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In this paper we derive the equations of motion satisfied by the density matrix of an arbitrary physical
system in contact with an infinite thermal reservoir of quantum mechanical free particles. We show that
for weak but sustained interactions between system and reservoir, the reservoir is represented by a linear
time-independent kernel in the system density matrix space. We obtain the kernel for the three possible
models of quantum mechanical free particles which are boson and fermion reservoirs in which the system-
reservoir interaction conserves the number of particles of the reservoir and a boson reservoir in which
reservoir "particles" may be created or destroyed. In order to derive the equations of motion without
using the inconsistent "rerandomization of phases" after each interaction, we generalize the Wigner-
Weisskopf theory of line broadening of spectral lines to the equations of motion for the density matrix. We
next show that the kernel preserves the normalization, positive-definiteness, and Hermiticity of the system
density matrix and causes the system to approach equilibrium monotonically. In the limit of a classical
reservoir our results include a derivation, without the repeated use of random phasing, of Bloch s equations
of motion for the density matrix of a spin system imbedded in a thermal reservoir.

I. INTRODUCTION

N this paper we extend a theory of irreversible
Gibbsian ensembles from classical to quantum

mechanics. In two previous papers Lebowitz and
Sergmann' ' had obtained and discussed to some extent
an integrodifferential equation in F space which de-
scribed nonequilibrium classical ensembles. In its
derivation they had assumed that initially the reservoir
and system were statistically uncorrelated; i.e., the
initial distribution of system-plus-reservoir was the
product of the systems distribution and the distri-
bution of the reservoir. They considered impulse
interactions ("collisions") between the system and
individual components of the reservoir, which led to a
canonical mapping of the joint phase space on itself.
Immediately after a collision the reservoir component
that was involved was discarded. Thus, the assumptions
of independence referred to each reservoir component
before collision; this assumed asymmetry between past
and future led to irreversibility.

In quantum mechanics we can also start with a
product distribution; but the boundary condition for
impulsive interactions ties together the incoming and
outgoing waves in such a manner that it is diQicult to
develop a consistent method for discarding the reservoir
particle after collision. Intuitively, our difhculty may
be formulated in terms of the uncertainty principle. If
we let the time of interaction of system and reservoir
particle go to zero, then the energy becomes indetermi-
nate, and immediately "after" the collision there is no
clearly defined reservoir particle energy.

There are two possible ways to remove this difhculty.

One method would be to consider a system and reservoir
each of a sufficiently low density that there is enough
time between collisions to treat eath individual collision

by the S matrix of the two-body problem. This method
has the disadvantage of limiting the density of the
system and the reservoir to nondegenerate quantum
mechanical gases.

The second method, which we adopt in this paper, is
to consider weak but sustained interactions. This
alternative has the advantage of not limiting the
density of the system and permitting reservoirs of
moderate degeneration. The problem is to develop a
method of consistently discarding the reservoir particle
after collision.

Redfield' has shown that the first-order perturbation
solution of the quantum mechanical Liouville equation
for a system in contact with a reservoir may be repre-
sented for a restricted time interval by an integro-
differential equation whose solution for the same time
interval agrees with the perturbation theory result.
The difficulty with the derivations of Redfield and of
Wangness and Sloch4 is that after each time interval
it is necessary to rerandom phase. Van Hove' has
pointed out that derivations based on random phases
at all times cannot hold true for nonequilibrium distri-
butions. His argument which he gave for isolated
systems holds also for systems in contact with a
reservoir. The essence of his argument is the pertur-
bative result for p(ts+r) is exactly equivalent to
p (tp r), where p —is the density matrix of system
+reservoir and r is the usual "long but not too long

*This work was supported, in part, by the Air Research and
Development Command, Air Force Cambridge Research Center.' P. G. Bergmann and J.L.Lebowitz, Phys. Rev. 99, 578 (1955).' J. L. Lebowitz and P. G. Bergmann, Ann. Phys. (New York)
1, 1 (1957).

3 A. G. Redfield, IBM J. Research Develop. 1, 1 (1957).' R. K. Wangsness and F. Bloch, Phys. Rev. 89, /28 (1953).
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time" of perturbation theory and thus Bp/Bt=O for
tQ t'p.

Van Hove' gave a derivation of the Pauli equation
for an isolated system which was no longer open to the
above objection for certain classes of initial conditions
and where the interaction satisfied the diagonal singu-
larity condition. Our solution of the problem is different
but related to Van Hove's method. First, since we are
considering not an isolated system but a system in
contact with a reservoir we do not make any restrictions
on the initial density matrix for the system. However,
the reservoir is considered in equilibrium; i.e., it is
diagonal at all times.

