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a proof of the Bloch-Wangness equations that is free of
the random phase inconsistency pointed out by Van
Hove. '

We conclude with some remarks about the diagonal
singularity condition of Van Hove. ' In the Wigner-
Weisskopf theory of line broadening the method con-
sists of an exact solution of a problem where the only
states considered are those in which only one photon
at a time appears in any intermediate state and the
photons in successive intermediate states are inde-
pendent of each other. A consequence of our derivation
is that we consider only those intermediate states of
the system+reservoir interaction in which only one
reservoir particle appears at a time and the reservoir
particles in successive intermediate states are inde-
pendent of each other. This allows us to electively
discard the spent reservoir particle and the system
"sees" a canonically distributed reservoir before each
collision.

We can see the connection between the above

discussion and the diagonal singularity condition by
considering the jth term in the expansion of the time
evolution operator of the system, e'K, which is

(1/j !)t 'K~

= (1/j!)(X't) 'pp (n
~

V
~
m)P (m

~

V [ n)) &. (6.2)

The intermediate states of the system in Eq. (6.2) are
arbitrary. However, in the reservoir Hilbert space
where the system operators are c numbers, Eq. (6.2) is
of the form LP(VA V)s]', where A =P is diagonal in
the reservoir coordinates and where d indicates "take
the diagonal matrix element of (. )." This is Just
the term that the diagonal singularity condition for
internal relaxation gives for the coeKcient of (Xst)&.

Thus, our derivation which starts with the assumption
that the off-diagonal matrix elements of the system
+reservoir density matrix are determined by Pe'x has,
as a consequence, that in the reservoir Hilbert space
the interaction between system and reservoir satis6es
the diagonal singularity condition of Van Hove.
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After a general discussion of the problem of motion in the general
theory of relativity a simple derivation of the law of motion is
given for single poles of the gravitational field, which is based on a
method originally developed by Mathisson. This law follows from
the covariant conservation law for the matter energy-momentum
tensor alone, without reference to any field equations, and takes
the form of a geodesic of the (unknown) metric. Expanding this
metric in terms of a power series in a parameter X and using the
Minkowski proper time to parametrize the world lines of the
particles, the (Lorentz-invariant) form of the approximate laws
of motion follows. A method is developed to obtain the equations
of motion (including the explicit form of the metric in terms of the
particle variables) from Einstein's field equations. A systematic
linearization procedure leads to a series of second-order di8erential
equations for the metric; the nth order approximation of the
equations of motion, as well as the explicit form of the matter
tensor in (a+ 1)st order, is obtained as an integrability condition
on the (I+1)st order opproximation for the metric. No coordinate
conditions are required to obtain the general form of the equations
of motion; they are needed only to reduce the approximation
equations to wave equations and thus to allow their explicit

integration in terms of retarded or symmetric potentials. In de-
veloping the approximation method it is shown that consistency
requires that any set of approximate equations is solved "up to"
rather than "in" nth order; this implies that the form of the lower-
order metric be maintained, but with the motion corresponding
to the gth order solutions rather than to lower order ones. In
particular, the equations for the first-order metric imply zero-order
equations of motion which restrict the particles to zero accelera-
tion; the equations for the second-order metric imply first-order
equation of motion involving the first-order metric, but without
the previous restriction. In the retarded case the equations of
motion contain retarded interactions and radiation reaction terms
of the form familiar from electrodynamics; no such terms appear
in the symmetric case. The equations of the symmetric case are
derivable from a Fokker-type variational principle. The relation
of the results obtained to work on Lorentz-invariant equations by
other authors is discussed. In Appendix I a discussion of alterna-
tive derivations is presented; Appendix II contains remarks on
Wheeler-Feynman type considerations for general relativistic
equations of motion.

I. INTRODUCTION

~~

~~

~~

ITHIN the conceptual framework of Newtonian
particle mechanics there is a sharp division be-

tween laws of motion and force laws. The laws of motion

*Research supported in part by the National Science Foun-
dation.

(F=ma) are assumed to be the same for all matter; the
force laws (Newton's law of gravitation, Coulomb's law
etc.) are different for different types of particles, their
specific form to be determined by experiment. '

' In the following we shall call "laws of motion" the expressions
relating the variation of some particle variables to the (unspeci-
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After a fruitless search for simple force laws for
rapidly moving electric charges it was realized that the
laws of electrodynamics take a simpler form if expressed
in terms of held laws than in terms of force laws. At erst
these field laws (Maxwell's equations) were considered
to be independent of the equations of motion (the
combination of Newton's or Einstein's law of motion
with the expression for the Lorentz force). However, it
was soon realized by Lorentz that if one assumed that
the fields due to the electric charges were retarded
rather than half-retarded, half-advanced, as seemed to
be necessary for the description of electromagnetic
radiation, then the equations of motion had to be modi-
fied if one wished to maintain the laws of conservation
of energy and momentum for a closed system. Lorentz's
work' led to serious difficulties both if the e)ectrons were
treated as points (infinite self-terms) and if they were
assumed to be of finite extension (structure-dependent
terms, differential equations of infinite order) and showed
that the equations of motion were not a simple conse-
quence of the field equations, but established clearly
that these two sets of equations could not be postulated
independently without leading to inconsistencies. Later
work by Dirac' and others4 showed that for a very
general class of special relativistic field equations it was
always possible to obtain 6nite equations of motion for
point particles by requiring the detailed conservation of
energy-momentum and of angular momentum.

In the general theory of relativity it was at first again
assumed that the field equations and the equations of
motion were independent and it was postulated that a
test particle was moving along a geodesic of the back-
ground metric. s However, it was soon realized by Acyl'
and by Einstein and Grommer' that the deld equations
imposed limitations on the motion of particles. Indeed,
several authors were able to show that Einstein's field
equations implied that a test particle had to move along
a geodesic. '' For bodies with comparable masses, a
method of successive approximations for obtaining the
equations of motion was devised in a fundamental paper

fied) force, and "equations of motion" these same expressions. but
with the force specified either in terms of fields or in terms of the
variables describing the particles exerting the force. Except in the
introductory discussion we shall consider only gravitational inter-
actions. Other interactions will be considered elsewhere.' H. A. Lorentz, Collected Papers (M. Nijhoff, The Hague, 1936),
Vol. II, pp. 281 and 343; and The Theory of Etsctrols (B. G.
Teubner, Leipzig, 1909), pp. 49 and 253.

'P. A. M. Dirac, Proc. Roy. Soc. (London) A167, 148 (1938).
For a review of this work see P. Havas, in "Argonne National

Laboratory Summer Lectures on Theoretical Physics, 1958,"
ANL-5982 (unpublished), p. 124.

~ A. Einstein, Ann. Physik 49, 769 (1916).' H. Weyl, Ralm, Zeit, Materie (Springer-Verlag, Berlin, 1921),
4th ed. , Sec. 36; in more detail in the 5th ed. (1923).

'A. Einstein and J. Grommer, Sitzber. preuss. Akad. Wiss. , 2
and 235 (1927).

M. von Laue, Die Relativitatstheorie (Friedrich Vieweg und
Sohn, Braunschweig, 1921), 1st ed. , Vol. 2, Sec. 15; A. S. Edding-
ton, The Mathematical Theory of Relativity (Cambridge University
Press, New York, 1923), Sec. 56; C. Lanczos, Z. Physik 59, 514
(1930);M. Mathisson, ibid. 67, 2?0 (1931);H. P. Robertson, Proc.
Edinburgh Math. Soc. 5, 63 (1936); L. Infeld and A. Schild,
Revs. Modern Phys. 21, 408 (1949).

by Einstein, Infeld, and Hoffmann. ' This method is
based on the assumption that the time derivative of any
field quantity is much smaller than the spatial deriva-
tives. Such an unsymmetric treatment of the four
coordinates not only does violence to the spirit of
general covariance, but does not even satisfy the re-
quirements of special relativity. The resulting approxi-
mate equations of motion are thus not applicable to
motions of bodies with relative velocities comparable to
the velocity of light. Similarly they are not well suited
for an investigation of the problem of gravitational
radiation. Einstein, Infeld, and Hoffmann obtain the
Newtonian equations of motion, including the New-
tonian gravitational interaction, in the fourth order of
approximation and a new ("post-Newtonian" ) set of
equations in the sixth order""; an investigation of
possible radiation damping terms requires a study of the
equations in the tenth order. "

In this paper we shall present an approximation
procedure in which time and space coordinates are on
the same footing and where all the calculations and re-
sults are Lorentz invariant. " The equations obtained
are thus applicable to the study of the motion of bodies
of high relative velocity and allow the investigation of
the problem of radiation damping with the methods
familiar from the special relativistic equations.

UVhile gaining the help of these special relativistic
methods, we also acquire all the mathematical diffi-
culties inherent in special relativistic equations of mo-
tion. In the equations of motion of Newtonianmechanics
the interactions are given explicitly as functions of the
simultaneous positions of the particles. In special rela-
tivity they are usually given as functions of the separa-
tions on or even within the light cones of the particles,
which are known explicitly only if the motion is known.
No mathematical methods are known for handling such
equations (other than approximation methods using the
nonrelativistic motion as a first approximation), and it
is not even known how to formulate the initial value
problem correctly. ""

9 A. Einstein, L. Infeld, and B. Hoffmann, Ann. Math. 39, 66
(1938).These authors treated the particles as singularities which
are simple poles of the gravitational field. Whenever we refer to
"mass points, " "singularities, "or "test particles" in this paper, we
imply such simple poles unless otherwise stated.

