

dInd,
). (16)
dP

When v, is negligible at low enough temperatures,
as, 1s accurately determined provided the corrections
for mobility and density-of-states factor can be applied.
In our case, a measurement was made at 170°K, where
ve is within 19, of unity. However, to check the
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F16. 7. Resistivity vs pressure for sample showing energy level
Au(2). The points with ears were taken as the pressure was
decreased.

procedure measurements were also made at 195 and
273°K. The results of these pressure measurements are
shown in Fig. 7.

To explain the 273°K data we must use an equation
which takes into account the presence of intrinsic
electrons and holes. In Appendix B, we derive

(1+’Y£z)
(1—=28n2/p%

dlnp dlng, Pr2dln(n27 dlnd,
x[ poe O ]+ } an
dP 4P p* dP P

d
a2p=—(E2—Eu) ———le
aP

where

B=tin/ttp, nE=A,A,expl—E,/kT).
There are of the order of 5X10" cm™ intrinsically
derived electrons and holes in the sample at atmospheric
pressure which contribute about 3%, to the resistivity.
The intrinsic contribution decreases rapidly as the
pressure increases since the germanium energy gap
increases at a rate of 5X107% eV kg™! cm?.1418

To explain the data quantitatively we again consider
the terms involving the mobility and density-of-states
factor. In the temperature range used, the mobility

14 W, Paul and H. Brooks, Phys. Rev. 94, 1128 (1954).
( 15 M. I. Nathan, W. Paul, and H. Brooks, Phys. Rev. 124, 391
1961).
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TaBLE 1. Pressure coefficients for the acceptor level Au(2).

T (°K) kTdInp/dP (eVkglcm?) v azp (eVkg?cm?)

273.0 0.27X10°¢, P<3000 1.12 0.61X10-¢

0.22X107%, P>3000 0.61X107¢
194.6 0.46X10-¢ 0.057 0.57X10~¢
170.0 0.47X107¢ 0.013 0.55X107¢

is determined by lattice scattering. We use the values
indicated in Appendix B.

dInd,/dP=3.9X10-% kg™t cm?,
d Ing,/dP=1.3X10-5 kg™ cm.

The parameters used in obtaining vy, are indicated in
Appendix B. In Table I we have tabulated the calcu-
lated values of as,.

For the 273°K data the value of as, for >3000 kg
cm™2 is obtained with Br2/p*=0. The agreement is
good considering the large range of temperatures and
the approximations. The value of aj, at 170°K is
probably most accurate due to the low value of the
correction for ..

a2y = (0.55_9.05700) X 106 eV kg™! cm?.

c. Acceptor Level Au(3)

Three samples of #n-type gold-doped germanium,
counterdoped so that level Au(3) was only partially
filled at 0°K, were measured at high pressure. One
sample which gave pressure results consistent with the
other two was destroyed in an explosion of the pressure
vessel before adequate data versus temperature had
been taken. Figures 5 and 6 display the Hall coefficient
and Hall mobility versus temperature dependences for
the remaining two.

In Appendix C we show that below 170°K, and
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Fi1c. 8. Resistivity vs pressure for sample showing energy level
Au(3). The points with ears were taken as the pressure was
decreased.
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possibly up to 195°K, the carrier density is given by
n={(Nd'—Nau)/(2Naa—N)} ($s:/8:) (1—73), (18)

where
Y3= NAu¢3n/[g3 (ZNAu"' ]\7d/)2:l-

At low temperatures, y3~0, and the ionization energy
E,—E; can be obtained from the slope of the Hall
coeficient curve of Fig. 5. A value of 0.1940.01 eV
is found for both samples, in good agreement with the
values of 0.20 eV found by other workers.?*

From Eq. (18), and p= (neu,), we find

1 /d Inp dlnu,
)
1—ys\ dP 4P

dnd,
+ ] (19)
P

When v; — 0, a3, can be determined quite accurately.
In Appendix C we show that the terms involving the
mobility and density-of-states factor are relatively
small for all temperatures below 200°K, and can be
neglected.

The results of the pressure measurements are shown
in Figs. 8 and 9. Figure 10 displays k7'(d Inp/dP) vs
1/T. From Eq. (19),

kT (d Inp/dP)aizn(1—73)
=a3n{1—c EXPE(E:;"‘Ec>/kT]}1

where C is a constant.

d
agn=——(E,—FE3)= le:
apP

(20)
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Fic. 9. Resistivity vs pressure for a second sample showing

energy level Au(3). The points with ears were taken as the pressure
was decreased.
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F16. 10. Variation of £7'(d Inp/dP) with temperature for samples
showing energy level Au(3).