Our method consists of a generalization of the
Wigner-Weisskopf' and Heitler' theory of line broad-
ening to the space of density matrices. Although we
do not assume the diagonal singularity condition of
Van Hove, we Gnd that our generalization of the
Wigner-Weisskopf theory, in eRect, retains only those
terms of the interaction which satisfy the diagonal
singularity condition in the Hilbert space of the
reservoir particles.

The Wigner-Weissk. opf method applied to line
broadening for an atom in a vacuum is equivalent to
considering only those intermediate states in which
there is only a single photon present at a time. Our
generalization of their method leads to considering
only those intermediate states of system+reservoir in
which a single reservoir particle is present at a time.
As a result we are able to discard consistently the
spent reservoir particle after interaction.

Our model for a relaxing system consists of an
arbitrary quantum mechanical system in interaction
with a reservoir of free particles. We will consider three
cases. Case 1 and 2 will represent fermion and boson
reservoirs, respectively, with an interaction Hamil-
tonian that conserves the number of reservoir particles;
in case 3, the interaction Hamiltonian does not conserve
the number of bosons. We can not have a fermion
reservoir with an interaction Hamiltonian linear in
annihilation and creation operators because spin
changes cannot be half-integral. The system in all three
cases is completely arbitrary and occupies a fixed
volume 0,. In each case we first assume the reservoir
consists of 1Vg free particles (on the average) in a
volume Qz with periodic boundary conditions. We
then take the limit as Xg —+ ~ and Qg —+ ~, such
that Xn/Q~ approaches a 6nite limit.

There are three important consequences of this limit.
First, the number of reservoir particles that interact
with the system is proportional to 0„the volume of the
system, so the fraction of the reservoir that has inter-
acted with the system is Q,/Qn which vanishes in our
limit. Thus, we may neglect the reservoir particles that

s L. Van Hove, Physica 21, 51'/ (1955).
r V. Weisskopf and E. Wigner, Z. Physik 65, 54 (1950).

W. Heitler, The Quaetlnz Theory of Eadiatioe (Oxford Uni-
versity Press, New York, 1954), 3rd ed. , Chap. 4, Sec. 16.

have interacted with the system so the system "sees"
an equilibrium reservoir before equilibrium. As a second
consequence of the limit we may replace, with negligible
error, the discrete sums over reservoir states by inte-
grals over a continuous level density. Only in the case
of a boson reservoir below its lambda point must the
discrete level density be taken into account. Thirdly,
we show the eRect of the reservoir on the system is
through a time-independent linear operator which
depends on the density of the reservoir only through
the chemical potential of the reservoir. We are thus
able to carry out the integration over the reservoir
explicitly.

In Sec. II we show the equations of motion for the
density matrix of an arbitrary system in contact with
a reservoir has the form

where g is a potential that commutes with H, and
E p

+~ &+~ is the time-independent stochastic kernel
that represents the effect of the reservoir on the system.

In Sec. III we carry out the explicit evaluation of
the formal kernel derived in Sec. II for the case of a
boson reservoir with a particle-conserving interaction.
We also discuss the conditions on the reservoir that
were imposed in the derivation of Eq. (1.1).

We show in Sec. IV that the kernel K preserves the
normalization, Hermiticity, and positive definiteness of
p. We also show the system approaches equilibrium at
the temperature of the reservoir monotonically.

In Sec. V we give the results for the fermion reservoir
and the boson reservoir with an interaction that does
not conserve reservoir particles. We discuss our results
and their relationship to other derivations in Sec. VI.

II. BOSON RESERVOIR %'ITH CONSERVATION
OF PARTICLES

In this section we derive an equation for a quantum
mechanical model of irreversibility. We first treat in
some detail a reservoir consisting of bosons whose
number is conserved. The equations for the fermion
reservoir whose number is conserved and for the boson
reservoir for interactions that do not conserve reservoir
particles are given without detail in Sec. V.

Consider an arbitrary system with Hamiltonian H,
eigenstates

H, less') =E.I rsvp').

(H„s) is a complete set of commuting observables.
In all that follows we suppress the degeneracy index

e'. We can add it. in the final form of the equations
without difhculty. Therefore, we set P.lu)=E In),
where Greek letters always denote states of the system
and Latin letters refer to the reservoir. Also, for the
sake of brevity, we confine ourselves to a Hamiltonian
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The e~ are single-particle energy levels. When we take
cyclic boundary conditions for a particle of mass m,
we have

e).——(k)'/2m, k=(27rN)/LIF, N=O, ~1, ~2,
where we have set 5=1.

