
P H YS I C AL REV I EW VOLU M E 128 NUUMBER 1 OCTOBER 1, 1962

Unitarit
'

y and High-Energy In 1e as c Scattering~

Department of Physics and I
M. BAKER

ysics an Institute of Theoretica/ Physicstysscs, Stanford University St d, Can or, California

AN

Palmer Ph l
R. BLLANKENBECLER

yszca Laboratory, Princeton Ue on University, Princeton, Eem averse

(Received May 7, 1962)

pproximately enforcinThe eBect of a
tions is discusse"

'y q ir ento p riping the unitarit re u'

t'1'"d h"h '"t' 't' l

ra colhsion-type approxima-

ni arit at hi h e er ie 0

deto it t tk th

'
ate that quantitative

e the ph
er w ic are intr

meno ogical form f

eris ics of a Re e trajectory.

(1.4)

FIG. 1. A production
process.

)&p;(s; v;)H;„(s—ie,b; v;„), (1.5)
P P~

Supported in part by the U. S. Ai
Force Once of Scientific Research

ys. Rev. Letters 5, 377 (1960);I.Drem~en a . ii,
J. E ti. Th o t. Ph . (U.S.S.R.) 38 22
Fubini and A Stanghellini CERN re

(1961) S C F""t"h' M 6
Ph . R . 126, 2204 (1962).

FIG. 2. A multiparticle
process.

4
n 'R.. Blankenbecler and M. Goldber

(1962) The multichannel probl1 . '
ne pro em is brieQy discussed here.

RAL THEORYI. INTRODUCTION AND GENERA

high-ener

~ n as depicted in F.domin. ..d hy „h. eiement ~„„(st'
e exc ange contributions for l

mn S7 j &mn p
where &mn ale th

transfers. This t' '
variables necessar t 'f

particle may be of

ry o specify this multi
We now assume th h

a y be of the "Reggepar ic e type' or ma

~ e at t e matrix clem

ur o ~ective here i

r- esse representation'
ents of interest

e is to estimate the

ion with respect to

s o suc approximations due t ~ ~ 00

n. 'g -energy rangen t at in the hi h-e M

i y re uces the in
0

0 +mn S~'&-). (11)

w ic is rather insensitive to the details ofe rp"' p

p otons of momentaproce ure. Let two r
2ih

2 sca ter into two well-de6ned

mn &7 j &mn

particles of momenta pi' and

—H „s—ieb

nd p', respe t ey, w ch

„(s—ie,b; v „), (1.2)

epicted in Fig. 1.
=—(p, '+p ')'asthes ua

f d =- — -'"'-"'"' "" '
g e Fourier-Bessel transform

as the mom
has been pointed out in refer

d in the that th
ca

o
a an hence ~g~ore the effect imit of large s takes on thee simp e form

s necessary to specify the
f th m d i t d

' F'

p gl„t,d t ()= /p '

we are also fore d to ce o consider the matrix element

P
p'= (s—4nt')/4

iza ion convention toto be given later, and

p g o

y using analo ous ar u

h s . — -s b.
guments one can sho thw at i

„(sbv„„)= & . s
'

b;„; s teb;v, )
7c 2» ) ~ ~ ~



M. BAKER AND R. BLANKEiXBECLER

I(s)= (ds'/v )ps (s') (s' —s)-', (1.9)

andm, Ã

That the functions B 2, II2„, and H of the Eqs.
(1.6), (1.7), and (1.8) have absorptive parts given by
(1.5) is immediately verified by direct substitution. The
essence of our approximation is that the multiparticle
matrix element, (1.8), is produced only through
transitions to a fully interacting two-particle state.
Nowhere in Eqs. (1.6), (1.7), and (1.8) does the multi-
particle density of states explicitly appear, and it is
this fact which allows us to calculate conveniently the
corrections due to unitarity. All these complications
are contained implicitly in Hss(s, b). The second part of
the problem is then to construct H»(s, b) from a given
approximation 8»(s,b) which has none of the physical
rescattering singularities due to unitarity. This is most
easily accomplished by noting that H»(s, b) is a solution
of the following equations'.