Tigure 10 does have the form of Eq. (20). From the
low-temperature asymptote (y;— 0),

azn=(2.902£0.03) X 10~% eV kg~! cm?.

It is quite clear that it is preferable to deduce as,
in the limiting case of low temperature, since cor-
rections for £; and gy and the impurity densities are
to some extent uncertain. The curvature in the data
for 195°K is caused by a finite v; in Eq. (19). As the
pressure is raised, E.— Ej3 increases, ¢, decreases, and
v3 decreases. A pressure of 5000 kg cm™ is equivalent
to a 10°K decrease in temperature at 200°K. Thus the
smaller correction for y; at high pressures in the 195°K
data causes an increase in (d Inp/dP).

In principle, it is possible to determine the tempera-
ture dependence of E.— Ej from Fig. 10 and Eq. (20).8
In practice, we are prevented from doing so by the
inaccuracy of our estimates of impurity densities and
degeneracy factors.

d. Acceptor Level Au(4)

Two samples of n-type gold-doped germanium
counterdoped so that the Au(4) level is partially filled
at 0°K were obtained and measured. Analysis of one
of the samples gave an activation energy of about
0.025 eV and did not obey the condition 3Na,>NJ'
>2Nsy. This sample was discarded since the relation
between n and E.—E; would be complex. The Hall
coefficient and Hall mobility of the second sample are
shown in Figs. 2 and 3. In Appendix D we show that
near 50°K the carrier density is given by

Nd —2Npy ¢an
n=————- — (11— +Cxy ), (21)
3NAu—Nd/ g4

where

V4= Nauban/[ 24BN au— N )], Cs=(Na'—Naw/N au.
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TasLE II. Summary of pressure coefficients of the four energy levels due to gold in germanium.

d d d ln(E.'—Ev) d ln(Ec——E«;)
—(Ei—E,) —(E.—E;)
E;—E, E.—E; dP dP apP aP
Level Type (eV) (eV) (108 eV kg™ cm?) (1078 eV kg™t cm?) (1078 kg™ cm?) (107% kg™ cm?)

E, 0 0.75 0 5. 0 6.7
Ey donor 0.042 0.71 0.1140.02 4.9 2.6 6.9
Es acceptor 0.146 0.60 0.55_q.010-06 44 3.8 7.3
Es acceptor 0.56 0.19 2.1+0.1 2.9 3.7 15.0
Ey acceptor 0.71 0.043 2.9+40.1 2.1 4.1 49.0
E, 0.75 0 5.0 0 6.7 0

At temperatures below 40°K, v4~0 so that the energy
E,—E, can be obtained from the slopes of the Hall
coefficient curves of Fig. 2. Using a Hall coefficient
factor r=1,'% a value of 0.0434-0.002 eV is found, in
good agreement with the values of 0.040 eV found by
other workers.

In Appendix D we show that

d dlnp dlnu,
a4n:—(Er_E4):kT[f4(’y4)<~+ )
dpP dP dP

d1lnA,
+ ] (22)
dP

where

Ji(y)= 1—=vaet+Cryd)/(1—2v:+3Cey ).

At low enough temperatures, fi(v9)~1 and as, is
accurately determined. In Appendix D we show that
the terms involving the mobility and density-of-states
factor are negligible for all temperatures considered.

Even at the lowest temperature of measurement,
45°K, fi(vs) is not approximately 1 at zero pressure,
and can in fact be in error by a factor of two because of
errors in g4 alone. In order to avoid the necessity of
knowing fi(vs) exactly, we note that near 5000 kg
cm2, at 45°K, the decrease in 74, due to the increase
with pressure of E.—FE, forces fi(ys) to become
approximately unity.

In Appendix D we calculate that at 45°K and 5000
kg cm™2 f4(‘74)= 1.01+0.01.

28— T — T T T T |

24
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18 . J. Morin, Phys. Rev. 93, 62 (1954).

Since, from Fig. 11,
kTd Inp/dP= (2.140.1) X107% eV kg~ cm?
at this temperature and pressure,
a1n=(2.1£0.1) X106 ¢V kg~ cm?,

where the error represents the experimental error.

