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In previous work on statistical mechanics, the consequences of the theory of relativity have only been
investigated for the ideal gas. This study is concerned with relativistic effects for systems of interacting
particles. The noninstantaneous nature of the forces leads to dynamical equations which cannot be treated
by known mathematical methods; however, the interaction terms can be expanded to obtain a description
of the system in terms of the positions and their derivatives of all orders at a single time. If one stops at the
(v/c)s approximation, a specification in terms of positions and velocities is obtained; in electrodynamics this
corresponds to the Darwin Hamiltonian. A system described by this Hamiltonian is investigated with the
methods of equilibrium statistical mechanics. The cluster expansion with subsequent summation of diagrams
as employed by Mayer for the Coulomb case is used; the modifications necessary due to the presence of
momentum-dependent terms in the interaction are developed. In evaluating the lowest order nonvanishing
(ring) approximation, mathematical difficulties peculiar to the relativistic interactions force restriction to
calculation of the relativistic short-range correlation effects in the charged system. A modified Debye-
Huckel law is obtained, including a relativistic correction term which is small compared to the static one.
At the high temperatures required for appearance of relativistic effects, the static term is itself negligible ex-
cept at very high densities. Thus the relativistic contribution can in effect be neglected in this approximation.
The difFiculty of extending our method to rnesonic or gravitational interactions is discussed.

I. INTRODUCTION

'HE modifications imposed on Newtonian
mechanics by the requirements of the special

theory of relativity are twofold: First, the mass of a
body must depend on its velocity, and second, the
forces between particles must be noninstantaneous. The
second change, which is necessary because the concept
of simultaneous positions is not a relativistic one, is far
more drastic than the first. The equations of motion of a
system of interacting particles cannot be treated
rigorously by any known mathematical methods; even
the two-body problem can not be solved exactly.
Therefore, investigations in relativistic dynamics have
mostly been restricted to a study of the motion of a
single particle under the action of a given external
force. ' No relativistic statistical mechanics has been
developed except for that of the ideal gas' in which the
problem of interaction does not arise. This paper is
devoted to a study of some of the modifications intro-
duced into the usual classical statistical mechanics by
the theory of relativity.

There are two general ways in which noninstan-
taneous interactions may be described, either by a
theory containing only particle degrees of freedom, or by
the introduction of fields, with their own degrees of
freedom, in addition to the particles.

Ke will adhere to a formalism which contains only
particle degrees of freedom, as is appropriate for a
statistical mechanics of particles (as is well known, no
satisfactory classical statistical mechanics of fields is
possible because of the infinite number of degrees of

*Research supported by the National Science Foundation.
t Present address: Department of Physics, University of

Vermont, Burlington, Vermont.' For an extensive review see H. Arzelies, La Dynami gee
&elativiste et ses Applications (Gauthier-Villars, Paris, 1957—8),
2 vols.

2 F. JQttner, Ann. Physik 34, 856 (1911).

freedom). The interactions are taken as time-symmetric.
The treatment may be characterized as action at a
distance, although for the case of electrodynamics an
interpretation in terms of fields which is equivalent'
may be given as far as the equations of motion are
concerned. (However, there is no equivalence statistic-
ally, because no independent degrees of freedom
associated with fields are considered. ') Time symmetry
is required to allow formulation of a variational
principle, as shown by Fokker. ' It is also necessary
because we shall be concerned with equilibrium, and
hence energy-conserving, situations. If retarded (or
advanced) interactions were used, the system of
particles would lose (or gain) energy as a result of
radiation.

This, however, does not in itself exclude considera-
tion of radiation. It was first noted by Einstein and
further discussed by Wheeler and Feynman~ that
perhaps radiation arises from an otherwise time-
symmetric theory as a statistical effect. This question
is not investigated in the present work, however, since
the relativistic approximation taken is of lower order
than radiation effects.

Our main interest is in the study of the changes
introduced in statistical mechanics by the presence of
noninstantaneous interactions. Only equilibrium situa-
tions will be considered, although the greatest contri-
butions from such interactions could reasonably be

'In mesodynamics the equivalence is not complete. For a
discussion of this and other points raised in the Introduction see
P. Havas, in Argonne National Laboratory Summer Lectures on
Theoretical Physics, 1958, ANL-5982 (unpublished), p. 124, and
references given there.