H»D»+ Q HsnDn2=8»(SP)q
np'-2

(1.10)

4 Similar unitarity correction formulas have been derived in a
completely difierent manner by R. D. Amado (to be published).

where p;(s,v;) is an appropriate density of states factor
for a jparticle state, and where the summation goes over
all numbers of particles and for each j over all the
variables e; necessary to define the intermediate state,
then the set of matrix elements M „of (1.1) approxi-
mately satis6es the unitarity equation including all
intermediate states for $))pt's or ps's. In deriving (1.5)
it was necessary to assume that H; depends only on v;
and v rather than upon the totality of variable v; .
This is not an essential restriction upon the generality
of the Eqs. (1.5), as we now show that the solutions of
(1.5) are automatically of that form in our approxi-
mation.

The Eqs. (1.5) are solved in two stages. Before giving
the complete solution we assume that Hss(s, b) is known
and then proceed to construct H2„, H 2, and H „m,
e42 which satisfy (1.5) in terms of the given. Hss. We
then give explicit expression for 822 and the solution
of (1.5) is complete.

I et Bs„(s,b; v„) be the Fourier-Bessel transform of
the production matrix element in an approximation
which neglects initial and 6nal state interactions. The
peripheral collision model is a suitable example.
Bs„(s,b; v„) is assumed to be given and the object of
this work is to show how to correct Bs„(s,b; v„) in order
to account for unitarity. In terms of the H», the solu-
tions are expressible as'

H~s(s, b; v~) =B~s(s,b; v~) t 1+I(s)Hss(s, b)1, (1.6)

Hss(s, b; v„)= P1+Hss(s, b)I(s) jBs„(s,b; v„), (1.7)

H „(s,b; v„„)=8 s(s,b; v )I(s)L1+Hss(s, b)I(s) $
XBs (s,b; v„), (1.8)

where

with

and

Des(SP l Vs)

Des= 1—I(s)8» (s,b)

" ds' p„(s',v„)
B„s(s',b; v„), (1.12)

g„7l' S S

One can now verify directly that the absorptive part
of (1.13) satisfies (1.5). Equation (1.13) shows how a
strong inelastic force Bs acts twice (or any even
number of times) through unitarity with the system
ending up in the elastic channel. The in.elastic processes
are in this way self-damping; in general, the larger
the inelastic force 82„, the larger the feedback to the
elastic channel. The large elastic scattering which is
built up in this manner then acts through unitarity
according to (1.7) to damp the inelastic channels at
large energies. We estimate the magnitude of this effect
when we consider detailed models in Sec. II.

I et us now summarize our formal results. Given any
approximations 8»(s,b) and Bs„(s,b; v„) to the scatter-
ing and production matrix elements which do not have
physical singularities in s, we can construct a set of
amplitudes from Eqs. (1.7), (1.8), (1.9), and (1.13)
which satisfy the approximate unitarity Eqs. (1.5)
independent of the specific form of 822 and 82„.Because
of the complicated form of the solution (1.13) for
H»(s, b), we do not apply this complete solution to the
particular example considered in this paper. Instead
we choose Hss(s, b) semiphenomenologically in three
different models, and then use our results to give us an
estimate of the corrections to inelastic processes due
to unitarity.