DISCUSSION AND CONCLUSIONS

The pressure coefficients for the four gold levels are
collected together in Table II. Since the energy gap in
germanium increases with pressure in the pressure range
studied, all the levels are found to move away from
both the valence and conduction band edges with
increasing  pressure. The percentage change,
dIn(E;—E,)/dP, with respect to the valence band
edge is the same within 109, for the three acceptor
levels. The fractional changes in the separations of the
four levels from the conduction band edge are con-
siderably greater than the changes in the separations
from the valence band. We can give no theoretical
explanation for this.

It may also be noted that the pressure coefficients
of the ionization energies of the gold impurities are
much larger than those for the three “hydrogenic”
impurities in silicon,'! and also for the donor state
produced by gold in silicon.? Gold also produces an
acceptor level in silicon about midway in the energy
gap. The separation between this level and the two
band edges decreases with pressure, but again the
absolute magnitude of the coefficient with respect to
the conduction band is much the greater.?
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APPENDICES

In these Appendices we consider a miscellany of data
and quantitative corrections necessary in deducing the
pressure coefficients «;, and a;, from the experimental
determinations of Inp as a function of pressure.

APPENDIX A. DONOR LEVEL Au(1)

(1) From the discussion in Sec. 3 and from Eqs. (4),
(5), and (8) we see that the Hall coefficient near 100°K
gives N,/. From Fig. 2, the Hall coefficient is approxi-
mately constant between 80° and 150°K, so that, in
the absence of a large temperature dependence of the
Hall coefficient factor r, N,/ is accurately determined.
That is, the Au(1) level is completely filled with
electrons and the Au(2) level has not yet started to
fill, so that there are N, holes (the 0°K population of
Au(1)), in the valence band at these temperatures.
Using r=1.1 at 100°K*? we find N.'=2.6X10" cm™
independent of any assumptions on the g’s.

We also require Na,. Near room temperature the
hole density p is given by Eq. (5). Solving this equation
for N a4, we find

A'vAu'_— (?_]Val) (1+ (P/g2¢2p)]

Using r=1.8 at 294°K and ¢,, determined with
(E;—E,)=0.146 €V as found in Sec. 4b, we obtain

(A1)

Naw=35.9X10%(14-5.4X102g;™) cm™.

The values of g5 found in the literature vary from 2 ¢
to 8.5.217 For 2=g,'<10, we find 6.5X10“=< Ny,
<9.1X10% If we now solve Eq. (4) for p at 50°K we
must keep all terms second order in gip1,/N, and
2161,/ N au since gy is greater than 12 and ¢,~2X10%
at 49.5°K. In this way we find

2? = (A’Au - ]\Tal +g1¢1p)
4g1¢1,NV o

\ 1/2
x[(1+ ) - 1}
(ZVAu— Zva/ +gl¢lp)2

g1¢1pNal / ATAuglqslp
p= 1-
Naum N\ (Nau— N2

(A2)

N (A"Tf\ugld)lp)2 ATAu+AWTa/)
‘ (J?VAU—A‘.(LI>4 ’

~/\7A u

2191 Na’
=*—'~p—‘*‘/(1“71+cl’)’12),

ATAu —iNg

which is Eq. (13).
From
. = (?eﬂp)~1)
17C. A. Klein, P. P. Debye, and G. Rupprecht, reference 7.
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we have
dInp dlnp, dlnp
P dP 4P
d Inu, 1 dind, 1 d

- - ~-‘(E!)_'El)?
ar fl(’h) apr kal('Yl) ap

where

fl('Yl)= (1_"/1+C1’Yl2)/(1_2’Yl+3C1"/12) (A3>
from a straightforward differentiation of Eq. (A2).
This leads directly to Eq. (14).

We are left with the problem of setting limits on the
function fi(y1). The experimental error on E;—E, is
enough to give wide variation in the calculation of g;
and thus give large errors in ;. If r=1.14109, at
49.5°K, we find p=4.7X10%4109, from the Hall
coefficient (Fig. 2). Then, using Eq. (4) directly we
can solve for g; using the two limiting values of Na,
found above. With this procedure we find for Nx,=6.5
X104 cm=3, g;=5.1, fi(y1)=1.07 and for Nx,=9.1
X10% cm™3, g1=8.1, fi(y1)=1.09. The value of g
quoted in the literature is approximately 2. If we use
2:=2 we find fi(y1) can be only as low as 0.90. Thus
independent of g; and g» (since N4, depends on gs) we
find fi(y1)=1.040.1.