The eigenstates of HII are
I n) and they satisfy

H, ln)=(g;~;p;) ln),

where n represents the sequence n~n2

The interaction Hamiltonian is

V=) p), ), (klan(xy) lk')a), '(I)... (2.2)

where )t) (xy) is the interaction between a single reservoir
component at y and the system at the point x in its
configuration space; ) is a dimensionless constant.

The matrix elements of V in the rock space of the
reservoir are (n

I
Vl m), where we have used boldface V

to indicate that (nl VI m) is an operator in the Hilbert
space of the system. The explicit representation of
(nl V

I
m), which we will not need till later, is

(n I
V

I
m) = p), ), (k I t(x))y)

I
k')n), "'(IF), +1)'F'

X&m))e)&m))))' ' '&m)))e))—I' ' '()mp')))F, 'yl (2 3)

The density matrix p, for the combined system
+reservoir satisfies the Liouville equation,

B,with a discrete spectrum of eigenvalues by enclosing
the system in a volume 0,.

We describe the reservoir by second quantization.
The Hamiltonian for a system of noninteracting bosons
is then

Ha=ZF N) p~,

where the operators XI, are, as usual,

Xg= Gl(; Cl(;
t

and the aI, satisfy the standard commutation relations:

gygyI —gg, IGI =0, cy'GIeI —ggI'gl(„' =0,
~a r —~a ~I =~aI'-

where
(m I 0 I

e)= ()md m) p (t) = t')m)&me *p (0)) (2 6)

I'm= Z 'e '("" F")-) Z-= Tre-'("' F~-) t) =-(kT)-')

and K is defined by dp/dt= Kp. Since p is the arbitrary
density matrix for the system, we see that Eq. (2.5b)
for the off-diagonal elements (ml pl n) depends only on
the diagonal elements of the reservoir but on both
diagonal and o6'-diagonal elements of the system. The
only assumption we make about the system is that in
the interaction representation the system density
matrix is determined by a time-independent kernel E
which, since it is an operator in the system density
matrix space, has in general four indices.

Since the remaining derivation is straightforward
but lengthy, we will outline it 6rst. Our method is
equivalent to a generalization of the Wigner-Weisskopf
treatment of line broadening. They treated the problem
of an atom in the radiation 6eM of the vacuum by
assuming that in the equations of motion for the
amplitudes of the photons the amplitude of the atomic
state was e &t. This closed the chain of equations which
allowed them to solve for the photon amplitude exactly.
They then were able to solve for the amplitude of the
atomic state which lead to a self-consistent condition
to determine y of the form

coordinates satisfy

(&/&t)(nl p ln)+ii(nl Vlm)(ml t- ln)
—(nl @ 1 m)(ml VI n)3=0, (2.5a,)

and the off-diagonal elements satisfy

(()/(It)(ml pin) —iL(ml Vll)(ll pin)
—(ml pl 1)(ll Vln)Q=O, (2.5b)

where we sum over repeated indices.
We now make our fundamental assumption which

states that any time the equation of motion for (m
I p I n)

depends only on the elements of p which are diagonal
in the reservoir coordinates. The explicit form of this
assumption is

BFI/Bt+i jH, +HFI+ V, tI)=0. (2.4)

When we perform the unitary transformation that
takes p to the interaction representation, we obtain

e))(eo—e) —(p)j
v

() p )), iy)— — (2 7)

where p satis6es

ei(H8+H g) t e—i (HFF+HIt) t

(Ip/(It+iL V(t),p(t)] =0

V (t) —e((FIe+FII)) ) V'e e(IIe+II I)))—

The bar over an operator indicates the operator is in
the interaction representation. To 6nd the density
matrix, p, of the system we take the trace of p over
the reservoir, p= Tr„p,.

The elements of p which are diagonal in the reservoir

where vo=E&—E, and v) is the frequency of photons
of wave number X. In other words, the atom would
decay from state 5 to state u with an amplitude e &t if
a time-independent solution of Eq. (2.7) exists.