IL SPECIFIC MODELS

Model A

As a preliminary remark we note that in order that
the unitarity equation take the form (1.3), it is necessary
that M22 be normalized so that'

dQ
21LM»($+ze) Mss($ ze)j= 2p —Mss'psMs2. (2.1)

4n-

%22 is then related to the differential cross section for
the scattering of. identical particles by the relation

do/dQ= (16m'/s)
~
Mss

~

'. (2.2)

As the first model for B22, we choose the empirical fit

where S„is the threshold of the e-particle state under
discussion. Using Eq. (1.8) for Hs„we can solve (1.10)
for H22 with the result

LB22(SP)+ Q 82m(SP j Vn)Dss(SP ) Vs)j
n/2

H22=
1—I(s)LBss(s,b)+ g Bs (s,b; v.)D s(s,b; v„)j

%+2

(1.13)
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(do/dQ)1= (r'p/2) e'"»' (2.3)
Ms„(s,t; s )=

CO ' iI
bdb Js(b(—t)&) 1+ e "'"'

0 2p2where r~10 "cm. The recent data obtained at CERN'
fall considerably below the curve (2.3) for (—t) 25+'.
This could be accounted for by allowing r to depend If we define
upon energy, and we return to this point later. It
turns out that we are primarily interested only in the
region t(25'' and (2.3) is an adequate representation
of the data in this range. If we assume that &2~ is

purely imaginary, then the choice

&(fs„(u„)e "s""'. (2.8)

(2.9)

where 352 ' is the uncorrected production amplitude,
then the remaining factor in Eq. (2.8) is the correction
factor, K(s,t), due to rescattering:z

Hss (s,b) = exp (—2b'/r')
2p2

(2.4)
(2.10)Mss(S, il us) =Msn (Sqi ) vs)K(Spi)p

yield sv where

of p-p scattering given by Cork, Wenzel, and. Causey'. straightforward:

Mes —— bdb Jp(b( —1)&)Hss(s, b)

ir2
s'~'p exp(tr'/8). (2.5)

Sm

Equations (2.5) and (2.2) then give us the desired
expression for the differential cross sections.

Then we insert (2.4) into (1.7) to obtain a corrected
production amplitude Hs„(s,b, tt„) from any given
approximation Bs„(s,b; u„):

Hss(&Pi&n)

iI(s) ( x'
K(s,t) =1+

~ ~
expL —tr'/2x'(2+x') j. (2.11)

2p, (s) (2+x')

The deviation of K(s,t) from unity is then a measure
of the effect of rescattering on the first approximation
Ms„'(s,t;s„). We might consider Ms„s(s,t; v„) to be a
representation of the peripheral collision approximation.
The fact that (2.9) has an exponential dependence on t,
while an inverse power dependence is characteristic of
the peripheral approximation is not important, since
we could not distinguish between these two analytical
forms in the range of t of interest.

Now for s&)4m',

iI(s)
1+ exp( —2b'/r') Bs„(s,b; u ). (2.6)

2ps(s)

2551
I(s) —in(s/4')+i . (2.12)

Bs„(s,b; s„)= f2~(v ) exp( —x'b'/r'), (2.7)

where r/x is a measure of the range of the fundamental
inelastic scattering. We expect x to be of the order of
unity since at high energies the elastic amplitude is
driven primarily by the inelastic force acting twice
(or any even number of times) as seen explicitly from
Eq. (1.13). If the particular state e is the primary
driving mechanism for the elastic process, then x must
be of order one.

The evaluation of the resulting production matrix
element Ms„(s,t; u„) from the formula (1.1) is

' B. Cork, W. A. Wenzel, and C. W. Causey, Phys. Rev. 107,
859 (1957).

'G. Cocconi, Reports of CERN Conference on Theoretical
Aspects of Very High-Energy Phenomena, June 1961 (un-
published).

~Bateman Manuscript Project, California Institute of Tech-
nology. Tables of Integral Transforms (McGraw-Hill Book
Company, Inc. , New York, 1954), Vol. 2.

The effect of this correction upon the resulting
Ms~(s, t; u ) depends upon the particular form of B,„
under consideration. We can make a qualitative
estimate of the magnitude of the rescattering effect by
assuming Bs„(s,b; s„) to be of the form

As long as s (100m', the imaginary part of I(s) gives
the dominant contribution in K(s,t). Thus if we set

I(s) =ips(s) (2.13)

and take x= 1, our correction factor becomes

K(s, t) = 1—srexP( —tr'/6). (2.14)

We might note several interesting features of this result:

(a) The correction is independent of s in its range of
validity 4m'«s(100m'. At higher energies the factor
would develop a logarithmic dependence upon s, but
this should not be taken seriously.