'0 In the following we shall refer to these post-Newtonian equa-
tions as the EIH equations. There have been many modifications
of the method of derivation of these equations, all of which have in
common the assumption of different orders of magnitude for the
spatial and temporal derivatives ("slow motion approximation").
For the early literature see A. E.Scheidegger, Revs. Modern Phys.
25, 451 (1953); for later references, e.g. , L. Infeld, ibid. 29, 398
(1957) and reference 11."L.Infeld and J. Plebanski, cM'otsort and Relatrefty (Pergamon
Press, New York, 1960)."J.N. Goldberg, Phys. Rev. 99, 1873 (1955).

"The main results of this paper were stated in P. Havas, Phys.
Rev. 108, 1351 (1957), which also contains additional results the
details of which will be published in subsequent papers.

'4 For an example of a solution of a two-body problem showing
some peculiar features due to the non-instantaneous interaction
law, see P. Havas, Acta Phys. Austriaca 3, 342 (1949).

"For a discussion of the relativistic initial value problem, see
P. Havas and J. Plebanski, Bull. Am. Phys. Soc. 5, 433 (1960).A
detailed account is in preparation.
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In general relativity the situation is even worse. It has
been realized by several authors that even in the case of
interacting particles the laws of motion are given by the
differential equations for the geodesics of the metric at
the position of each particle" (a simple derivation is
given in the next section). However, the metric is
unknown; not even its functional dependence on the
particle coordinates (including time) can be given, and
its possible dependence on the self-actions of the par-
ticles also is not known. Unfortunately, the metric
always has to be determined by some approximation
method. In most previous work such methods were de-
vised with the aim of obtaining equations of motion
patterned after those of Newtonian mechanics, i.e. con-
taining explicit instantaneous interactions. Although
this may be justified for most astronomical applications,
this way of proceeding is not well suited for studying
those features of the problem of motion which are
characteristic of the general theory of relativity, and
which are qualitatively different from nonrelativistic
theory, such as noninstantaneous interactions and pos-
sible radiation effects. Therefore, we have used a method
of approximation which allows a better treatment of
these features by at least leading to equations of motion
of special relativistic form.

In this method of approximation the Minkowski
metric has a special standing. However, this special role
is a purely formal, mathematical one; it is not implied
that the Minkowski "metric" actually represents the
physical metric of space." Similarly, the manifest
Lorentz invariance of our equations does not imply as in
special relativity that there exists an infinity of inertial
frames of reference, but only assures us that the equa-
tions are va)id for all velocities & t, . On the other hand,
our results as well as those of the EIH method at any
given stage of approximation are not generally covari-
ant. "Such a covariance can only be expected (for either
method) for the final, exact result obtained by carrying
the approximation method to infinite order (the possi-
bility of which has not been proved for either method).
The advantage of our method consists in the fact that
there always exist suitable coordinate systems in which
all particle velocities are less than c," but not always
such that they are all small compared to c, and that
therefore we can expect our low-order results to be
better approximations in the case of high velocities than
those of the KIH method.

' M. von Laue, reference 8; A. S. Kddington, reference 8; L.
Infeld and J. Plebanski, Bull. acad. polon. sci., Classe III, 4, 757
(1956}.As an assumption the geodesic law was already used by
W. de Sitter, Monthly Notices Roy. Astron. Soc. 77, 155 (1916),
to obtain the equations of motions of the X-body problem.

'~ Such an interpretation is, however, adopted by other authors,
e.g., N. Rosen, Phys. Rev. 57, 150 (1940); A. Papapetrou, Proc.
Roy. Irish Acad. 52A, 11 (1948); S, N. Gupta, Revs. Modern
Phys. 29, 334 (1957) and references given there."Except in the sense that any set of equations whatever can be
written in covariant form; see E. Kretschmann, Ann. Physik 53,
575 (1917)and A. Einstein, ibid 55, 241 (1918). .' Excepting cosmological modi6cations, which are excluded by
the assumption of asymptotic flatness of the metric (see Sec. II).

The method used here has also been applied to the
case of dipoles and of the presence of nongravitational
fields. The results" will be described in subsequent
papers.

II. THE LAW OF MOTION

We shall first derive the exact form of the law of
motion. As mentioned in Sec. I, this has been shown to
be a geodesic of a certain (unknown) metric by several
authors before; we shall present a simple derivation,
making use of a method which we shall use extensively
later. This method is based on one due to Mathisson, 20

and has been described previously. ""
We consider a Riemannian four space with coordi-

nates xp and metric tensor gp„(Greek indices running
from 0 to 3); furthermore we introduce the Minkowski
metric r)p„(with signature —2). The velocity of light is
taken as unity. We shall use the notation

Bp= tl/Bsp) . 8p~" ~ = clpBp' ' '
) 0 ='gp r) pr)~. (1)

We shall be concerned with the motion of X singu-
larities. The coordinates of the ith particle are denoted
by z;&, and we shall use the abbreviation

s,~ =@)'—z;~.

In this paper we do not consider any nongravitational
fields; matter is taken to consist of simple poles of the
gravitational field and to be described by an energy-
momentum tensor I'I"" of the form

Ppv —g
i=1

P.""( ')&'(s")~ ' (3)

where 54 is a fourfold product of Dirac 5 functions and
the p,p", whose exact form remains to be determined, are
functions of some scalars w; parametrizing the world
lines. " The representation of singular quantities by
integrals of the type (3) is well known from special
relativity. '

The requirement of the existence of a covariant law of
conservation of energy and momentum of matter im-

plies that the covariant divergence of I'I"" must vanish.
One form of writing this law is"

where g=—~gp, ~. Because of the form (3) of Pp" this
equation gives a nontrivial relation only along the world
lines of the particles. Now we multiply Eq. (4) by a

~ M. Mathisson, Acta Phys. Polon. 6, 163 (1937)."P.Havas, in Recent Developments in Genera/ Relativity (Per-
gamon Press, New York, 1962), p. 259.

2'For a similar development of Mathisson's method, see W.
Tulczyjew, Acta Phys. Polon. 18, 393 (1959).

2' Generally, Roman letters denote tensors and German ones
tensor densities. However, for convenience no such rule is implied
for p;&" introduced by Eq. (3) and the related quantity p;&" and
its constituent parts, defined by Eqs. (6) and (9), respectively;
the structure of these is to be determined in the course of the
calculation.

'4 Compare, e.g., reference 6, Sec. 28.
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vector function P(xp) and integrate over all xp to obtain coefFicients of p in Eq. (11)

$a.(gee » ) pp—p'rl„g p.]p"(cop)d'ee=0. (S) (Mrg p pvep) = sM jv qpv j r) jpg »». (14)

$p is assumed to be completely arbitrary except for
vanishing at the limits of the r; integrations together
with all its derivatives. 2'

We can transfer the derivative in the first term of (S)
by an integration by parts to P. Taking account of the
form (3) of I' p, we can then carry out the x integration;
then g, g„„,P and their derivatives, being evaluated at
the positions s,'(r, ), become functions of the r s. Thus
we get

This is the law of motion of the ith particle.
To determine M; we contract Eq. (14) with v,p and

use Eq. (10).Denoting derivatives with respect to r; by
a dot, we obtain

M,gppv, pv, p+M, gppv, pv, p

+M,gppv, v, ——,M,gp.v; v; —0
or

M,g vv; v,v= —-', M, (g.ov; v;~),
dTq

g fop, lPi, 8,.& + ', y; 'rf-, pg,.P)dr;=0,
and thus

M, =pre;(g. pv v~) '*, (16)

where
ll'"=—(—g) 'P'",

f);,=—8/cls; .

where rl; is a constant (characterizing the mass of the
ith particle). "Inserting this into Eq. (14) we obtain as
our final form of the law of motion

Now we break up p;p' in components parallel and
perpendicular to the four-velocity v;& defined by

v; p= ds, p/dr;, —
gIJt pV v,

t' 1 8$p~~'V~

SS~ 8$pg p(f a

dr( (g.pv, "vP)& 2 (g.pvgvP)&
(17)

such that

'(I;p'=M;(r;)v, pv,'+ps;p(r;)v; +s; ; v+pp;e(pr;),
ep .»0' —epf)IT» ap, po,'g v .I—0 es .pg v .p —0 (9)

We substitute these expressions into Eq. (6) and note
that

v; r);.=d/dr; (10)

along the ith world line. Thus, carrying out an integra-
tion by parts, we obtain

2 g-(*0'"+v"~' )~'.&" Lg—-(M v "+~")j&"

+s'(I'"~'pg» 5" dr'=0 (11)

Because of the arbitrariness of P and its derivatives,
the terms involving 8;,P as well as those involving P
must vanish separately for all i. Thus we must have

g-(*0'"+v "~")=o, (12)

from which we get by contraction with e;&, using the
definition (9), that I, and. *l);p must vanish separately
and thus

ll,"=M v;pv (13)

Using this result, we get from the vanishing of the

"Mathisson (reference 20) did not make use of S functions and
thus his original method is much more cumbersome than the form
used here; he therefore also used the Einstein equations (18) as a
starting point rather than the conservation Iaw (4). A form of his
method closer to the one used here, but only developed for special
relativity, divas given by him in Proc. Cambridge Phil. Soc. 36, 331
(1940).