4 For this question compare G. Plass, Ph.D. thesis, Princeton
University, 1947 (unpublished).

A. D. Fokker, Z. Physik 58, 386 (1929).' A. Einstein, Physik Z. 10, 323 {1909).' J. A. %heeler and R. P. Feynman, Revs. Modern Phys. 21,
425 (1949).
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expected for nonequilibrium systems. Unfortunately
the difficulties encountered in introducing relativistic
corrections to equilibrium theory are multiplied when
one goes over to nonequilibriurn theory.

We are then interested in deriving thermodynamic
quantities for a stationary system which can be de-
scribed by a conservative Hamiltonian for which an
equilibrium probability density may be written. Since
we wish to confine ourselves to a frame relative to
which the system is macroscopically at rest, there is no
need to introduce a covariant formulation which would
include mass rotation and translation effects.

As noted before, no methods are available to treat
the noninstantaneous interactions explicitly; we need a
method which will give us a Hamiltonian involving
particle variables taken at the same time, which can be
done formally by a series expansion of the interaction
terms. However, here another problem arises. The
proper specification of the initial-value problem is not
known for noninstantaneous forces. It may well be
that for time-symmetric interactions a knowledge of the
positions and velocities is sufficient, just as in Newtonian
mechanics, ' but this has not been established; on the
other hand, a series expansion will introduce derivatives
of all orders of the position vector, and if the approxi-
mation is carried up to eth order derivatives in the
equations of motion, all derivatives up to the (e 1)st-
must be specified initially. ' In the case of electro-
magnetic interactions, an expansion of the potentials
up to order (v/c)' yields the Hamiltonian first obtained
by Darwin, "for which the specification is of the usual

type.
Here we shall confine ourselves to the study of a

classical system described by the Darwin Harniltonian.
(There are difhculties in extending the method to
systems interacting through gravitational and meson
fields, which will be noted in Sec. VI.) Quantum effects
can be neglected at high temperatures, except in the
extreme of high densities; then degeneracy becomes
more important. We will be concerned with densities
for which the thermal DeBroglie wavelength is much
smaller than the mean interparticle distance, and
degeneracy is then unimportant.

The approximations used in statistical mechanics
in evaluating the classical partition function for gases
are primarily low-density ones. The technique usually
used in such problems (which can be suitably modified
for quantum problems" ) is the cluster expansion theory
of Mayer. " We shall use this method, taking into
account the difficulties presented by the long range of

P. Havas and J.Plebanski, Bull. Am. Phys. Soc. 5, 433 (1960);
a detailed account is in preparation.' One may, however, select some solutions specified in some way
by positions and velocities and write a Hamiltonian of usual
character; compare E. H. Kerner, J. Math. Phys. 3, 35 (1962).

' C. G. Darwin, Phil. Mag. 39, 537 (1920)."E.W. Montroll and J. C. Ward, Phys. Fluids 1, 55 (1958)."J.Mayer and M. G. Mayer, Statistical 3I/echamcs (J. Wiley R
Sons, Inc. , New York, 1940), p. 277.

the Coulomb interaction, "and introducing the modifi-

cations necessitated by the fact that the relativistic
interaction is momentum dependent. "

Because of mathematical difficulties in applying the
cluster expansion and summation techniques to the
relativistic correction, it will be necessary to restrict
our attention to the relativistic short-range correlations
in a charged system; in effect this means that we

consider a screened potential which is obtained from
the relativistic interaction. No such di%culties occur
for the static case, and thus the total static interaction
will be treated.

Since the approximation taken requires neglect of
long-range effects, they should be small compared to
the short-range ones. For the nonrelativistic case
Ichikawa" has shown in a collective treatment that
in the high density limit their ratio is of the order of 0.22.
While it is difficult to compare the collective and the
cluster treatments because of the different approxi-
mations made, it might be hoped that a similar ratio
of long-range to short-range eAects exists for the
relativistic interaction term.

In applying techniques developed in statistical
mechanics for gases to a plasma, it should be noted
that while the densities at which the interaction effects
at relativistic temperatures are no longer negligible
are high, in fact higher than liquid densities at ordinary
temperatures, the methods developed for gases may
still be applied since the density-limiting approxi-
mations made for the gas case hold for the completely
ionized state.