(b) In the forward direction (t=0), K(s,0)=5/6.
Thus we have a 30%%uo reduction in the forward cross
section. The mechanism for this decrease was discussed
in Sec. I. Of course, instead of considering the H22 given
by Eq. (1.13), which is guaranteed to provide the proper
feedback of the inelastic channel upon the elastic, we
have taken the elastic scattering Hss(s, b) from experi-
ment according to Eq. (2.4), assuming that it is purely
absorptive. The resulting damping of our given inelastic

In this connection, see the recent work of S. D. Drell and K.
Hiida, Phys. Rev. Letters 7, 199 (1961);and K. Hiida, Phys. Rev.
Letters 8; 149 (1962).
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channel a,ccording to (1.7) then amounts to about 30%%u&.

We try to guess a more realistic form for H22(b, s) and
we see that none of the numerical conclusions of this
section are affected.

(c) If we look at nonforward directions we find that
K(t) decreases from 5/6 at t=0 to 1/2 at (—t) =6/r'
=12p2 to zero at (—t) 22p2. As 3 becomes even larger
K becomes large and negative since the exponential term
dominates in this region. This happens because the
range of the correction term is smaller than the range of
the original (peripheral) approximation. However, since
our original approximation neglects other short-range
corrections, it is clear that our result can only be valid
for momentum transfer (—3) not much larger than
1/r'. Thus the reduction in the cross section increases
from 30% in the forward direction to about 75% at
(—t) =12p,', and for momentum transfers larger than
this we cannot make any reliable statements.

(d) In the peripheral approximation, form factors are
introduced in order to obtain quantitative agreement
with experiment. The inclusion of the unitarity correc-
tion factor E(t,s) allows a fit to experiment with form
factors having a weaker momentum transfer depend-
ence. The magnitude of this effect depends strongly
upon the details of the experiment.

(e) A further point concerns the test of the peripheral
collision approximation suggested by Treiman and
Yang. ' They point out that by studying experimentally
the dependence of the matrix element upon all its
variables, one should be able to show that it depends
only upon v„and 3 as demanded by Eq. (2.9). However,
the type of unitarity corrections considered here do not
change this functional dependence in the range of s
under consideration. Thus their type of test would not
demonstrate the absence of these corrections to the
peripheral collision approximation in this energy range.
However, their test is important in examining the
dependence on the other subsidiary variables.

(f) If we went to ultrahigh energies, say Bi=10"
BeV, the logarithm term would become the dominant
part of I(s) according to Eq. (2.12). At such energies
our correction factor would become an enhancement
rather than a reduction. We know that this is absurd.
The difhculty is that we have not chosen an II22 which
is unitary, and so we now turn to a second model where
H» is chosen to approximately satisfy unitarity. With
this choice we see that the observations (a)—(e) remain
essentially unaltered.

Model 3

X(s,b) =—n(s) exp( —2b'/r'),
aIld 6nd

M22(s, t) = bdb J2(b(—t)&)L—22(s)e
—2"~"')

(2.17)

X$1+I2M '"'"') '. (2.18)—
In the forward direction, the scattering amplitude
becomes

M„(s,0)= — ln/1+22(s)I(s)).
4I(s)

(2.19)

Comparison with (2.5) then yields the following
equation for 22(s):

lnL1+22(s)I(s)) = is'"pI(s)/2m. (2.20)

If we go to the high-energy limit s))42222, (2.20) becomes,
using (2.12),

z
1n/1+22(s)I (s))~2 ——ln (s/42222) (2.21).