(2) The value of d1nd,/dP is found from Smith’s"
estimated changes in the effective masses with pressure.
These were obtained from the pressure dependence of
the lattice scattering mobility and the elastic constants,
and some approximations regarding the motion of the
energy bands which interact with the valence bands
being considered.

dInd, 3dlnmg
P 2 dP

, (ma)¥2=mPl4-mP,

(A4)

where m, is the heavy-hole mass and m, the light-hole
mass.

d d
= In (mg32) =E{% Inmy+In[ 1+ (ms/m1)32]},

dlnd, 3dlnm,
T2 4p

dP
1 d(ms/m1)32  (AS)
+ ,
1+(m‘3/11¢1)3/2 dP
dlnd, 3[d Inm,
ap oL ap

1 /d Inms d lnm1>]

+
UF (my/mo)2\ AP aP
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Smith estimates
dlomy/dP=12X10"% kg™ cm?,
dnm,/dP=2.2X10"% kg~! cm2.
mi/me=8.4 for germanium so that
dInd,/dP=3.9X10-% kg cm2,

This value is due mostly to the change in heavy-hole
mass.

We must assume that the change in effective mass
with pressure is temperature independent so that these
values found from room temperature data will apply
between 49.5 and 300°K. Smith has shown that the
effect of pressure on lattice scattering is temperature
independent from 200 to 300°K, the region over which
he made his measurements.

(3) To avoid the difficulties in estimating the cor-
rection due to the mobility in p-type material, found in
paper I of the series, we shall neglect the change in
mass of the light holes with pressure. Smith has shown
that the change in lattice scattering mobility is due for
the most part to the change in heavy-hole mass.
Similarly, the heavy holes contribute most of the
conduction when impurity scattering dominates. We
assume

pl=pr M ur
so that

dlnpg u dlnur w dlopr
€

(A6)

dP p, dP  u dP

wr is calculated from a formula of Morin and Maita,!6:18
 is taken to be the measured Hall mobility at 49.5°K,
and p7 is calculated from the reciprocal relation between
mobilities. From Smith!! we have

dInp/dP=1.3X10"% kg~! cm?

From the Brooks-Herring formula® for ionized impurity
scattering we have approximately

dlnur 2dan 1d1nm,

) (A7)
aP P 2 dP

where K is the dielectric constant. Using the value of
d1nK/dP from Cardona, Paul, and Brooks® and the
change in m, estimated by Smith, we obtain d Inuz/dP,
and finally

dInu/dP=—1.7X10"% kg~ cm2.

APPENDIX B. ACCEPTOR LEVEL Au(2)

(1) The Hall coefficient of the sample used to study
Au(2) (Fig. 5) continues to increase for temperatures
less than 125°K, indicating that a deep level is de-
ionizing as the temperature is lowered in this range.

18 F., J. Morin and J. P. Maita, Phys. Rev. 96, 28 (1954).
_ 19 M. Cardona, W. Paul, and H. Brooks, J. Phys. Chem. Solids
8, 204 (1959).
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From the discussion in Sec. 3,
Ni=—=NJ/=N4s—N,>0.

The number of current carriers and the number of
impurities can be obtained by solving Eq. (5) using
—NJ=+N,'. Without approximation, Eq. (5) gives

P‘HV./)
82920 .

At high temperatures, from Eq. (B1) it would appear
that p tends to the value Nxy—N4/, corresponding to
filling of the Au(2) level from the valence band. In our
samples, there is an appreciable density of intrinsic
carriers at room temperature. Where possible the data
are analyzed at low temperatures to avoid considering
these.