Equation (17) is the well-known equation of a
geodesic of the metric g„„."It should be noted, however,
that it is not restricted to test particles, as we did not
have to assume our g„„ to be independent of m; in the
course of our derivation. " Indeed, the law of motion
(17) is a direct consequence of the existence of a
covariant conservation law (4) for the singular energy-
momentum tensor (3) alone, without any reference
whatever to the equations (if any) satisfied by the
metric. As the field equations of general relativity (both
with and without a cosmological term) were constructed
so as to entail such a conservation law, Eq. (17) is the
law of motion for both forms of this theory; but any
other theory with such a conservation law (even one
which is not built on field-theoretical concepts) must
include the same law of motion.

Although the law of motion is thus known, g„, by the
very nature of the derivation remains undetermined.
Furthermore, we have tacitly implied that g„„is 6nite.
From our derivation it is clear, however, that the prob-
lem of constructing a theory with 6nite g„. (and deter-
mining its dependence on the masses ns;) is separate
from the problem of the form of the law of motion.

In the following we shall only be concerned with the
determination of g„„in the case of Einstein s 6eld equa-
tions without cosmological term:

G„„—R„y 2g„„R— SmGP„„.

I A result equivalent to our Eqs. (3), (13), and (16) has been
established by W. Tulczyjew, Bull. acad. polon. sci. , Classe III, 5,
279 (1957)."Compare, e.g. , C. Mifller, The Theory of RefotivAy (Clarendon
Press, Oxford, 1952), p. 230.

"In this respect our result goes beyond that established by
Mathisson (reference 20).
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Xio entirely rigorous proof has been given thus far that
it is indeed possible to formulate an exact theory with
singularities for which g„„ is finite on the world lines. "
In this paper we shall only show that this is possible at
each stage of the approximation method we are con-
sidering.

Equation (17) holds for any parametrization of the
world lines. It might appear natural to use the general
relativistic line element (g pils, ~dz, )1 for dr;. This is
indeed most convenient for those cases in which a direct
application of Eq. (17) is possible, in particular for test
particles. However, it is very inconvenient for any
calculation involving the simultaneous determination of
the metric and the motion, because the line element
itself involves the unknown metric. The same objection
applies to the use of the "tweedled" line element of
Infeld and Plebanski. ' In the following it is most con-
venient to use the special relativistic line element given
by

dr, = (rl„pdz, dan)&, (19)

gpv='Vpv+ Q li '
ngpv (20)

This parameter will be used only to keep track of the
different orders in our approximation, and will be ab-
sorbed into the definitions of the „g„„whenever con-
venient, without explicitly noting this procedure.

We now insert the series (20) into the law of motion
(17).The lowest order of approximation is obtained by
considering the terms of order X'. Using the relation

go, p'tJ~ &, (21)

for the parametrization, since it does not involve any
unknown function, but does allow us to make use of the
tools of special relativity.

Our approximation method is a consistent de-
velopment of Einstein's original linear approximation
method. "We expand the metric tensor in a power series
in some parameter X, with the Minkowski metric as the
zero-order approximation:

Whereas Eq. (22) was fully determined (and thus, in
our terminology, ' is an equation, as well as a law, of
motion), Eq. (23) is not, as ig„„is not known; in the next
section we shall describe the method used in determining
its form. It should be noted that it is not sufhcient to
have any approximation method whatever for de-
termining the metric (20); it has to be established that
the procedure is consistent with the approximate laws of
motion (22), (23), and similar higher order approxi-
mations.

Thus, our interest here is concentrated on the equa-
tions of motion —the general form of which is established
by Eq. (17) once and for all—and on the metric. For the
arguments presented here we do not have to consider the
energy-momentum pseudotensor, which until now has
been almost exclusively used to investigate the problem
of radiation, following the original work by Einstein, '"
and thus do not have to be concerned with the recent
controversy on the definition and interpretation of this
quantity. ""

Of course the metric and the law of motion (17) could
have been expanded in a manner different from the one
just discussed. In particular one could also use an ex-
pansion suitable for slow motion, but clearly the de-
velopment (20) is best suited to exploit the symmetry
provided by the covariance of the theory.

III. THE APPROXIMATION METHOD

Up to this time we have proceeded in a purely formal
manner without asking whether the metric tensor
satisfies field equations or any other conditions. In this
section we shall formulate a method of successive ap-
proximations for the solution of the Einstein field
equations (18). We shall find that the eth order equa-
tions of motion corresponding to (17) will be the con-
sistency condition for the existence of a so/ution for the
metric in the (v+1)st order, when the solution is known
for all lower orders.

For comparison with the results in the previous sec-
tion it is convenient to write the gravitational field
equations in the form" "

which follows from the definitions (8) and (19), we get
for the zero-order law of motion m,q„,i;&=0, or

(22)

—2@ "—= rl U '"' t"=16irGQ "—
N."=—(—g)'G. ",

[vvl —( g)~vg (l t
g(givgvp gpvgA)$

(2&)

The first-order law is obtained by collecting the terms
of orders X' and X'. %e obtain

m, $(r[„p+,g„,)e,~ —,'rl„„s,~,g.pv, "n,p]—
= sfÃPi~vi Dip igpv (23)

' In previous work (see reference 16) it was either tacitly as-
sumed that the contributions of the self-action terms are finite or,
as in the work of Infeld and Plebanski, certain mathematical
properties of the metric had to be assumed to be able to establish
the finiteness.

~A. Einstein, Sitzber. preuss. Akad. Wiss. 688 (1916),

rather than in the covariant tensor form given in (18).
An alternative derivation, starting from Eq. (18), con-
venient for other purposes, is given in Appendix I. t„' is
the Einstein energy-momentum pseudotensor; however,

'~ J. N. Goldberg, Phys. Rev. ill, 315 (1958) and references
given there.

ms A. Komar, Phys. Rev. 113,934 (1959l; C. Ms[lier, Ann. Phys.
(New York) 4, 347 (1958};and 12, 118 (1961); Max-PLanck-
FestschH ft 1958 (VEB Deutscher Veri. Wiss. , Berlin, 1958},p. 139;
and Kgl. Danske Videnskab. Selskab, Mat. -fys. Medd. 31, No. 14
(1959);R. Arnowitt, S. Deser, and C. W. Misner, Phys. Rev. 122,
997 (1961).

~ V. Bargmann, Revs. Modern Phys. 29, 161 (1957).
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the development presented here is not associated with
any particular physical interpretation of this quantity.
As t„' is homogeneous quadratic in the 6rst derivatives
of the metric tensor, all the second derivatives in the
6eld equations originate in U„&"'.In order to obtain the
approximate field equations we shall expand the metric
with respect to the parameter) discussed in the previous
section.

The quantities „g&" from the expansion

gpv —r]pv+ Q $% gpv

n=l
(25)

are determined in terms of the „g„„ofEq. (20) from the
relation g»g&" =8„"as

gpv — r]jlpr]vo' g +, (26)

where the dots indicate additional nonlinear terms in-
volving g„„,m(e; we shall not need these additional
terms here. It is convenient to introduce the abbrevi-
ation

2 g X'c] A "=—167rG P X'c]
Z=1Z=l

(34)

We assume that as we proceed from one approximation
to the next, the explicit form of the lower order solutions
and the explicit form of the lower order matter-tensor
are unchanged. Only the implicit dependence on X is
changed; that is, only the world lines are changed. Thus,
in the eth approximation the unknowns are „y„„and
„p;p' and these quantities occur in Eq. (33) linearly.
This procedure will be discussed again later.

Equation (32) was ffrst derived by Einstein"; it has
since been noted by ma' ny authors" that formally a
systematic linearization of Eqs. (18) or (24) can be
achieved. It should be noted that the linearization pro-
cedure does not require the use of any coordinate
condition.

We now assume that the field equations have been
solved for all approximations m&e, i.e. we know zy„,
and ]p,p' for all l&m&N, and wish to solve Eq. (33).
This equation implies

1
n&p, v= ~gp, v

—2'gp, vg ~ ngap (27)

Again we represent the matter tensor by Eq. (3) and
further assume an expansion of the form

because of the symmetry properties of zK&"»&" '. We can
consider this equation as an integrability condition for
Eq. (33).

On account of the Bianchi identities"

with
n=l c]„N„"—-,'c]„g,.Sp'=0, (35)

n+1—n[

P ), 'a, ]A„"=', P V'a„g,. P-X' ]8". (36)
Z=l Z=l

n=l

m=1

Substituting the above expansions into the field
equations (24), we obtain'4 If Eq. (33) has been solved for all t]s(ps, it follows from

( ~[$ ][ ] 2 ) 16 G p [p (30)
q . ( ) t to th e sam e approxim ation

JPXp][vv] —P~va(~kv~pP ~XP~pv) p X' ]Npv= —SzG g X' ]Qpv, pl& pz

r]va(r]xvr]p[] r]xp~pv) j + (31)
Substituting this result into Eq. (36) we have in the
(ps+1)st orderHere „K&"»I"& contains only terms linear in

whereas &„v contains only terms nonlinear in the
of orders m&e —1. For reasons which will be discussed
in detail later in this section, one can not equate the
coefficients of equal power of X in Eq. (30). Rather, one
must solve the equations by successive approximations.
That is, in the First approximation one solves

n+1

P X'c]„]Ap"=—47rG P X B„g pP 'A' PP"

r]„],c],.[K["p] ["']= 16vrG tQp"

and thus we can eliminate the zA„"'s from the inte-
grability condition (34) and obtain

(32)

and in the (m+1)st approximation n+1

Q X'c]v ][Il "—-' Q Q X'+mc] ~g .