2'
Now for s 100m', the imaginary part of (2.21) is

not very important and

By giving 1V(s,b) a suitable imaginary part, we can
simulate the effects of the LB2„8„2) terms in the
numerator and denominator of (1.13 which account
for the contributions of inelastic process to the unitarity
condition. This is because the absorptive part h22(s, b)
of H22(s, b) satisfies

h22
——p2(s) ~H22~'+ImN(s, b) ~1 I(s—)1V(s,b)

~

'. (2.16)

Now, of course, a choice of Immi(s, b) which would
make the second term on the right-hand side of the
above equation precisely equal to the contributions of
the inelastic states to the right-hand side of Eq. (1.5)
would be tantamount to using the complete solution
(1.15). However, we simply choose E(s,b) so that we
fit the experimental forward cross section given in Eq.
(2.4) and we give it the same Gaussian dependence upon
impact parameter e 2~'I" as the H»(s, b) directly
determined in (2.4). Then, however, our resulting
expression for 3II22(s,t) does not precisely agree with
empirical fit (2.3) for nonforward directions. This
difference is quite small for reasonable values of t and
simply forces us to choose a slightly different value of
the range parameter. The resulting H22(s, b) better
approximates the unitary H22(s, b) of (1.13) than does
the H22(s, b) resulting from the direct simple fit (2.5).
We, therefore, set

Our object in this section is to make a selection for
H» which more closely resembles the exact solution
(1.13) of our unitarity equations. We choose H»(s, b)
to be of the form

H22(s, b) =X(s,b)$1—I(s)X(s,b))-'. (2.15)

vI~0.65.

In this energy range we have

is 065
H22(s, b)=— e-»' "p+0.65e-»'i")-

582

(2.22)

'S. B. Treiman and C. N. Yang, Phys. Rev. I.etteIs 8, 140
(1962). When (2.23) is compared to model A, e.g. , (2.4), we see
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that (2.23) represents a 30% increase at large impact pa-
rameters and a 30% decrease at low impact parameters.
Thus it does not differ substantially from model A.

Now our corrected production amplitude H2„(s,b; v„),
formed from Eq. (1.7) using the unitary H22(s, b), is
given by

H2„(s,b; v„)=82~(s,b; v )[1+I(s)e(s)e '" "'] '. (2.24)

If we now assume the same form for 82„as in model
A, and take @=1 for the same reason as before, we can
carry out the resulting integral for M2„(s,0; e„) with the
result

M2„(s,0; v„)=M2„'(s,0; v„)E'(s,0), (2.25)

where M2„(s,0; a„) is the uncorrected production
amplitude given by Eq. (2.9) with x= 1, t=0, and

E'(s,0)= tan 'Lri(s)I(s)]'/Le(s)I(s)]' (2.26)

is the correction factor in the forward direction. If we
are in the energy range 4m'«s -100m' where (2.22)
applies, we obtain

of the form
M22(s, t)~i(s/4m')~~'&F (t), (2.30)

with n(0)=1 in order that total cross section be
constant at high energies.

One could proceed as in model B by modifying (2.30)
in a manner similar to the way in which model A was
made unitary. However, we saw in that case that such
a modification did not change our conclusions regarding
the effect of unitarity upon the inelastic scattering. Any
similar modification of (2.30) should not affect our
conclusions regarding its effect upon the inelastic
scattering either. Thus, we first look for an H22(s, b)
which yields an M22(s, t) of the form (2.30), and then
we proceed as before to use this H22(s, b) to obtain a
corrected production amplitude. We choose

H22(s, b) =e(s)$b'+a'(s)] l

Xexp{—PLb'+a'(s)] ). (2.31)

The resulting scattering amplitude M22(s, t) is then
given by7

E'(s,0) 0.84, (2.27) M (s t)=&(s)(P' t) 'e—xpL —e(s)(P' —t)*'] (2 32)

which does not differ significantly from the result
E(s,0)= 5/6 of model A, as expected.