When we put Eq. (2.6) in the commutator of Eq.
(2.5b), we are able to solve this equation exactly for
(ml pl n) which we use in Eq. (2.5a). We then sum Eq.
(2.5a) over the states n, and since

P„(nl ap/atI n)= 8p/Bt= Kp

we obtain an equation for the operator K. We will have
veri6ed our ansatz if we can find a time-independent
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(e)1=(Ossm+(e) eye (oa = (omm+(o set

(t)2=(t)tern+(s)met (s)4=(t)mes+(s)0'e ~

We use the relation p(0) =e-x'p(t) and

P„(nj Btr/Btl n)=dp/dt= Kp

solution of this equation for K. We defer the discussion and the &o,'s are
of the existence of a time-independent solution until
we have obtained Eq. (2.12) for K.

We substitute Eq. (2.6) into Eq. (2.5b) and obtain

(8/c)t)(mj td jn&=i[ P e'"p(0)&mj Vjn)
—(m I Vj n)P„e'"p(0)7, (2.8)

where it is necessary to keep track of order of factors
since all terms except I' are operators in the system
Hilbert space. To solve Eq. (2.8), we introduce the
representation Eq. (2.1) of the system.

When we take the matrix elements in the energy
representation, use the definition of V, and integrate,
we obtain

to obtain

—i(~[Kp(t) I p)
=&-((~ I C(»»(t)je)(~nl V lm»hml V lnp)P-e™e'

—&nn
I
V

I
me&&e

I
C ((og) p(t) I »&ym I

V
I np)P e'&" ~"») '

—(d)n I V[m»&y I
C (&03)p (t) I ~&(em[ V

I np)P e'&" +m»'

+((hnj V
I m»&pm I

V
I ne)&el C((od) p(t) I

p)P„e'"-'),
(2.12)

(omj p(t) jnv)=iP dt' e~u™~(ole'Kp(0)
I e)

where
C((o) = Li.—e-" "&-'" 7)/( (o—iK).

&&e'" ~ "'(em[ Vj nv) iP. —dt'

where

&&e' '&eje"xp(0) jv)e™~(omj Vjne), (2.9)

~ „=E —E„, ~.e=E. Ep, jnn&——= jn) jn),

and (em
I
V

I
nv) is now a time-independent c number.

We now explicitly perform the time integration in

Eq. (2.9) and obtain

We now have a functional equation for the operator
K. Since K has been assumed independent of time it is
necessary to find a time-independent solution of Kq.
(2.12) for K. There are two types of explicit time
dependence in Eq. (2.12).To make the time dependence
due to e'"' vanish we require co,p=0 in the first term,
(o,+(o~e——0 in the second and third term and (0,=0
in the fourth term of Eq. (2.12). The second type of
time dependence is due to the operators C((o). We see
that for Kp . 0 and for &o«t«1& ' there exists a time-
independent solution of order X' for K when we make
the following substitution for C:

e
( mls(t)ln )=(

it(otm~+oo ev—iK)

p(0) ~

(t)met+(t) en

e—i(co—iK) t

&t)
—1K

1~ &P—+i0rI) (&o), (2.13)

XP (em[ Vjnv& —(~mj Vine&

(t)mes+(t)tve ZK

When we substitute Eq. (2.10) into Eq. (2.5a), we
obtain four terms:

where (P is the "principal part of."
More precisely, we take the limit as X —+0 and

s(0) v&. (2.10) t such that h't= «1. We then dnd a solution
for K which is proportional to 1&' such that Kp is
negative definite.

When Eq. (2.13) is used in Eq. (2.12), we obtain the
time-independent solution for K:

Cj—i—(nn
I

)(d [nP)
8$

=(~lc(~~)pl e)(enl Vlm»bml Vlnp)e'"»'P.

—(~nl V [me&(e I c(~0)p l»bml V lnP)e™e'P-

—(~nl Vlm»h I
c(~3)pl e&&emj Vine&e' "P-

(nnl VI m»b™IVjne&(el c(~d)p[P)e™,(P.,

where the operator c((o) is

erat(~
—iK)

c(~)=
((o—iK)

E.e~~ e+~= 2k.e
+~ e+~ 40(g„—k„+k,„ee)—, (2.14)