][Ihip'=0.

(37)
Z 1 m=1 Z~1

Q X'(r] ],c] ]fC["p]["']—2 ]A ")=16zG Q X' Q " (33)
Z 1

~ The notation used here is suggested by that used in L. Infeld
and J. Plebanski, reference 11, p. 79.

"A probably incomplete list includes: K. Lancius {Lanczos),
Z. Physik 13, 7 (1923); M. Mathisson, ibid. 67, 826 (1931); A.
Papapetrou, Proc. Roy. Irish Acad. 52A, 11 (1948); S. N. Gupta,
Proc. Phys. Soc. (London) A65, 608 (1952); 3, Bertotti, Nuovo
cimento 4, 898 (1956).
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r)„p ip, ~" r).$4(r~)dr;

if P and its derivatives are nonvanishing only in the
neighborhood of the ith world line. We break up, p&'

into components parallel and perpendicular to e;& as in
Eq. (9), except for lowering indices with rl„„rather than

g„„,and using m; in place of ~M;. Then we get

alld
ip, ~ =amis, s,~s,' (39)

which implies

—(m,v,') = 0,
dTi

~A;=0, 8~=0. (40)

Thus our zero-order equation of motion agrees with Fq.
(22) as it should.

The result (40) has first been derived by I.ubanski, ss

as the equations of motion of a test particle moving in a
Minkowskian background metric. However, it was ap-
parently not realized that these equations were also
valid as the lowest order approximation for the general
relativistic equations of motion for any number of par-
ticles. Furthermore, the general validity of the result
was obscured by the use of a coordinate condition,
whereas our derivation is independent of such a condi-
tion to the order considered. The first-order approxima-
tion Eq. (32) implies Eq. (39) and thus (40) a,s discussed
above; t.ubanski, however, following Einstein, " intro-
duced the coordinate condition

g"~8), ~y„„=0
36 J. Lubanski, Acta Phys. Polon. 6, 163 (1937). For a non-

singular matter tensor an equivalent result was already established
by C. Lanczos, reference 8,

This is a condition on the matter tensor in the (n+1)st
order and the metric in orders e and lower; thus we can
satisfy the consistency conditions, i.e. determine the
matter tensor and the equations of motion, before the
field equations of the (ts+1)st ord.er have been solved.

In Sec. II we expanded the law of motion and called
the equation obtained by keeping the terms up to „g„„
the eth order law of motion. In agreement with this
terminology we call Eq. (37) the eth order equation of
motion. From the point of view taken in Sec. II it was
to be expected that this equation can be obtained with-
out the need for an explicit solution of the (v+1)st
order equation for the metric.

In order to understand how the matter tensor and the
equations of motion are to be obtained in the general
case, we shall consider the first and second approxima-
tions explicitly. For v=0, Eq. (37) becomes simply

c)„,g„"=0. (38)

Following the procedure described in the previous Sec-
tion, we contract with an arbitrary function P and
integrate over all space. Substituting from Eq. (29) we
obtain

into Eq. (32) to obtain the wave equation"

g iy„„=—16s-Gr)„,ri„, iQ&', (42)

which he integrated explicitly. He then derived Eq. (40)
from the fact that the solution obtained had to satisfy
the condition (41).

The implications of t.ubanski's result appear to have
been completely ignored in the literature in spite of their
importance for the problem- of gravitational radiation.
Following Einstein's fundamental paper, " most in-
vestigations of this problem (both classical and quan-
tum) have been based on Eq. (42). This equation clearly
allows wave-like solutions; however, having been ob-
tained from Eq. (32) which implies (38), it also requires
the equation of motion (40) for consistency, which state
that these waves do not a6ect the motion of the particles
at all. Thus on the basis of the first order approximation
to the metric the mathematically permissible gravita-
tional waves imply no physical consequences whatever. "
This does not necessarily mean that all the conclusions
drawn in Einstein s paper and subsequent investigations
are wrong; however, they can not be justified without
going beyond the first order approximation. We shall
return to this question in Sec. V and elsewhere. "'

Now we consider the second approximation. In pass-
ing from the first to the second order we are confronted
with a difficulty of the same kind as was encountered in
the EIH method. "The problem is the following: The
equations of motion (40) imply that the singularities
move along straight lines and that the first-order metric
becomes infinite along these lines. But the first-order
metric enters the terms of order X' in Eq. (33) through
~A„", and thus these terms also become infinite along the
straight lines rather than the lines corresponding to the
actual motion of the Xparticles in the second order (and
similarly for higher orders), which does not allow a con-
sistent treatment of the next approximation, as will be
shown later.

To avoid this obviously meaningless and inconsistent
result, we must devise a method by which we can relax
the restrictions imposed by the eth order equations be-
fore proceeding to determine the solution of the (6+1)st
order.

Such a method is suggested by a closer analysis of the
meaning of an expansion such as (20) or (30). If the
quantity X were a variable capable of taking arbitrary
values, we could rigorously conclude that in any equa-
tion the coefficients of all powers of P had to vanish

3' Lubanski did not make use of 8 functions and thus wrote zero
on the right-hand side of Eq. (52) and similar singular expressions;
however, his calculations are in complete accord with the 5
formalism.

"This has also been noted (independently of Lubanski's work)
by H. Weyl, Am. J.Math. 66, 591 (1944), who describes the linear
theory as one in which "the gravitational field remains a powerless
shadow. "

s9 S. F. Smith and P. Havas (to be published).
See especially A. Einstein and L. Infeld, Can. J. of Math. 1,

209 (1949).The technique used there to overcome the diiliculty is
not suIttable for our purposes,
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separately. Hovrever, ) is simply a parameter used to
group terms of the same order of magnitude, and thus no
such conclusion is warranted. "eth approximation" then
does not mean that we solve n separate equations in-
volving terms of diferent orders in X, but that we solve
a single equation containing all the terms up to eth
order as well as possible.

This point of vievr has already been made use of in
Sec. II as well as earlier in this section; in considering
what information vre could obtain from the exact law of
motion (17) about the form of the approximate law, we
obtain the first-order law (23) by collecting the terms of
orders ) ' and X'. From this point of view it is clear that
no other procedure is possible. A set of equations of
motion (together with suitable initial conditions) de-
termines a motion, i.e., a set of world lines, completely;
as there is no meaning in adding world lines of diGerent
orders, one can not obtain a new motion by adding re-
sults obtained from two diferent equations of motion,
but only by replacing one set of equations of motion by
another, such as Eq. (22) by Eq. (23).

Thus, we propose to look for solutions and inte-
grability conditions of successive sets of equations of the
form (33), summed up to successive orders. No difhculty
is encountered with the integrability conditions, which
will be given by Eqs. (34) or (37) summed up to suc-
cessive orders. However, in attempting to solve Eq. (33)
we are novr faced with the difficulty that from our
present point of view it is no longer linear, because we
should now treat all the y's up to order n+1 as un-
knowns rather than consider those up to order n as
determined by the equations of lower order.

We propose to overcome this difhculty as follows.
From the 6rst-order equation (32) we concluded that

must be of the form (39) with the further restric-
tions (40) on the quantities entering (39). From our

previous considerations we must clearly renounce these
restrictions, as these are restrictions placed on the
motion; however, we do not necessarily have to re-

nounce the form (39) of the energy-momentum density.
Of course, vre expect this density to be modified by the
second-order equations; but these modifications are by
definition included in 2p, &'. We proceed similarly in

higher orders. At each step we maintain the form of the
energy-momentum tensor and thus of the metric as
determined by the equations up to a given order, and
use these in the equations (37) summed up to the next
order to obtain a correction to the energy-momentum
tensor and a new set of equations of motion. But while

we maintain the form of these quantities in terms of the
coordinates and their derivatives, these variables will

now correspond to the +em motion rather than the mo-
tions following in lower approximations.

Thus for the second approximation, e= 1, Eq. (37) is

$ M;, (q„,+ g„,)+ M;,'g„$
dv'i

Contracting this with e,& vre get

(m; ig. p v, n, t')

provided that we still have ~M;=—m;=0; thus the
constancy of m; is necessary to allow the determination
of the form of 2M; from Eq. (45). We get

2~i 1gap &i &i m2Ci~.p~ (46)

where 2C; is a constant of integration. If there are no
difficulties with singularities arising from the self-Geld,

2C; should be set equal to zero, for it merely wou)d
introduce an arbitrary constant without connection
with the gravitational interaction. Hovrever, we shall

see later that by an appropriate choice of 2C, the infinite
self-Geld can be removed so that Gnite equations of
motion result. With (46) the equation of motion (45)
becomes

(k ig s&' &' 2~') "1&~l+igll "')

With 2C, =O, this has the form of Eq. (23), obtained. by
expansion of the law of motion.