For nonforward directions, we can evaluate the
Bessel transform of (2.24) by expanding the de-
nominator in a power series. The resulting correction
factor E'(s, t) is then a sum of terms, each corresponding
to a successively shorter range which ultimately
approaches zero. We can approximate the series by the
expression

Now if we set
a (s) =b+ « ln (s/4m')

m (s) = iC(s/4m') '+e'

then M2~(s, t) is in the Regge form with

a(t) =1+P«—«(P' —t)l

F(t)=C(p' —t) '* exp/ —b(p' —t) l].

(2.33)

{2.34)

(2.35)

(2.36)

E'(s, t) = 1—e-'""L1—E'(s,0)]. (2.28)

This was obtained by giving all terms in the series after
the first the t dependence exp( —tr'/5), which is an
average dependence of these terms. This approximation
produces no significant errors in the region of interest,
(—tr')(6. If we insert our evaluation of mI, the correc-
tion factor becomes

E'(s,0)~1—0.16e '"". (2.29)

This result does not differ signi6cantly from our
previous estimate for E(s,t), and the conclusions

(a)—(e) remain true in model B also. The essential
difference between E and E' is that the deviation of E'
from unity comes from iterated terms of shorter range
than the term which is the sole contribution to E(s,t).
However, since we are only interested in the low
momentum transfer region, our result is not sensitive to
this distinction.

Model C

We conclude by applying the unitarity corrections
to the currently popular hypothesis that high-energy
scattering is dominated by Regge poles. This hypothesis
gives a high-energy behavior of the matrix element 3f22

(2.38)
where

f2.p
M« '= $1+a(s) (-,'p' —t)&]

2L-'P' —t]'
Xexp) —c{-,'P' —t) &] {2.39)

«, C, &, and p are constants which must be chosen to
fit the elastic scattering data. Now n(t) has a cut at
t=4p' corresponding to the two-pion intermediate state
in the crossed reaction, and hence we might expect that
p& 2p. We do not expect, our ansatz to be a reasonable
form for n(t) when t gets large and negative, since then
n(t) also becomes very negative. The current viewpoint
frowns on this behavior although it does not object to
««(t) passing through zero for negative t as some experi-
ments seem to allow. In the small t region of interest
to us, such problems are unimportant.

Let us assume C, b, «, and P have been determined,
and proceed to use H22(b, s) to correct the inelastic
scattering amplitude. We choose

& -=f -( -) 5 ~P(b'+ ')'] (2.37)

The form (2.37) gives the inelastic process half the
range of the elastic process and, most important, allows
all the integrals to be performed analytically. The
corrected production amplitude is then given in the form

Mu„(s, t; v„)=M«„'(s,t; v„)E"(s,t),
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0
0

26
26

0'/v'

10
20
10
20
10
20

0.75
1.50
0.65
1.17
0.55
0.96

t/IJ, ' value when
CK =2 o, =0

20

44—36—53
49
69—66

TABLE I. The unitarity correction.

x"(s,0)

0.90
0.80
0.90
0.80
0.90
0.80

E"(s,0)= 1—cPe
—~'/12m. (2.42)

In order to G.t the forward elastic cross section with
(2.30), we must have

which yields
CPe @'=—MP'/8 p',

E"(s,0)= 1—P'/96y, '. (2.43)

In the high-energy region 4m'&&s(100m', we can
again approximate I by 2'/s and get

is the uncorrected production amplitude, and

z"=s 2I (s)m (s) (-',P' —t) l

PL(9/4)P'-t7~L1+~(-:P' —t)~7

)&exp) —u($(9/4)P' —t7&—(-,'P' —t) &}7 (2.40)

E"(s,0) = 1+iI(s)CPse @'/24m' (2 41)

is the correction factor due to unitarity. In the forward
direction this becomes

In order to estimate the unitarity correction, we
must choose the parameters 8, P, and e to 6t the elastic
scattering data. There is quite a wide latitude in the
possible parameter values and typical reasonable Qts
to the results of reference 6 are presented in Table I
(for lab energies of 10-20 BeV). We see that the correc-
tion is essentially the same as found for the previous
models. Thus, our conclusion that there are rather large
unitarity corrections to the peripheral collision model
remains unchanged.