A different approach to relativistic statistical
mechanics is possible through the Boltzmann equation. '
As this method is based on a consideration of collisions,
it is not suitable for revealing the qualitatively new
features of the problem introduced by the noninstan-
taneous nature of the forces, although it may be well

suited for other purposes.

II. PROBABILITY DENSITY

The Darwin Hamiltonian for a system of e-charged
particles, which is correct to order (v/c) in the inter-
action term, is given by' '~

e;ej
H „=P ns, c't 1+(p,/m, c)']'i'+ P

e ej 1 p,"rjpj rj
u' 1i'+ (2 1)

'&~ r;; mme. 2 re. .2

"J.Mayer, J. Chem. Phys. 18, 1426 (1950).' For a treatment of electrolytes which differs from Mayer's,
see T. H. Berlin and E. W. Montroll, J.Chem. Phys, 20, 75 (1952)."Y.II. Ichikawa, Progr. Theoret. Phys. (Kyoto) 20, 715 (1958)."Compare, P. Bergmann, "The Special Theory of Relativity, "
in BandbiIch de~ Physik, edited by S. Flugge (Springer-Verlag,
Berlin, 1962), Vol. 4, Sec. 29.

' L. D. Landau and E. M. Lifshitz, Classical Theory of Fields
(Addison-Wesley Publishing Company, Inc. , Reading, Massa-
chusetts, 1950), p. 180.
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We have chosen to retain the first term in its un-
expanded form, rather than use the term

given by the expansion, since otherwise we would have
Ho~ —~ when p; —+ ~, and thus we would have
been led to an unnormalizable probability density;
furthermore, by retaining this form we are able to make
use of some of the results obtained in the relativistic
free-particle case. '

'With respect to the normalization of the probability
density, we wish to use the grand canonical ensemble,
for which we have, for a two-component system of
unlike charges, "

W, ,= expt —q+ rivi+ e2v2 —PH„,+„,j/rsi!e2!, (2.2)

which satisfies

gnl&1 gn2&2

=O -O e~~ m2t
exp( —PH,~,)dO„~ „(3.1)

which can be written

III. ACTIVITY SERIES

The most striking difference between the non-
relativistic and relativistic approximations is that the
relativistic interaction term has momentum dependence
as well as coordinate dependence. This momentum
dependence requires a departure from the usual method
of dealing with the problem of interactions. Whereas
in the static approximation one can integrate out the
momentum dependence directly and deal with the
so-called configuration integral, in the present case we
must deal with the phase integral Q„,+„, which occurs
in the expression obtained from (2.3),

n], n2
(2.3)

Qng+nm = exp( PH n,+n,)

H=H +H *+Hv, (2.4)

where H„ is the Darwin Hamiltonian, H„ is the
repulsive term, and IIy is a function which limits the
system to finite configuration volume. This limitation
is frequently omitted explicitly in the initial formulation
of the problem, since ultimately one is concerned with
the limiting process in which e, V~ ~ such that the
density is a constant. Although we will not consider
this term in our calculations either, we include it
initially to allow a proper definition of the probability
density.

' D. ter Haar, F/ements of Statistica/ Mechanics (Rinehart and
Company, Inc. , New York, 1954), p. 135."For a discussion oI this problem see R. Kurth, Axiomatics of
Classical Statistica/ Mechanics (Pergamon Press, New York, 1960),
p. 110.

It is apparent from (2.1) that the Hamiltonian has no
lower bound and, consequently, (2.2) is not normalizable
as it stands. ' This di%culty is due to the presence of
attractive interaction terms. Even in the static case
such attractive terms force the inclusion of additional
repulsive terms in the Hamiltonian, such as a hard.
sphere potential.

In the present case it is necessary to add a repulsive
term which is both momentum and coordinate de-
pendent since (2.1) is unbounded from below for
attractive interactions when either r —+0 or p —& ~
(note that even if one assumed a fluid background
model, it would still be necessary to introduce a
repulsive term due to the presence of attraction in the
relativistic interaction term). No explicit form for this
function will be used, although such knowledge could
possibly prove helpful in resolving a problem which
arises when the relativistic interaction is considered,
as will be discussed later.