where

k,-+'e+'=1'P„& nj Vjm, +~&
&&P (P+t(, m

I
V

I nP&b(A &0„) (2.15)—

and 6 is an energy,

In addition, we obtain a contribution from the principal

(2 11) part which can be written as a commutator of a temper-
ature-dependent potential which we give in Sec. III.
In Sec. III we shall explicitly evaluate K, and in Sec.
IV we shall prove K preserves the Hermiticity, positive
definiteness, and normalization of p and causes p to
approach equilibrium monotonically.
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We conclude this section with some remarks about
the treatment of the time dependence of Eq. (2.12).
The reason that the time derivative of the matrix
element &al plp) depends only on matrix elements of
the form &u+Al pip+5) instead of on the general
matrix element &y I p I 5), where p and 8 are arbitrary is
a consequence of our requirement that K be time
independent. We did not take an unrestricted limit as
t —& ~ in Eq. (2.13) because in that case the left-hand
side of Eq. (2.12) would vanish since it is necessary
that Kp(~)=0 and we would have been unable to
determine K. The limit X —+0 and t —+ ~ such that
X't=r«1 permits us on the one hand to replace C by
a delta function and on the other hand to obtain an
explicit solution for K up to terms of order r. The
virtue of our model is that for smoothly varying
potentials we are able to show explicitly that a time
exists such that there is a time-independent solution
for K.

III. SOLUTIONS FOR THE KERNELS

In this section we obtain the explicit equation satis-
fied by the density matrix of a system in contact with
the reservoir. We first obtain the dependence of the
kernel K on the temperature and chemical potential of
the reservoir. To do this we perform the trace over the
reservoir coordinates in Eq. (2.15). When we use the
definition of V in terms of annihilation and creation
operators in Eq. (2.5), we obtain

u e"'e"= x'p p p, g,.
& l~l", +~)

X&p+A, r'lyly)n, .(n„+ 1)
Xf'(n,n„)S(.; .,+~) —(3.1).

We perform the sum over the occupation numbers n„
and n„and obtain

P., Q., n, (n,+1)P(n„n„)=(n, ){&n„)+I),
where

&n,)=1j[e'&' &&—1j.

Since we have taken the limit as 0& —+ , we may
replace the discrete sum over reservoir state, P, ( ),
by the integral J'( )g(e)de, where g(e)de is the
number of single-particle states with energy between
e and &+de. With this substitution we obtain for
Eq. (3.1)

k.p
+ e+ =X'vr dede'g(e)g(e')&ncIPI e', n+6)

X&P+&, e'lpl eP)&n(e'))(&n(e))+1)8(e' —&+6). (3.2)

At this point it is worth remarking that we could
have performed the summation over the occupation
numbers of the reservoir and introduced the level
density in Eq. (2.9). We deferred the summation until
now, because the relationship of our method to the
diagonal singularity condition of Van Hove an, d the

Wigner-Weisskopf theory is somewhat more transparent
in the occupation number representation. Furthermore,
as we show in Eq. (4.4), the form of Eq. (2.15) before
summation is easier to identify as the form that is
needed for an H theorem.

We now show that k p~~ ~+~ is independent of the
volume of the reservoir. Since the state of a single
reservoir particle is

I e)=Qii-& exp (—ik r),

where &=0'/(2nt), the matrix element, &aelpl e', n+&)
Qz ', and the density of states g(e) Qz is independ-

ent of the volume of the reservoir. As a result, k p~~ ~~
depends only on the density of the reservoir through $,
the chemical potential. From the discussion of the
preceding two paragraphs we see that the first limit
we take is the limit as E~~ ~ and Q~ -+ ~ such that
the density of the reservoir is constant. This allows us
to treat the reservoir as always presenting a canonical
distribution to the system. The second limit, X —+0,
allows us to solve for K directly. The limit as t —+ ~
such that X't=r((1 allows us to introduce the delta
function in Eq. (2.13).

We must now examine the "slowly varying" condition
that is implicit in replacing Eq. (2.13) by a delta
function. This requirement means physically that F(e)
should be slowly varying over e~=t ' where t is large
enough to contain many periods of the reservoir. We
thus have

which implies ~h))X . For 6 finite, we can satisfy this
condition by taking the limit X —+0. However, since

0 '=kT, we see that as T~ 0 we cannot satisfy
this condition for any finite X. This means that we
must exclude degenerate reservoirs because both boson
and fermion reservoirs are not slowly varying as T —+ 0.
This is no real restriction on the derivation because as
0 ' goes to zero the specific heat of the reservoir also
goes to zero; i.e., it cannot emit energy, it can only
absorb energy and can not physically serve as a reser-
voir.