We note that our interpretation of the meaning of an
expansion in X was necessary for the derivation of this
equation. Had we insisted in taking as our Grst-order
potentials the solutions of Eq. (32) for straight line
motion, then all the singularities appearing in Eq. (43)
except that due to 2Q&' would have been placed on these
straight lines. But then we would have had to conclude
from Eq. (43) that the terms due to 2P&' lead to an
equation of the same form as Eq. (38) and then we
would again have deduced Eq. (40). We could then still
have derived Eqs. (47), but with all the singularities
moving with constant velocity. Thus, they would no
longer be differential equations determining the ac-
celerations (which from the derivation would have to
vanish), but rather algebraic relations between the posi-
tions, which in general would not allow any motion at
all.

We assume that ~g„„ is known except for the motion of
the particles. That is, vre have obtained a solution for
Eq. (32) and then we have relaxed the equations of
motion (40); however, we maintain (39). Therefore, in

Eq. (43) only &P;&' and the motion are unknown. Again
following the procedure of contraction with an appro-
priate function P, integrating over all space, and
breaking up 2P;&' as before, we obtain

2p;&'= 2M; v;&w,',
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We now assume that the solution through the eth by the coordinate condition
approximation has been obtained and consider the
integrability conditions (37). The same procedure as 00

used previously yields ltm~Ag
1

(51)

m=1 Z=1
B,„g,.ty;~'P}dr;=0

%+ly t' —rt+ lard l V 1' V Z,
H .p& — AE . .p (48)

For /&ri, &l3;&' is known. Thus this equation serves to
determine +ill, &' and the uth order equations of motion.
By induction one finds that

because of the form (31) of ~'"»'"». This condition has
to be understood in the same way as the other ex-
pansions discussed before, i.e., in passing from one order
of the approximation to the next we relax the condition
previously required to order e by requiring it for the
sum of all terms up to order 0+1 instead. " In particu-
lar, in passing beyond the first-order set (32) we no
longer require condition (41) to be satisfied rigorously,
which would imply the equa, tions of motion (40) to hold,
but relax it to allow solutions of Eq. (42) which do not
correspond to straight line motion. These solutions are
substituted in 2A„" and we can proceed to integrate Eq.
(50) for sy„„, the motion (as an integrability condition)
heing determined by Eq. (47), and similarly for higher
orders.

m=1 /=1
iM, a,„g,.s, ~v.;, (49)

which are of the same form as the series expansions of
Eqs. (13) and (14). The mass corrections „+i3I,, e) 1,
may be obtained a,t each step as from Eq. (45), provided
we maintain m, =0. Then it is not difficult to convince
oneself that the resulting expression is the series ex-
pansion of the law of motion (16) and (17) except for the
intrusion of certain constants of integration similar to
sC; of Eq. (43) which are needed in order to obtain finite
equations of motion.

Equation (47), just like Eq. (23), was obtained with-
out the use of any coordinate condition Las was Eq.
(49)$. But now it was derived as the integrability con-
dition of Eq. (33), making use of the form (39) of the
first-order quantities ip, p', which in turn determine the
first-order metric ig„„(which enters the equations of
motion explicitly) through Eq. (32). It is only the
mathematical problem of integrating Eq. (32) which
forces us to use a coordinate condition, in exactly the
same way in which the problem of integrating a similar
system of second order differential equations in electro-
dynamics forces us to choose a gauge condition for the
electromagnetic potentials. In both cases it is natural to
make this choice so as to reduce the unmanageable
system of equations for several unknown functions to a
set of wave equations for a single unknown function, and
the natural choice in our case is Einstein's condition (41)
which leads to the wave equation (42). More generally,
we can reduce Eq. (30) to the inhomogeneous wave
equation

where

3

D =—5(u') for u'& (P "uu) t

2x k=1

otherwise,

Np—=Xp —X p I'=—g Npu'.pO'

(52)

(53)

Similarly we have for the advanced Green's function

1 3

D =—5(u') for u') (P u"u")'
2' k=1

0 otherwise,

and for the symmetric Green's function

D.=-', (D,+D ). (55)

Just as in the case of electrodynamics we can obtain
different solutions of the wave equation by using any
one of these functions (or any linear combination of D,
and D, the sum of whose coeKcients is one). In the
following we shall carry out all calculations for the re-
tarded and for the symmetric case explicitly and note
the modifications necessary for the advanced case.

Performing the integra, tion of Eq. (42) as in electro-
dynamics, we obtain in the retarded case, taking into

IV. THE FIRST-ORDER METRIC AND
THE SELF-ACTION TERMS

Now we turn to the explicit determination of the
metric from the wave equation (42). This equation can
be integrated with the help of the well known Green's
functions. The retarded Green's function is given by

Q X"( y„„+(16sG „Q„+2 A.„)ri„}=0 (50)
m 1

"A similar treatment of a coordinate condition has also been
suggested by A. Papapetrou, Ann. Physik 20, 399 (1957).
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Kj= gp Sj~Vj (57)

with s;v given by Eq. (2), and where the subscript r
indicates that the expression is to be evaluated at the
"retarded point" defined by

Similarly we get

g„sj&sj =0, sj &0.

rrti rirr eris pvi ei
tv.:"(x')=+4G Z

j i. (59)

where the subscript a indicates evaluation at the "ad-
vanced point"

and thus
gp, s, sj =0, sj &0, (60)

mggpagvp8j &j~

y 'y"(xv)= —2G Q
Kj

(titrqsarivpei ~vip

(61)
Kj

From Eqs. (50) and (61) and the definition (27) we get
for the metric

irti (V~erivÃi ei stIsv) ).a .P

g.."'(x ) = -4G E i
(62)

Kj r,
in the retarded case, and

account the form (24) with (39) of the energy-mo-
mentum tensor,

SSggpcrgpp'Vj Sj.a .P

y mt(xs)= —4GQ
Kj

where4'

proaching the particles more closely and remove the
infinities in some manner.

In the approximation we are considering we are only
dealing with the linear field equation (42) and the
mathematical problem of obtaining finite equations is
essentially the same as for the special rejativistic equa-
tions of motion of point particles interacting through
nongravitational fields, ' 4 " and several methods of
handling this problem are available. In the general case
we are dealing with nonlinear equations and, as noted in
Sec. II, no satisfactory method of handling this case
exists.

The mathematically most rigorous way of handling
the problem in our case of successive approximations of
the Eqs. (50) appears to be the method of analytical
continuation due to Riesz. 4' This method assures the
existence of solutions of any inhomogeneous wave equa-
tion which are 6nite at the positions of the singularities
and satisfy all other required conditions. 44 In applying
this method to Eqs. (50) we 6rst calculate the first-
order "Riesz potential" corresponding to iy, „, then
substitute this into 2A„' and use this to calculate the
second order Riesz potential, and similarly for higher
orders. 4' This procedure guarantees the existence of
finite equations of motion in all orders, but it remains to
be proved that the successive approximations obtained
by substituting Riesz potentials of lower order to obtain
those of higher order indeed converge to the finite po-
tential of the full nonlinear equations, for which no
rigorous mathematical treatment exists.

To obtain finite first-order equations of motion, how-
ever, we do not need the heavy guns of the stiH rather
unfamiliar Riesz method, but can make use of previous
work on the wave equation by Bhabha and Harish-
Chandra" " (based on Dirac's method') which provides
explicit formulas for the evaluation of the needed terms.

We first note that for any f'ield quantity f

(rent; (ri„.ri„pri; e;
—p ,'tI„.))——

tg»"(x~)= —2G P
Kj

fret fsym+. r (fret fadv) fsym r(fret+ fad—v) (64)

and similarly for fad .
All the self-fields of the ith particle are of the form

(63)
Kj

corti(tIsetIvP&i &j srisv) tt—
(

.a .P

a-
f' '=(5'/lt~) f'" = (S'/a'). —(65)

in the symmetric case. Equations (56) and (62), or (61)
and (63), are now to be substituted into Eq. (47) to
obtain the explicit form of the equations of motion in
terms of the particle variables in the retarded or sym-
metric case.

However, all of these quantities become infinite at the
positions of the particles. Thus, a simple substitution
would lead to meaningless expressions, and we have to
investigate the behavior of the Geld quantities on ap-

~ In reference 13 the definition for g; was given erroneously with
tl'1e Wrong Segn.

or derivatives of such terms, and we have to evaluate
them for K,™-+0, which we shall indicate by a subscript
0. For these limits we have preference 47, Eqs. (3.8)

~ M. Riesz, Acta Math. 81, 1 (1949) and references given there.
44 For applications of this method to the electromagnetic and the

meson case see N. E. Fremberg, Proc. Roy. Soc. (London) A188,
18 (1946).

45 A similar procedure has been used in an analogous problem of
equations of motion in the case of interacting electromagnetic and
meson fields by Wm. C. Schieve, Lehigh University thesis, 1959
(unpublished); Wm. C. Schieve and P. Havas (to be published).

ee H. J.Bhabha and Harlsh Chandra, Proc. Roy. Soc. (London)
A185, 250 {1946).

'r Harlsh Chandra, Proc. Roy. Soc. (London) A185, 269 (194|I).
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and (3.11)J
-(Si 5;

/

—
/
+ — = —25;s,

Kg v Kg ~ 0

-)5;y tS;y
- S;

Ki r Ki a- 0

(70)

-(5) 5;
~'.

I

—
I
+-

&~i, ~; . o

rip. p—S;(v;& v, &rf—pv; 'vp)+2v;I'8;+2va~S, )o.