The value of g» is not well established so that Eq.
(B1) cannot be solved exactly. However, if we assume
PN, a condition which will be fulfilled for the data
analyzed, then

Naw—Nd'=p(1+Nd'/gupop). (B2)

The density p, at several temperatures, is found from
the Hall coefficient data, using appropriate values of
the Hall coefficient factor 7. The quantity ¢, can be
calculated at these temperatures. Equation (B2) can
thus be solved for Nxu—N4', and Ng'/gs. In this way
we obtain

/VAu~Nd’=p(1+ (B1)

Niw—Nd'=1.3X10% cm3,
Nd'/ga=8.4X10% cm3,

Thus, even if g5 is as high as 10, N4'~10% cm= and
# is at most 0.1XN, at 273°K and p<N, for
T <250°K. The impurity densities are therefore known
in Eq. (B2) which we rewrite as

Naw—NJ
ngmp(l‘l‘w)“l,

d

p= (B3)

where
72=g2¢2p/Nd/-

The resistivity is given by

o= (peu,),

so that

dInp/dP=—d Ing,/dP—d Inp/dP, (B4
where

dlnp 1 [dlnd, d(E,~Fy)

- [T ] (B5)

AP 14yl ap ETdP
Thus,
dInp d Inp, ( 1
dP 4P 1+w)

dlnd, 1 d
|l

t— —(E,—E B6
ir arapt 2)] (BS)
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and

d dlnp dlnp,
azp—_——(Ez'“'Ev):kT{ (1+72)[ + ]
dP dP dP

P

d1nd
+ } (16)
apP
The values of 2 can be calculated without knowing
g2 directly since we need only N4'/g: and ¢s,. They are
listed in Table I.

To explain the 273°K data we must include intrinsic
carriers. The resistivity equation becomes

p= (peu,)*(1+8n2/p9)7, (B7)

where

g= I-Ln/ﬂp
and

ni=np=A,4,exp(—E,/kT)
=square of the number of intrinsic carriers.
In this case

dlnp dlnu, dlnp d
——=+ +——F+—In(1+Bns/p?).
dP aP dP 4P

(B8)

The term involving the intrinsic carriers is small at
273°K:

Bni/p?=0.01.
Thus

dIng dIn(nd)
dP apP

d
£ s/ zﬁnmﬂ[
dP

d Inp?
it ] (B9)
P

where

dlnB dlnu, dlnu,
dP 4P  dP

~—5X10"8kg™ cm?

from the data of Smith!! and Nathan, Paul, and
Brooks.!® Also

—1dE,

kT dP

d In(n?) dln(AnAp)_Ld/ Eg)
dP 4P dP\ T

=2.1X10~*kg cm?, (B10)

from the data of Paul and Brooks.* Thus we can neglect
the 8 term in Eq. (B9). From Egs. (B8) and (B9),

2ﬂni2\d ln;bL,(S'm2 d In(n?)
2 Jap  p  ap

dlnp dlnu
p_dlmus (1 (B11)

dP aP
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or

d(Ez—E,,)/szaz,,:kTI:d Ind ,/dP

(1472) /d Inp dlnu, Bnddln(n?)
f + + >] ()
1—2812/p\ 4P dP = p* dP

(2) The correction for the density-of-states factor
is the same as found in Appendix A.

(3) At the temperatures of these measurements the
carriers are scattered predominantly by the lattice
vibrations, so that we can use Smith’s value for the
pressure coefficient of the lattice-scattering mobility,
viz.,

dInur/dP=1.3X10"% kg~ cm?

APPENDIX C. ACCEPTOR LEVEL Au(3)

(1) The sign of the Hall coefficient, and its con-
tinuous increase as the temperature is lowered, show
that for certain samples the condition 2Ny > N4 > Nau
is satisfied, so that level Au(3) is de-ionizing. Equation
(6) gives

Nd,"—NAu=”[1+ (n+21VAu_Ndl)g3/¢3n]' (Cl)

When ¢3,/g:(2Naw—N4') <1, this expression can be
approximated by

Nd—Nau d3a
n=———e —(1—13), (18)
2Nau—NJd g5
with

'YS=NAu¢3n/g3(21VAu_'Nd,)2~

In order to show that this approximation is justified,
at least below 170°K, we note the following:

¢3, 1s calculable at any temperature since A4, is
known from effective mass data, and E.—E; can be
found from the slope of the Hall coefficient curve at
low temperatures to be 0.19-£0.01 V. g; is taken to be
3.5 Thus, at 294°K,

g3/ b3n=1/(2X5.6X10%),
and we can show self-consistently that
n=Ng'—Nr=~5X10" cm~

for both samples measured. The value of % is obtained
from the asymptote of the Hall curve near room
temperature in Fig. 5 with the assumption that r=1.
Since 2N ay> N4 > N ay, this implies that

N&=1X10% cm™3,
and
Nay=5X10% cm™—3.