We now show that the contribution of the principal
part to Eq. (2.12) can be written as the commutator
of a potential that commutes with the Hamiltonian H, .
The contributions of the principal parts of the second
and third term cancel each other. For the imaginary
part of the first and fourth terms of Eq. (2.12), we
obtain &p I x I p)&nl p I p) and —

&cx I x ln)&nl p I p), where

, l&pelel e'»I'
&plxlp)=l'Ip d~de', g(~)g(e')

6 —6—GO&P

X&n(~'))&&n(e))+1). (3.3)

Thus, (p I x I p) is a second-order level shift of the state
p due to the interaction of the system with the reservoir
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IV. APPROACH TO EQUILIBRIUM

We now show that the kernel K preserves the
normalization, positive definiteness, and Hermiticity of
the density matrix p. If K is to represent a thermal
reservoir, it is necessary to show that Eq. (3.4) ap-
proaches equilibrium monotonically. In a previous
paper' we proved that the necessary and sufFicient
condition that a kernel of the form

Kp= Trg(2OPp~pP~'iOt e'"~'pe"'~'P'*O—tOP*'

P~OtOP—&e'i epee�'~*} (4.1)
where

I '=Z—'e—8(H P= g 8H~P Z= Tre 8(H g $N)

and 0 is an arbitrary operator, approach equilibrium
monotonically was

Ke—'~ =0
i.e., equilibrium is a solution. In I we showed that any
kernel of the form of Eq. (4.1) satisfied the normaliza-
tion, Hermiticity, and positive definiteness conditions.
We now show that Eq. (3.4) satisfies Eq. (4.2) and
that Kp is of the form of Eq. (4.1).This will complete
the demonstration that K possesses the necessary and
sufhcient conditions to be a kernel representing a
reservoir.

Although Eqs. (4.1) and (4.2) do not imply any
local symmetry principles, we first show that, because
our model uses weak interactions, K satisfies the

' C. R. Willis, Phys. Rev. 127, 1405 (1962); referred to as l.

weighted by the equilibrium distribution of the reser-
voir.

When we combine Eqs. (2.14) and (3.3), we obtain

(~/@)(~l pl p&+~&~ILx p]l p&= (Kp)-e

If we now return from the interaction representation
for the system to the original representation, we obtain
the final form of our equation for the density matrix.
This is

(~/~&)&~ I pl p&+~&~ I Ã.+x p] I
p&= (Kp).e

2k e~~ P+~(a+A[ p[P+»
-(~,....-+~,.e,.e)&-l pl p&, (3.4)

where we have used the property

a+6,P+6—gi t(Eer Ep+E~E))+ n+5, P+6
nP aP

However, since our requirement that K be time inde-
pendent leads to the condition E —Ee+E~—Eq ——0,
we have the result K= K. Thus, the assumption that
K in the interaction representation is independent of
time, coupled with the use of perturbation theory,
leads to a time-independent kernel in the original
representation. In Sec. IV we show tha, t K satisfies
the necessary and sufficient conditions that must be
satisfied if Eq. (3.4) is to serve as an equation for the
time evolution of a system in contact with a reservoir.

detailed-balance condition for a system in the presence
of a reservoir:

a+9„,n+6 ~86$ nn

From the definition of k, Eq. (3.2), we obtain

a+3„a+A,aa

(4.3)

=irk' de g(e)g(e —6)

X l&«[4 I
e—A, ~+»I'&~(e —»&L&&(e))+1]

a+6,n+6aa

)iree'~ de g(e+»g(e)

X I &~, e+A
I 4 I e, ~+» I '&~(e)&L&N (e+»)+I]

~86$ na

We prove that p=Z 'e '~' is a solution of Eq. (3.4) by
direct substitution. This gives the following:

pj +x e eHs] —Q (—2p a+6, a+de 8(Em+6)—
aae ee )—

The left-hand side vanishes since x is diagonal, and
the right-hand side vanishes by use of Eq. (4.3).

To prove Kp can be written in the form of Eq. (4.1)
we set 0=DV where D is a projection operator that
picks out the state of the reservoir particle that con-
serves the energy of reservoir+system.

With this substitution Eq. (4.1) becomes

&~IKplp)
=»-'I:2&~&~ml v

I » ~+»P p(p+A, nl v Imp)
—

&~I p[P&P-(1&~m[ Vln, ~+»I'
+ l(pml vln, p+»I')], (4.4)

where Tr ' is restricted to states that conserve energy.
The restriction of the double sum over intermediate
states of the system to a single sum over 6, is a conse-
quence of the two projection operators which require
both the following equations to be satisfied:

Q —jV jV —jV g Q= jV jV„=g)—gp
Thus, the double sum over intermediate states is
restricted to a single sum because of the relationship
Ery En —EI$ EP.

This completes the proof that K has the form of Eq.

de g(e) g(e —A)

X
I &Qe[ pl e—A, Q+» [2&~(e—A))&~(e))ee',

where we have used the identity

&e(e—»&De(e))+1]=e'&e(e —»)&m(e)).