Applying these formulas and using the notation

(66)

Thus the divergent self-action terms of Eq. (47) add up
to

-'ns 8 g p~"e ~v &

we obtain

.ret .adv —,rad (67)

&g;~p" v; v, =0, ~g;»" v; =46m,q»v, ,

g p
s vav p='GmpfppLs(v, p —v, prf~pv, av,P).

+4V~~'gapV~ Vi j)
(68)

and thus for the retarded case the radiation terms of
Eq. (47) add up to

-'m 8 ~g prado;~e;t'

( g
. 8ettv, p trl v p g

681f vcr vp)

dr;
lg pV= lim-,'Gm

e~o
(71)

Thus these terms only enter the equations of motion in
the form of a constant times the acceleration. But
since in our derivation of the equations of motion
the quantity 2llI;, which enters only in the form
d(2M, rf„p,')/dr; Lsee Eq. (45)], is only determined up
to the constant of integration 2C; by Eq. (46), we can
compensate for the term (71) by a suitable choice of this
constant. We put

= (11/3)Gfl prf„, (v;& v;&rf—.pv v'p) (69.)

Gns
2Cg= hm2

a~0
(72)

Now we turn to the evaluation of the limit of the first
term in Eq. (64),

(70).ret .ad v — .self

which, in contrast to the second term (67), becomes
infinite on the ith world line. Using the series (26) of
reference 46 we get then, by using the techniques of
reference 47 which led to Eq. (66),4s

and then no infinite quantities will be contained in
Eq. (47).

Thus both in the retarded and in the symmetric case
the finite equations of motion of the ith particle are
obtained by omitting the symmetric part of the field of
the particle itself in the sums appearing in Eqs. (56),
(61), (62), and (63); in the retarded case the remaining
radiation part of the field is given by Eq. (69).Therefore
we finally have

L(flin+i gap ) ' srll pv* i g p'" v; v, j= sos;ci;„ t~g~p'~

Kg

as the equations of motion in the symmetric case, and

,e .P 1 .~ .p('ilj (Qya g~pvj vj '2'/pe) ) (re~'(rfsarf pv& vip srl&~))—
'g ™=—2GZ

Kg )),

(73)

t (~ +i'g -')V' —2V»V" i'g-P"'V' V"j=2~;&;»'g.p"'V,'VP Ge,s~ (V ' V,'~—„PV—,-V,P), —

f l( f0~ l "p y Vp 2 4&) )'g '= —4GP
~

Kp'

(74)

in the retarded case. ' In the advanced case we similarly get an equation of the form (74) with t~g» &~t replaced by

"These expressions were not given explicitly in references 46 or 4f because it had already been established in general by the authors
that all singular terms can be eliminated. The elimination is carried out here explicitly for the benefit of readers unfamiliar with the
special relativistic techniques involved. A use of the Riesz potentials discussed earlier would also make unnecessary the explicit
consideration of infinite self-action terms, or of nonzero C s.

49 In the equivalent Eq. (10) of reference 13 the radiation term was erroneously given with the wrong sign.
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i'g„„'s', and with the opposite sign of the radiation reaction term. The superscripts i in Eqs. (73) and (74) indi-
cate that the field of the ith particle is excluded.

Just as for the special relativistic equations of motion of point charges originally considered by Wheeler and
Feynman" and of point singularities interacting through meson fields" it is possible to pass from the equations of
the symmetric case to those of the retarded (or advanced) case. The details of this demonstration, as well as some
considerations on the significance and limitations of the result, will be found in Appendix II.

Just as we have shown above that from the point of view of field theory the field equations imply the equations
of motion, we shall now show that it is possible to formulate the theory in terms of particle variables only, but
nevertheless to imply a set of field equations in addition to the equations of motion. For this purpose we start from
a Fokker-type variational principle and proceed in complete analogy to electro-" " and mesodynamics"; as
in those theories we are generally limited to the symmetric case. We consider

N
J—= Q res (r) pv, v, P)~dr; P—Gm, rirs

r)s~rt~pv~ vi »"v&" sr)~pvj '6 s'r)~p»» +s
X dr, dr s = extremum. (75)

(ri, sv; v )&(r),.v(, vs')'

Variation of J with respect to the coordinates s', & of the ith particle leads us by well-known procedures" "to Eq.
(73).To obtain "6eld equations" we define the "adjunct"" field quantities

(rlsar)vpvj vj srlsv)Ds(rfxisj sj )drj (76)

with s;& defined by Eq. (2), and note that'

OD, (rl„is,"s;")=Os-5'(s, &). (77)

Multiplying both sides by Gm;(r)„ t)„pv, v, P ——,ri„„)dr, and integrating from —~ to ~ we obtain

(rl„.rl„pv; v, P ', r)„,)8'(s;&—)d-r, , (78)

which from the definitions (27) and (29) and Eq. (39) is
equivalent to Eq. (42), with the source due to the jth
particle only. Our previous i'g„,'r equals P;~; ig;„,'r"'
on the ith world line.

Just as in electro- and mesodynamics, we could also
define an energy-momentum tensor of the "field" in
terms of particle variables alone with the help of the
quantities (76), and obtain detailed conservation of
energy-momentum as in fieM theory. ""Possible ex-
plicit forms will be discussed elsewhere. "

V. DISCUSSION

The equations of motion (73) of the symmetric, (74)
of the retarded, and the analogous one of the advanced
case have the features familiar from special relativity, '4
especially from electrodynamics. The 6elds acting on the
particles are determined not by the simultaneous posi-
tions of the other particles, but by the retarded (or
advanced) ones; these latter positions are not known
initially, but have to be determined in the process of

~ J. A. %heeIer and R. P. Feynman, Revs. Modern Phys. 17,
157 (1945)."P.Havas, Phys. Rev. 87, 309 (1952); 91, 997 (1953).

"A. D. Fokker, Z. Physik 58, 386 (1929)."J.A. Wheeler and R. P. Feynman, Revs. Modern Phys. 21,
425 (1949).

solving the equations for the actual motion, and the
retarded and advanced fields of the particles which
depend on their velocities and accelerations are those
corresponding to this motion. Furthermore, the equa-
tions (except in the symmetric case) contain radiation
reaction terms which di6er from those of electrody-
namics only by a constant factor.

This structure of the equations follows necessarily
from our derivation, in particular from our handling of
the expansion in X as implying that the 6eld equations
had to be solved up to a given order rather than in each
order independently. However, they differ from the
results of other authors'~57 who attempted. to obtain
Lorentz-invariant equations of motion, in one or both
of the features discussed above.

In particular, the equations of Bertotti" and Geissler"
are of the general form (47), but using expressions ig p

corresponding to the first-order motion with constant
velocity, and similarly putting all accelerations ap-
pearing in the derivative on the left-hand side of Kq.
(47) equal to zero except the one appearing with the
factor m, only. But such a procedure amounts to allow-

"F.J. Belinfante, Phys. Rev. 89, 914 (1953)."B.Bertotti, Nuovo cimento 4, 898 (1956).
56 D. Geissler, Z. Naturforsch. 14a, 689 (1959).
'7 R. P. Kerr, Nuovo cimento 13, 469, 492, and 693 (1959).
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ing the metric to become inGnite on two different sets of
world lines (of the first and second approximation, re-
spectively), and is mathematically inconsistent.

Belinfante's purpose in considering certain equations
of motion'4 was to obtain a linear special relativistic
theory of gravitation which is able to reproduce the
three Einstein effects of general relativity. He started
from a Lagrangian containing a large number of ad-
justable constants. For a certain choice of these, the
equations of motion of the form (47) with the field
equations (42) follow. However, Belinfante explicitly
omits self-action terms in his considerations. For a con-
sideration of the Einstein effects this is entirely justiGed,
but for an application to higher order problems this
would lead to inconsistencies. Such terms can easily be
included within the framework of his considerations,
however, with results entirely consistent with those of
this paper. 5'

Radiation damping terms are also omitted by Kerr"
as being of higher order. On describing the approxima-
tion method in Sec. III we discussed why consistency
requires that one solve the Geld equations up to a given
order and then determine the equations of motion which
follow from the integrability conditions of the next order
solution. In this procedure one no longer has the privi-
lege of omitting terms "of higher order" although it is
true that one must be ca,reful in their physical interpre-
tation. To argue that additional terms of a similar
nature will arise from higher order solutions does not
alter the fact that radiation damping terms appear
already in the second order.

It should be noted particularly that terms of the same
order as the explicit radiation reaction terms appear
implicitly in the equations of motion (74) through the
retardation effects in the metric; they appear with
opposite sign and cancel the main contribution of the
exphcit terms (thereby assuring that in low-velocity
approximation the main radiation term is of quadrupole
rather than dipole character). Thus omission of the
explicitly appearing terms introduces an error of lower
order than their retention could possibly have. '

In addition to this point, Kerr's paper differs from
ours by his attempt to avoid the use of 8 functions,
which he considers to be mathematically and physically
unsatisfactory, in his derivation. The relation between
the methods of obtaining equations of motion using ex-
tended sources and singularities, respectively, has been
extensively discussed in the literature" and we shall not
take up this question here again.

In a series of papers whose arguments are summarized
in his book with Plebanski, " Infeld has argued that
gravitational radiation does not occur. However, in his

's P. Havas, Bull. Am. Phys. Soc. 6, 346 (1961).A detailed ac-
count is in preparation.