Then, unless 2N, and N4’ nearly balance, that is,
if 2Nay—N4' is of the order of 10 cm™ we can take
¢31/83(2Nau—N4") <1 below 170°K and probably at
even higher temperature. For example, at 170°K
¢3, <1X10%, and the approximation is correct.
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The experimental error of 0.01 eV on the value of
E;—E, is sufficient to prevent accurate determination
of N4, Ny, and g; from the Hall data. Our discussion
is aimed at establishing the range of temperature where
Eq. (18) will be a good approximation, even allowing
for uncertainties in Na, and N,'. Using Eq. (18), we
obtain Eq. (19) for the pressure coefficient by a straight-
forward differentiation.

d 1 dnp dlnu,
a‘SrL:’_(Ec_E3)= kT[( )('—_"'i" >
daP 1—v3/\ dP aP
dInd,
+ ] (19)
dP

(2) Paul and Brooks,”® and Nathan, Paul, and
Brooks?® have determined the pressure coefficient at
195 and 77°K of the electron mobility due to lattice
scattering.

(d/dP) Inur,=—4X10"6 kg! cm2,

Since at all the temperatures considered the gold-doped
samples have predominantly lattice scattering mobility
this value can be used. Nathan, Paul and Brooks'
have also deduced the pressure change in the density-
of-states effective mass

d Inmg/dP~4X 1078 kg™ cm?.
Thus,
dInd,/dP~6X10% kg~! cm?.

However, at 200°K we find
d1np/dP=1X10"*kg?! cm?

and this value increases as the temperature decreases.
By 170°K the terms in 4, and u, will contribute less
than 0.5% to @, and thus they have been neglected.

APPENDIX D. ACCEPTOR LEVEL Au(4)

(1) From the discussion in Sec. 3 and from Egs. (6),
(7), and (8) we see that the Hall coefficient near 100°K
gives N4 —2Nay. Figure 2 shows that the Hall coeffi-
cient is almost constant between 110 and 140°K. If
we ignore any (probably small) temperature dependence
of the Hall coefficient factor 7, No'— 2N 4, is accurately
determined. Setting r=1 at 125°K we find Ny —2Na,
=2.2X10" cm3; this is independent of any assumption
about the g/s.

At higher temperatures Au(3) starts to ionize and
Eq. (6) is appropriate. We rewrite it as

No'—Ngu=n[14+ (2Naw—Nd'+n)/gi ¢s.] (C1)

and evaluate N4 —Na,, taking r=1 at 294°K, and
determining ¢, with E.—E;=0.19 eV. We get

N4 —Naw=8.5X10%(1+0.009g;) cm™3,
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Unless £3>10, Ng—Nay=85X10" cm=3 within
109%,. Hence,

Nae=63X10%cm=3 and Ng=1.5X10"% cm3,

We can calculate g4 from the Hall data below 40°K
using these values of Na, and N4/, r=1, and E,—E,
=0.043 eV. From the data at 33.3°K we find g,=0.22.
There is a factor of 2 error in g4 due to the 59 error in
E.,—E4 alone.

If we now solve Eq. (7) for # near 45°K we note that
¢4,~1X108 so that we must keep terms second order

N ¢4n/gs(3Nay—N4'). In this way we find

(34\74\“— Nd +¢4ng4_l)
n=
2

4(Nd —2N pu)pangs™ \?
x[<1+ )—1 , (D1
BN =N +ang™)?

(1 d _2NAU)¢4TL[1 I\’rAud)‘in

= —-—-r}f——|1-———

3Nau— N4/ g4 21BN au— N )2
A'7A\12¢4n2

n /Nd’—NAuﬂ
22BN a— N\ Naw /L

which is Eq. (21).
From

p= (new,)™,
we have

dlnp dlnu, d lnn
-+ =

1 - ’ (DZ)
apP apP apP

d lnn_ (1—274+3C4742\d Ing 4,
iP \ 1—ys+Coy2 / dP
1 opdind, 1 d(B—E)
Chwl @ TRr ap

These lead directly to Eq. (22).

We are left with the problem of setting limits on the
function fi(v4). Using the value of g4 calculated above
we find fia(v4)=1.13 but this can be in error by over
109, due to errors in g4 and E,— E,.