Thus instead of (2.1) we will write

Q„,+,—— exp( —PH"„,+ .) P (f;,+1)dQ,+.„(3.2)

where

f,; = exp L
—P (H; +H;,*)j—1,

which may also be written

(—PH; )-
f' =g' +(g' +1)2

g, ,= exp( —PH, ,*)—1.

(3.3)

(3.4)

From (3.1) one can obtain the activity series for a
two-component system"

n1=0 n2 0
(3.3)

The derivation of this series requires no particular
assumption on the form of the interaction, except that a
cluster expansion of the type given in (3.2) be possible. "
In order to see how the coeScients b„, 2 are defined for
the present case, we must first investigate the activity s,
which is defined" so that in the limit n/V —+0, in

20 I Mayer, J. Phys. Chem. 43, 71 (1939)."G. E. Uhlenbeck, Physica 26, 817 4,
'1960).

"T.L. Hill, Statistica/ MecIzanics (McGraw-Hill Book Com-
pany, Inc., New York, 1956), p. 130.

&& expL —P (H*„,~„,+H'„,+,)]dQ,+„,.

Above we have split the Hamiltonian (2.4) into

H=H„'+H„'+H *,

where H is the relativistic kinetic energy and II„' is
the interaction energy. Assuming that II„' and H„*
are small compared to II„', we proceed to use the
cluster expansion"
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e,e;
V. .s

rijs»=e"~A~, A = exp( —PHi~ )d'p~) rr=1) 2, (3.6)

which the interaction can be neglected, it approaches we write
the density p.

If we define
HI , V s+ V,,n,

(4 2)

then in this limit it follows from (3.1) that

(e'+1&lg U)'+1 (e'+susie sV)'+2

e;e; p,"r,;p; r;,
V, ,R p. .p+

r,, 2m;ns;c. 2 rij. .2

Thus (3.7) becomes
ngz

and thus the grand potential equals

q = (si+ss) V.
From this we get

S2 f.

~nin2
eg Ie2 I VAg"'42n'

exp( PH ni~nm)

xZII (-W;.')«,.-. (4»

bnIn2 =
1 t+2 t V~~nl+2n2

exp( PH +&+no)

xp II f;;d&„„„„(3.1)

where the sum is over all products consistent with
giVen Ãy, Ão.

It is to be noted that up to this point no particular
form of the momentum dependence in the interaction
terms has been invoked (apart from the behavior
assumed which required the assumption of additional
repulsive terms) .

IV. IRREDUCIBLE CLUSTERS

In the usual Mayer treatment" for the static approxi-
mation it is possible to express the reducible cluster
integrals in terms of irreducible ones. For the case
where the interaction is momentum dependent it is not
possible to do this in an analogous manner, since we
can not break up the reducible forms into suitably
defined, momentum-dependent irreducible forms.

We can, however, proceed in the following manner.
First, we assume that the g, , in (3.4) may be ignored
(thus limiting ourselves to systems where roughly
the mean interparticle distance is much greater than
the repulsive core of the particles). In addition we take
the lowest order approximation of (3.4)

f'~= PH/~. — (4.1)

In the static approximation this step is taken after the
irreducible forms are derived. Here it is necessary to
make the approximation in order to get an irreducible
integral form.

Noting the form of the interaction potential in (2.1),

p =n /U= (s /V)(rlq/Bs )=s, n=1, 2,

as required.
In passing we note that in the limit considered the

equation of state obtained from q is just the perfect
gas law, in agreement with Jiittner. '

From the form of q in the low-density limit we see
that the appropriate definition of the cluster coefFicient
is

n~ Iyz2'f VA.i"IA.g"'
exp (—PHe, +,)

x& Z [II(-W; )+II(-~v;,')j)«-'-. (44)
rings

where the superscript 0 denotes the ring approximation.
We note that such a reduction could have been effected
for an over-all neutral system by any interaction where
the momentum dependence enters as f(r)pi ps or

f(r)pi r ps r. In addition, a form such as f(r)pi r, which

is linear in only one momentum vector, would have the
necessary properties; a function which would depend
on the magnitude, but not direction, of momentum
would not give the requisite behavior, however.

We shall ignore the relativistic interaction contri-
bution from the proton component, since with even one
proton contained in the ring, the ring product obtained
is of the order (nz, /m )'=O(10 ') smaller than if only
electrons composed the ring. The activity series now
becomes

d Vn,+,2 II(-~v; )

n] g n2

q=V
n, ni, n2 Qy. S2.