&9 This point will be discussed in detail in reference 39.
60 For recent discussions see, e.g., L. Infeld and J. Plebanski,

reference 10, or T. H. Pham, Nuovo cimento 9, 647 (1958), and
references given there.

argument the choice of coordinate conditions, and hence
boundary conditions, plays an important role. Instead
of Eq. (51) Infeld takes

Q X"cl„„y0"=0, Q X"tli y"=0, 0, l=1, 2, 3

as his coordinate condition. The requirement that the
field fall off as 1/r for large spatial distances leads to an
inconsistency unless the radiation term vanishes, as
otherwise logarithmic terms appear in higher orders.
This situation does not occur with the coordinate con-
ditions used in this paper, as Infeld remarks. It is easy
to show that in the presence of radiation the transforma-
tion les.ding from the conditions (51) to those used by
Infeld involves logarithmic terms. Although there may
be a wide choice of coordinate conditions, one must be
careful that the choice does not throw out physica]ly
interesting and important solutions. In the absence of
experimental evidence to Gx the boundary conditions it
is necessary to examine under what conditions gravita-
tional radiation effects may be expected. If experiment
tells us that these conditions can not be satisGed, then
certainly Infeld's argument is correct; it is of course
compatible with the choice of the symmetric equations
of motion (73).

Other mathematical arguments concerning the re-
strictions imposed on the solutions of the field equations
in higher order by requiring the boundary condition
g„„—+p„„have been raised by several authors. ""Re-
cent work" on the asymptotic metric in the presence
of a radiation Geld refutes the argument that the field
necessarily diverges.

As discussed in Sec. IV, the method of Riesz poten-
tials guarantees that the metric will be Gnite at the
location of the point particles in all orders. Thus it
is possible to write down the g„„'s appearing in our
nth order equations of motion (49) in the form of inte-
grals which are known to be finite, and in a sense we
have thus solved the problem of obtaining Gnite Lorentz-
invariant equations of motion in all orders. However, it
is desirable to exhibit the radiation reaction terms ex-
plicitly as functions of the particle variables. Unfortu-
nately, the integrals are so complicated" that an explicit
evaluation of the radiation reaction terms has so far not
been possible beyond the second order. A different ap-
proach to the integration of the higher order inhomo-
geneous wave equations have been taken by Bertotti
and Plebanski, "who studied in detail the structure of a
set of generalized Green's functions. However, they were
not able to eliminate the inGnite self-action terms arising
in their method.

The method used in this paper to obtain Lorentz-

'A. Papapetrou, Ann. Physik 1, 186 (1958); 2, 87 (1958); A.
Peres and N. Rosen, Phys. Rev. 115, 1085 (1959).

'H. Bondi, Nature 186, 535 (1960); H. Bondi, A. W. K.
Metzner, and M. G. J. Van der Burg, Proc. Roy. Soc. (London)
(to be published); R. Arnowitt, S. Deser, and C. W. Misner, Phys.
Rev. 121, 1556 (1961)."B.Bertotti and J. Plebanski, Ann. Phys. (Near York) 11, 169
{1960).
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invariant equations of motion of simple poles of the
gravitational field can easily be generalized to include
particles with intrinsic angular momentum, and non-
gravitational fields. Some results were mentioned in
reference 13, and detailed papers on this subject are in
preparation.

The presentation of the application of the equations
to speci6c problems has also been left to other papers.
We shall, however, briefly discuss some simple applica-
tions and the result of a calculation of the two-body
problem. """First of all it is clear that our equations
for very low velocities and accelerations reduce to
Newton's equa, tions (regardless of the choice of retarded,
symmetric, or any other Green's functions). If, using the
same equations, we carry our calculations to the order
s'/c' (again regardless of the Green's function chosen),
we obtain equations which for the two-body problem
give an advance of the periastron of 7/6 of the Einstein
value both in the test particle limit" '4 and for com-
parable masses. ""Although it may be disappointing
that we do not obtain the exact value in the test particle
limit (the exact value for comparable masses is not
known and thus the correctness of the EIH result" is
not established), it should be noted that we do obtain an
advance of almost the right magnitude in our fl, rst non-
trivial order of approximation rather than in the second
nontrivial one with the EIH method (and that, from the
meaning of our expansion parameter, our method is
better suited for the case of comparable masses than for
the test particle limit). In comparing the relative merits
of the method presented here and that of EIH in the
calculation of specific results this should be kept in
mind. Similarly it should be kept in mind that the EIH
method was speci6cally designed for the treatment of
problems involving low relative velocities, and thus can
be expected to give more accurate answers than the
Lorentz-invariant one in this range; the latter method,
however, having been designed specifically for the case
of high relative velocities, can be expected to be better
suited for that range. In this sense we believe the two
methods to be fully compatible, and can not agree with
some points raised by Infeld. '

Carrying the calculation of the two-body problem
beyond ss/c', we have to distinguish between the results
of different Green's functions. There are no radiation
effects in the symmetric case. In the retarded case, a
detailed investigation of the two-body system"" shows
that there is an apparent energy gain of the system,
rather than a loss as expected from electrodynamics. ""

The significance of this result is not clear, but it appears
that this means that we have pushed the limits of
applicability of our second-order equations too far. This
is the more likely because the energy loss is not, as may
be thought at first sight, a simple consequence of the
sign of the radiation reaction term in Eq. (74), which is
opposite to that of the electrodynamic one. Rather it
follows from the sign of the small difference between this
self-action term and a similar term originating in the
retarded field of the other particle (which we discussed
above). Unfortunately it is impossible to separate out
this difference in a Lorentz-invariant fashion, and we
are thus forced to keep the full equation of the form
(74), and to await the calculation of the results of the
higher order equations.

To understand the signi6cance of the apparent energy
gain, similar calculations have been undertaken for a
class of linear theories of gravitation. " It turned out
that all linear theories derivable from a Lagrangian
which give the correct advance of the perihelion in the
test particle limit also give an energy gain. Thus it
appears that there either is really an energy gain in the
retarded case, or that it is not possible to get meaningful
results about gravitational radiation on the basis of any
equations resembling the linear equations familiar from
electrodynamics and other special relativistic 6eld
theories.

We wish to acknowledge numerous discussions with
colleagues on various aspects of the work in the course
of the preparation of this paper, particularly in connec-
tion with the 6nal section. We also wish to acknowledge
the hospitality extended us at the Institutes of Theo-
retical Physics of Copenhagen and Stockholm in the 6nal
stages of the preparation of the manuscript.

APPENDIX L ALTERNATIVE DERIVATIONS

The reason we chose to start from the form (24) of the
Einstein equation rather than from the form (18) was
that the former allowed a more convenient use of the
Bianchi identities I to go from Eq. (34) to Eq. (37)$
than the latter. We now wish to discuss some alternate
derivations based on Eq. (18). We expand the metric
(20) as before, but now expand the tensors P„„and G„„
rather than Q&" and I"".We put

P„.= P X" „Ps, P's.= 2 ~" P~s. (~'),

(79)

S. F. Smith, Lehigh University thesis, 1960 (unpublished);
S. F. Smith and P. Havas, Bull. Am. Phys. Soc. 5, 53 (1960).

s' H. P. Robertson, Ann. Math. 39, 101 (1938); the same result
is contained in a paper by A. S. Eddington and G. L. Clark, Proc.
Roy. Soc. (London) A166, (1938), who had independently ob-
tained the KIH equations by correcting an error in the calculations
of de Sitter, reference 16."L.Infeld, Bull. acad. polon. sci. , Classe III, 9, 93 (1961).

67 The relation of this result to the various conflicting slow
motion calculations will be discussed in reference 39.

"Conversely, there is an energy loss in the advanced case, and

n I

and Eq. (18) becomes

(80)

the possibility that in the case of gravitational radiation we have
to choose the advanced equations will have to be considered.
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Here, the functions

n+pv 2—g filv(alp ngap ilv ngpp) ~p(imp ngvv ilv ngpv) 2gpvrj g filp(isa ngap ilv ngap) imp(~a ngvp ilv ngap)] (81)

are linear in the „g p's. The eth order functions U'„, only involve g p's of lower order. In particular we have
Upv 0 and

~Up. = ~.(lg,.n "n'~p lg-s) ~p—Ln"~' lg-i (~p lg-+~. lg" ~- ig")]
krj' (~Iv lgpp+'Ip lgpv imp lgpv)l '9 (~la lguv+ilv lgau ill lgav) &v'~a lgvN" ]

+klgp. Ln"&lg,. 2n"—n'~, .(lg-s 2n-—~n"" lg.l)]
+p&p, {&"0' lg pf2lt"&l. (lgp, —2&p,lt"" lg.l)—I-I lgp.]

n""~—.( glp~"n'~»g-s)+»~Le"n" lg"n'~. (lg-s 2~—-~""lg l)]
+-',„&(a.,g,+a, ,g. —8 g„,)g' g' (cj, g.,+B„g,.—B. g,„)

2n"'—~, lg. in"n'~. (lg-p kn-—un"" lg")) (82)

We note that we have identically

q""8), „I-„„=O

and thus Eq. (80) implies

X"g""B),(16m.G „P„„U„„)=—0.