We change the variable of integration from e to e+A
to obtain
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(4.1) since Eq. (4.4) is equivalent to Eqs. (2.14)
and (2.15). Thus, K preserves the normalization,
Hermiticity, and positive definiteness of p and causes
p to approach equilibrium monotonically.

V. OTHER INTERACTIONS

We can obtain the results of a fermion reservoir
which conserves the number of particles of the reservoir
by replacing (e(e))DN(e')&+1) by (e(e))L(n(c')) —1) in
Eq. (3.2) and replacing Le'i' &&—1) ' by Le'&' &&+I) '.
All the derivations and proofs of Secs. II through IV
proceed without modification for the fermion reservoir.

We now consider the case of a boson reservoir with a
linear interaction with the system, for example, a
black-body reservoir. The interaction Hamiltonian is

I"=E~Q' f~'&~+ f~'*ck,
where

f~' (e/c——)Q~IQ; P; e~'exp(ik x;).
The sum over j is a sum over the charged particles of
the system and the superscript denotes the direction of
polarization.

The derivations proceed in the same way as for the
previous two cases. The only difference is that the
kernels depend on g(e) and Le(e)+1) instead of on

g (c)g (c') and e(e) I
e(e')+ 1). The kernels are still

independent of the volume of the reservoir since the
matrix elements of V are proportional to Qg &; thus,
the term V'~O& ' just cancels the single power of the
volume that occurs in a density over states.

The rate equation for a system linearly coupled to a
boson reservoir is

—(~
I p I &&+~&~ I

Llf +x, p)1&&
Bt

=2 L~&-e +' "'(~+~IplP+~)
(I -+~;+—~-+4+~ p+~")&~ I p. I &&), (5 1)

where

&-e "'~'—=&(~l f*(~)I~+A)(P+~l f(~) IP)):P(~) '

the "av" indicates an average over the random orien-
tation of the polarization vectors c~', and

F(A) = ((e(A))+1)g(d,) for 5)0 emission,

F(A) = (e(h)&g (A) for 6(0 absorption.

n (5)= I/(e'~ —1), g (A) = (II~/n'c') LV

f(A) =2' f~'(~)+f~'(~)
where

fg'(A) —= (e/c)Q~
—IQ; p "ei' exp(ik x;).

The primed k sum indicates a sum over
I
k

I
=6/c.

VI. DISCUSSION

The requirement that our kernel be time independent
in the interaction representation has reduced the num-

ber of indices needed to specify K from four to three.
A consequence of this reduction is the separation of the
effects of the reservoir on the diagonal and off-diagonal
matrix elements of the system. In order to see this,
we take the diagonal matrix elements of Eq. (3.4)
which are

(~/~&)&~l pl~)=2& &-.-+ &~+Al pl~+A)
—k.+, .(nl p In&, (6.1)

where
a+5„,n+5

1

Equation (6,1) is just the master equation for a system
in contact with a reservoir. The reservoir connects an
arbitrary matrix element (n I p I P) with only those
matrix elements that have the form (n+AlplP+A&.
The reservoir thus has the effect of dividing the matrix
elements into mutually exclusive sets that relax among
themselves.

However, this does not mean there is no interaction
between diagonal and off-diagonal matrix elements.
The evolution of the density matrix is through the
Hamiltonian of the system interrupted by collisions
with the reservoir. The direct time evolution of the
full Hamiltonian of the system connects diagonal and
off-diagonal matrix elements of the system. Frequently
this reversible dephasing of the off-diagonal matrix
elements is more important than the irreversible
relaxing of the off-diagonal matrix elements.

If we take the classical limit, the reservoirs lose their
degeneracy and go over into a classical reservoir. We
then obtain for our arbitrary system an equation of the
same functional form as Eq. (3.4) but where the
reservoirs are now classical. Our method of proof does
not depend in any way on the statistics or temperature
of the reservoir so the classical limit is valid.

Since we have said nothing about the statistics of
the system, the kernels take the same form independent
of the statistics of the system. No changes are required
in any derivation. The states of the system ln& are just
the properly symmetrized wave functions of the system.
Throughout the derivations we have left the sum over
intermediate states of the system as formally a discrete
sum. If a density of states for the system exists, it can
be introduced in the final Eqs. (3.4) and (5.1). The
important point is that essentially no properties of the
system are required in any derivation. The nearest we
come to a requirement on the system is that the
interaction between reservoir and system is sufficiently
smooth which is only very indirectly a requirement on
the system.