To eliminate the need for an accurate value of f4(v4)
we consider the expression for f4(y4) at 5000 kg cm—2.

| @9

]\7Au¢4n
R )
g4 (3ZVA‘1— ]\7(1’)2
¢4n= A n EXp (E4'— Ec)/kT

If we write

EC—E4= (EE~E4)0+OZ47LP, (D4)

where the subscript O refers to atmospheric pressure,
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we find
(DS)

V4= Yaoe~ M PIET,

A value of v4=0.16 is calculated, again in error by a
factor of 2 due to errors in g4 and (E.—Ey).

Now, if we assume fi(ys)=1 at 45°K and 5000 kg
cm™2, we can find a first approximation for a4, using
Eq. (22), neglecting terms in u, and A4,. In this way
a4, =2.1X107% eV kg™! cm? Substituting this in Eq.
(D5) at P=5000 kg cm™2 we find y4="40X0.08~0.013.

Hence, at this pressure and temperature, fi(ys)=1.01
+0.01 where the 0.01 error represents an error of a
factor of 2 in vyy4.

At 45°K and atmospheric pressure, we find that

kTd Inp/dP=1.6X10-5 ¢V kg~ cm?,

and using
fa(vy)=1.13+£109,

a4, =1.8X10764:109, eV kg™ cm?,

we get

which is in agreement with the value found near 5000
kg cm™2. Thus this approach is reasonable.
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(2) At 45°K we find
dInp/dP~10-3 kg~ cm?.
We have seen in Appendix C that
d1nd,/dP~6X107% kg™ cm?.

Thus, the density-of-states factor represents a negligible
correction in Eq. (22).

(3) At 45°K the carriers are scattered both by lattice
vibrations and ionized impurities. In Appendix C we
have seen that the change in lattice scattering mobility
with pressure is of the same magnitude as the change
in the density-of-states factor and is therefore negligible.

The pressure coefficient of the ionized impurity
scattering mobility can be expressed as

dlnur 2d InK dln( mg)

aP aP dP \my'?

However, since the changes in K and in the masses
are also of the order of 10—¢ kg™ cm?, the pressure
coefficient of this scattering mechanism can also be
neglected.
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A Lagrangian formulation is used to discuss the nature of the force on a moving dislocation. Whether or
not a Lorentz force appears depends on the definition of force adopted, but it is shown that this force can
give rise to no physical effects; a definition which does not introduce it is therefore recommended. The force
is given by the usual static expression (F=0b) and is independent of the motion of the dislocation.

1. INTRODUCTION

HE nature of the force on a moving dislocation,
and especially the existence of the so-called
Lorentz force, is still a matter of discussion.! We shall
argue here that the difficulties associated with the force
concept arise because no clear definition of force appli-
cable to a moving dislocation has been given. A defini-
tion will be proposed which leads to an unambiguous
expression for the force and is consistent with its use in
other fields. Before starting on the constructive part of
this program, however, we must consider some of the
complications which arise when this point is neglected.
The nature of the force on a dislocation at rest has
been fully discussed by Eshelby,? who has particularly
* Sponsored by the U. S. Office of Naval Research, the Army
Signal Corps, and the Air Force.
T Deceased.
1F. R. N. Nabarro, Phil. Mag. 6, 1261 (1961).
2 J. D. Eshelby, Phil. Trans. Roy. Soc. London A244, 87 (1951);

Solid State Physics, edited by F. Seitz and D. Turnbull (Academic
Press Inc., New York, 1956), Vol. 3, p. 79.

emphasized the need for thorough treatment. His con-
clusions are that (a) the force should be defined as the
derivative of the energy with respect to dislocation dis-
placement ; from this it follows that (b) the force in the
slip plane is just b per unit length of the dislocation,
where ¢ is the resolved shear stress. It seems to have
been accepted quite uncritically that both statements
(a) and (b) apply also in the dynamical case, without
realizing that here they are in fact inconsistent. (The
question of a Lorentz force does not arise here as it acts
normally to the slip plane if it is present at all.) To
illustrate this, consider two parallel screw dislocations
P and Q in an isotropic medium, P at rest and Q moving
with a uniform velocity v in the direction PQ. At any
instant the interaction energy of P and Q can depend
only on their distance apart and not on their absolute
positions; hence, if statement (a) is adopted, the forces
each dislocation exerts on the other are equal and op-
posite. On the other hand, the stress produced by the