(83)

In the original derivation of the equations of motion
(73) and (74) (sketched, but not given in detail in
reference 13) the method of Lubanski" was used with-
out essential modification; we introduced the coordinate
condition (51) and thus obtained the wave equations

It is this lengthy calculation which is avoided by the
use of the Bianchi identities in going from Eq. (34) to
(37), but while a corresponding treatment of Eq. (87) is
also possible, it is more awkward.

Ke shall not carry out the modified Lubanski method
here, but proceed with Mathisson's method as in Sec.
III. From Eq. (86) we obtain easily

lPipv=rlpa'gvprNilli &i

From Eq. (88) we get

Q 1y„,= —16m.G 1J'„,

2

(CI vnppv+ 16lrG nÃpv vnUpv) =0
(85)

{ '0 (lPipv+2Pipv lt 17vv 1Pipp)ilail(

—-'&""&"~'p lg»P'pp P)iver'= o (9o)

Here we substitute (89) and break up 2p;„„as in Sec. III:
in first and second order. Equations (85) were integrated
by means of the diferent Green's functions of Sec. IV
and then the solutions were subjected to the coordinate
condition (51), which led by Lubanski's techniques
after somewhat cumbersome calculations to the second-
order equations of motion as conditions on 2P„„.

A much simpler derivation was obtained later by a
modi6cation of Lubanski's method, sketched in refer-
ences 4 and 64. This was actually a special case of
Mathisson's method as used in this paper, use being
made of a special function fthe retarded Green's func-
tion D, defined by Eq. (52)] instead of the arbitrary
function P of Eq. (5); this method no longer required
an integration of Eq. (85), but made use of Eq. (84)
on]y. In first order in ) this becomes

g""8), 1I'„„=0,

and up to X2 it equals

~zg 1+ov /pa'gpP&i &i gva&i 2+i@~2 Qipp
po'

2*Q,p„w,"=0. (92)

Contracting this with e;" we obtain

aQip= pm' Q'pv &i"gapa&i &i )

n Qipv=rPiPlpa&i &i (&vs&i lVP'p Oi l'YPv)..O. .P f .x .P— (93)

Now we can transfer the terms involving v;"8;q by an
integration by parts to obtain

nPipv=2. " i'ljpagvP&v &i +a'+ip rjva&i,a .P~ ,CE

.e~+2m;„qp ll, +2 P;„„,
2'~ipv 2 &ivIIp 2 +ipv &i 0p 2+i' &i

We must similarly break up the third term in Eq. (90):

lt""Blf16mG(lP„,+lPp„)—2U„„]=0; (87)
n""(2*P'p.+2m'. rjp«—l" +2*Q,„)~

leap

carrying out the last diiferentiation in (87) using
Eq. (82) one obtains after a rather lengthy calculation

'g ill(lPpv+2Ppv 'g 1Yvv lPpp)
lq""gpa&„ lg, l,P„p=—0. (88)

+ f(m;+2M;)rj„v, +,n;„+,Q;„]p

——',rN, B,„,g p v, w;ilP dr, =0. (94)
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$(m'+s~')rlpov' +s+'p+sQ'i, j
—2m, rl;p ig~p 'V, =O. v, (96)

Substituting for &Q;„and sn;„ from Eqs. (93) and (95)
and then contracting with e;& we get

m ;+s.V;—m, iy p v, v, )—m; tymp v, v,.a .pX .a ' .p

dpi
—-', m, a,„,gp v,'viP= 0. (97)

This equation for 2Mi is again integrable provided
m;=0. Then it can be written

2«& i (s™ilVapvi vi +dmitI 1gap)p
.a .p~L, ep

dri
and thus

(98)

2%i = smir'yap vi vi +dmitI 1gap+s+i (99)

Substituting this back into Eq. (96) we again obtain
Eq. (47). The rest of the derivation is identical with
that of Sec. IV.

It shouM be noted that the successive terms obtained
by expanding P„„are more complicated than those re-
sulting from the expansion of Q&" and do not reduce to
the simple form (48); this is of course to be expected
from the considerations of Sec. II. Nevertheless, again
in accordance with Sec. II, we obtain the same equations
of motion.

Whichever form of Einstein's equations is taken as
the starting point, it is essential to expand the covariant
g„„and break up the energy-momentum tensor with
respect to the contravariant vip. This procedure leads to
expressions for the ~;„„which are immediately inte-
grable. Other procedures do not lead to such perfect
differentials directly. It should also be noted that re-
gardless of our starting point, Eq. (51) suggests itself
naturally as the appropriate coordinate condition.

APPENDIX II. REMARKS ON WHEELER-FEYNMAN
TYPE CONSIDERATIONS

We 6rst wish to show that, subject to considerations
analogous to those of %'heeler and Feynman in electro-
dynamics, we can pass from the equations of motion of
the symmetric case (73) to those of the retarded or
advanced case. From Eq. (64) we have

.SynI .ret & get .ad V

+x(f ret f sdv) (100)

Proceeding as before, we conclude from this that

2+'i=2 ~iJ v &i =~Pi (Zppv pvX&i 1&pp&i gp
.p i' .X .p%

s*P;„„=0 (95)

The Wheeler-Feynman condition )reference 50, Eq.
(37)j requires

.ret . .adv

and thus we have on the worM line of the ith particle,
using the notations of Eqs. (67), (73), and (74),

igspm igret+ g,rad (102)
Therefore, Eq. (73) together with condition (101) is
equivalent to Eq. (74) of the retarded case, again sub-
ject to condition (101)"";by a similar argument it can
be shown to be equivalent to the equation of the ad-
vanced case together with Eq. (101).An argument of
statistical nature is required to discriminate between
these two alternatives.

The question naturally arises whether in higher orders
of our approximation method we can still expect a
multiplicity of solutions for the metric (corresponding
to retarded and advanced fields and their combinations)
and thus of equations of motion, and whether these
equations can still be related by a Wheeler-Feynman
type argument.

If we impose the coordinate condition (51), the metric
satisfies the inhomogeneous wave equation (50) in all
orders. This equation can be integrated with the help of
the Green's functions (52) or (54) regardless of the order
of approximation. Furthermore, as discussed in Sec. III,
we are treating Eq. (50) as a single equation to be
solved up to order m rather than as e separate equations,
which, as noted before, automatically assures that the
same Green s function is used in all successive approxi-
mations to the metric. Therefore we have indeed the
same multiplicity of solutions and of equations of mo-
tion in all orders as in the order discussed in detail
above.

As for the second part of the question raised above,
we note that the condition (101) requires the equality of
the ]otal retarded field and the total advanced fieM, i.e.
the 6elds calculated from Eq. (50) with all A particles
included as sources. Thus it requires the equality of the
solutions of this equation obtained by using the Green's
functions (52) or (54), and therefore also of all linear
combinations of these functions with appropriate eoeK-
cients. But as the equations of motion are a consequence
of the field equations (in the sense discussed in Sec. III),
the validity of the condition (101) implies the existence
of a unique set of equations of motion subject to this
condition. "

"See also J. Weber and J. A. Wheeler, Bull. Arn. Phys. Soc. 2,
13 (1957).

7 However, Eqs. (73) and (101)are not fully equivalent to Kq.
(74) alone, exactly as for the corresponding equations in electro-
dynamics. For a discussion of this difliculty see P. Havas, Phys.
Rev. 86, 974 l1952l.

7'This implication of the Wheeler-Feynman condition is iden-
tical to the one in electrodynamics, discussed by P. Havas, Phys.
Rev. ?4, 456 (1948); the arguments are also identical except for the
last step, which must be based on the energy-momentum tensor of
the electromagnetic Geld rather than on the Geld equations. It
should be noted that since only the total Geld is involved, the
argument is valid even if the equations obeyed by this Geld are
nonlinear.
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Thus the answer to our question hinges on the validity
of Eq. (101).The most general argument for this con-
dition was given in "Derivation IV" of reference 50; to
the order of approximation considered above, all the
steps of this electrodynamic derivation can be dupli-
cated in the gravitational case. However, this derivation
depends essentially on the linearity of the fundamental
equation obeyed by the field —in our case Eq. (42)—and
the possibility of its extension to the higher order equa-
tions of the form (50) has not been established. Further-
more, the Wheeler-Feynman derivation has been ques-
tioned on cosmological grounds; on the other hand, it
was noted that a different derivation of Eq. (101) might
be possible from cosmological considerations, " which
clearly could not require linearity. Pending a satis-
factory derivation of this or possibly another type, our
question remains open.

The Wheeler-Feynman theory was originally formu-

"Reference 71, footnote 13.

lated in terms of action-at-a-distance concepts. It was
shown subsequently, however, that its main result, the
derivation of the electromagnetic radiation reaction
force for the case of time-symmetric interactions, can
be obtained on the basis of field-theoretical concepts as
well. " A similar remark holds in our case. From the
point of view of action at a distance we would simply
postulate the time-symmetric equations of motion (73)
Lor the variational principle (75) which implies these
equations] and then derive Eq. (74) by the procedure
indicated. From the point of view of 6eld theory Eq.
(73) is obtained from the field equations, which are
considered to be more fundamental, but the way from
Eq. (73) to Eq. (74) is the same; it can even be con-
sidered to be more appropriate from the point of view of
field theory, because its basic condition (101) involves
the total Geld at all points in space-time rather than only
the interactions between pairs of particles. The possi-
bility of extending this argument to higher orders de-
pends on the considerations discussed above.