(Ã =El +%2)
Vrings

"For details of this and subsequent calculations see John E.
Krizan, Lehigh University thesis, 1962 (unpublished).

We now restrict our attention to the lowest non-
vanishing approximation (known as the ring approxi-
mation"). From the condition of electrical neutrality
the terms defined in (4.3) which involve products of
static contributions alone and are not of the ring form
will vanish. Also any products involving the relativistic
terms except those which contain only V„~ and are of
the ring form will vanish, as a consequence of the
particular symmetry of the momentum dependence
(which is such that integration over momentum angular
variables causes the vanishing of certain products). "

Thus we obtain an irreducible form from the previous
reducible one and (4.3) becomes
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and

P n

p oS

2U
(V,, )dU

rings
(4.6)

( Pe2) n

p oR exp( —PH ) Q (V,,R)dQ . (4.7)
rings

These integrals are evaluated in the Appendix. Finally
we may put the grand potential in the form

q= U(si+s2) 1+
Si+S2

z1+z2

Ss (si+s2) d (si+ s2)

z1

+U SR (si)dsi, (4.8)

Replacing the sum over rings by a factor —28(//8 1—)!,
which represents the number of independent rings, and
using the binomial theorem this may be written as

~= Vf( +")+2 (p- "'/ )("+")-
n)2

+ P (P,' /2/8)s, ), (4.5)
m&2

where we have defined

We may, however, treat an important part of the
relativistic interaction without a knowledge of these
repulsive terms. I'he possibility for doing this follows
from the fact that a finite range of sufficient size can
allow an analytic continuation which leads to a reason-
able result.

A charged system can exhibit long-range and short-
range modes for the Coulomb interaction; the short-
range part arises from interactions within the Debye
sphere, and the long-range correlations add up to
produce collective oscillations.

In the following discussion we will restrict our
attention to the short-range relativistic eRects and
neglect the long-range ones. We would expect the
short-range relativistic eRects to predominate at high
densities, and for high temperatures it is in this region
that the interaction eRects will be most pronounced.
With respect to the static terms we will continue to
treat the total interaction. We shall discuss the validity
of the procedures used in Sec. VI.

The calculations are outlined in the Appendix. We
obtain the same expression (4.10) for Ss(s) as before,
but in place of (4.11) we get

where
SM(s) p p Mosn (4.9)

( p)n+1
S'(s) = 2 (—K)""

n)1 2(22r)8

As is well known, the individual cluster terms in this
series diverge in the static case due to the long range
of the Coulomb interaction. Similarly our coeKcients,
given by Eqs. (A11) and (A12), diverge. Nevertheless,
following Mayer, "we will sum up the series in the hope
of obtaining a reasonable result. We get

and

(—p)"'()= + [(2 )' '(/')]""d'~ ", (4.»)
2 (22r)8

( P)n+1

SR (S)—Q ( K)
n+1

n) i 2 (22r)8

X [(2~)~u'(/)]"+'d't s", (4.11)

with 24s(/, ') defined by (A3) and K by (AS). Summation
of (4.10) leads to a well-defined integral and to the
Debye-Huckel terms. On the other hand, summation
of (4.11) leads to an undefined integral (since analytic
continuation of the geometric series, in contrast to the
alternating geometric series, introduces singularities
along the path of the transform integration).

If one knew the form of the repulsive term H,;*
assumed in Sec. II, and combined it with the relativistic
term, one might get a sensible result upon analytic
continuation. There is a possibility that the singularity
introduced indicates that the problem might be one of
stability and as such would be intimately connected
with the necessity of introducing repulsive terms.