If for our system we take a system of spins and go
over to the limit of a classical reservoir, we obtain
Bloch and Wangness" equations. The one point of
difference is that their kernels depend on three indices
instead of four because of special properties of magnetic
systems instead of our requirement that the kernel be
time independent in the interaction representation.
Consequently, our proofs constitute, as a special case,
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a proof of the Bloch-Wangness equations that is free of
the random phase inconsistency pointed out by Van
Hove. '

We conclude with some remarks about the diagonal
singularity condition of Van Hove. ' In the Wigner-
Weisskopf theory of line broadening the method con-
sists of an exact solution of a problem where the only
states considered are those in which only one photon
at a time appears in any intermediate state and the
photons in successive intermediate states are inde-
pendent of each other. A consequence of our derivation
is that we consider only those intermediate states of
the system+reservoir interaction in which only one
reservoir particle appears at a time and the reservoir
particles in successive intermediate states are inde-
pendent of each other. This allows us to electively
discard the spent reservoir particle and the system
"sees" a canonically distributed reservoir before each
collision.

We can see the connection between the above

discussion and the diagonal singularity condition by
considering the jth term in the expansion of the time
evolution operator of the system, e'K, which is

(1/j !)t 'K~

= (1/j!)(X't) 'pp (n
~

V
~
m)P (m

~

V [ n)) &. (6.2)

The intermediate states of the system in Eq. (6.2) are
arbitrary. However, in the reservoir Hilbert space
where the system operators are c numbers, Eq. (6.2) is
of the form LP(VA V)s]', where A =P is diagonal in
the reservoir coordinates and where d indicates "take
the diagonal matrix element of (. )." This is Just
the term that the diagonal singularity condition for
internal relaxation gives for the coeKcient of (Xst)&.

Thus, our derivation which starts with the assumption
that the off-diagonal matrix elements of the system
+reservoir density matrix are determined by Pe'x has,
as a consequence, that in the reservoir Hilbert space
the interaction between system and reservoir satis6es
the diagonal singularity condition of Van Hove.
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After a general discussion of the problem of motion in the general
theory of relativity a simple derivation of the law of motion is
given for single poles of the gravitational field, which is based on a
method originally developed by Mathisson. This law follows from
the covariant conservation law for the matter energy-momentum
tensor alone, without reference to any field equations, and takes
the form of a geodesic of the (unknown) metric. Expanding this
metric in terms of a power series in a parameter X and using the
Minkowski proper time to parametrize the world lines of the
particles, the (Lorentz-invariant) form of the approximate laws
of motion follows. A method is developed to obtain the equations
of motion (including the explicit form of the metric in terms of the
particle variables) from Einstein's field equations. A systematic
linearization procedure leads to a series of second-order di8erential
equations for the metric; the nth order approximation of the
equations of motion, as well as the explicit form of the matter
tensor in (a+ 1)st order, is obtained as an integrability condition
on the (I+1)st order opproximation for the metric. No coordinate
conditions are required to obtain the general form of the equations
of motion; they are needed only to reduce the approximation
equations to wave equations and thus to allow their explicit

integration in terms of retarded or symmetric potentials. In de-
veloping the approximation method it is shown that consistency
requires that any set of approximate equations is solved "up to"
rather than "in" nth order; this implies that the form of the lower-
order metric be maintained, but with the motion corresponding
to the gth order solutions rather than to lower order ones. In
particular, the equations for the first-order metric imply zero-order
equations of motion which restrict the particles to zero accelera-
tion; the equations for the second-order metric imply first-order
equation of motion involving the first-order metric, but without
the previous restriction. In the retarded case the equations of
motion contain retarded interactions and radiation reaction terms
of the form familiar from electrodynamics; no such terms appear
in the symmetric case. The equations of the symmetric case are
derivable from a Fokker-type variational principle. The relation
of the results obtained to work on Lorentz-invariant equations by
other authors is discussed. In Appendix I a discussion of alterna-
tive derivations is presented; Appendix II contains remarks on
Wheeler-Feynman type considerations for general relativistic
equations of motion.

I. INTRODUCTION

~~

~~

~~

ITHIN the conceptual framework of Newtonian
particle mechanics there is a sharp division be-

tween laws of motion and force laws. The laws of motion

*Research supported in part by the National Science Foun-
dation.

(F=ma) are assumed to be the same for all matter; the
force laws (Newton's law of gravitation, Coulomb's law
etc.) are different for different types of particles, their
specific form to be determined by experiment. '

' In the following we shall call "laws of motion" the expressions
relating the variation of some particle variables to the (unspeci-