[(2~)8/2U'(/)] "+'d9 s", (4.12)

where
ff s(/) = (2/sr)1/2[e2/(g 2+P)]

is the transform of the shielded Coulomb potential.
Upon summation of the series (4.10) and (4.12) and

integration over the transform variable, we get

and thus

Ss(s) sl/2p8/2~1/2e8

SR(s) sl/2P8/22rl/288K[1 (1 K)1/2 I

(4.13)

(4.14)

we have

K2 (228c2p)
A=4~(~c)'

mc~

2K8 (288c2p)

228c2pK2 (mc2p)

(4.16)

(4.17)

24 G. N. Watson, Theory of Bessel F4444etio44s (Cambridge
University Press, New York, 4944), 2nd ed. , p. 172.

S(S)—=S (S)+SR(s)=S'"P'"sr'"e8K(K),

E(K)= 1+K[1—(1—K)'"]— (4.15)

Before using these results in deriving the thermo-
dynamic functions we first evaluate the parameter z.
The integral involved is given by Watson'4 and thus

K = 82r (2/8c) 'K8 (2/8c'p)/(218c'p)'Ay

where the K„(x) are modified 'Hessel functions of the
second kind. Since A in (3.5) equals'
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V. THERMODYNAMIC FUNCTIONS

Ke now calculate the equation of state, the average
energy, and the fugacity from Eqs. (4.8) and (4.15).
Noting that Ss(s) and 5"(s) are proportional to s',
(4.8) may be written as

q= V{(s&+»)L1+—,S (sg+s2)]+-'.,s~S"(s&)}. (5.1)

The average numbers of particles are then

ng ——span/Bsg
——Vsse[1+ S'(sg+s2) —S'(s&)+S(s)]

n, = Vs,D+S&(s,+s,)].
Solving for the activities, we obtain to the first order

s~= p[1—S'(2p)+S'(p) —S(p)1,
s2= p[1—S'(2p)].

(5.2)

Thus the equation of state is to the same order

p/kT= (s~+s2)L1+3S'(si+s2)] as&l S (s&) S(s&)]
=2p{1—sS'(2p)+ sP'(p) —S(p)]}

or

P/2kTp = 1 (2p)'I'P "s—'"—e'

X {1—(3/2v2) $1—E(K)]}, (5.3)

which in the nonrelativistic limit $IC(g) —+ 1]reduces to
the Debye-Huckel law.

By a similar procedure we get for the average energy

E=—7/~~'p'&~$32n(2p)'~'{1+. (1/2v2)L1 —lt (/()]}
—nL(W, /aP) (1/A, )+ (aX,/aP) (1/A, )], (5.4)

where the last term in brackets is the contribution
from the relativistic free-particle kinetic energy. In the
nonrelativistic limit (5.4) becomes"

E=—vr' 'P' 2e'2n(2p)'~'+nf(3/P)+ (ns„+nz, )c'].

The fugacities are

v = —in'. +lnp —vr"'P31'e'(2p)"'

X {1—(1/v2)(1 —&( )]}, (5.5)

p2 = lnA2+lnp ~ 12P ~ f~(2p)~~ 2

"L. D. Landau and E.M. Lifshitz, Statistical Physics (Addison-
Wesley Publishing Company, Inc. , Reading, Massachusetts,
19S8), p. 232.

The (v/c)' approximation serves to limit the values that
a can take and still give a valid approximation. Thus,
e.g. , for %=—', the argument in the Bessel functions
wnl be large, and we have asymptotically K3 (x)—E~(x) cce */gx. As P= (kT) ', we can then write
(4.1'I) as

~=2k T/nzc'

Thus g is at most of 0(10 '). Examination of (4.15)
reveals that E(~) varies as a'. Therefore, the relativistic
correction is small compared to the static one.

which again reduce to the nonrelativistic results for
E(s) —+ 1.

VI. DISCUSSION

Equations (5.3), (5.4), and (5.5) show the relativistic
modihcations of the Debye-Huckel theory resulting
from the Darwin Hamiltonian, with only the short-range
relativistic correlations taken into account. Vjfe saw
that our inability to treat the more general
involving long-range relativistic correlations may be
due to incomplete knowledge of the total interaction
required for allowing statistical equilibrium. However,
it may also be that the difhculties encountered in the
relativistic case are only due to the failure of the
customary mathematical methods of the nonrelativistic
one. The short-range correlations may be expected
to be the most important ones under certain conditions,
as at high densities. Thus, while the treatment is
deficient in its neglect of long-range effects, the results
in terms of short-range e6ects may be of interest by
themselves.

In considering the nonrelativistic case alone, if one
were to decompose the static interaction term into
two parts and discard the long-range part, one would
obtain only about half the usual result. If we extended
this argument to the relativistic terms, then one might
say that by neglect of long-range correlations we will
not appreciably change the expectation that the total
relativistic effect would be small (in fact, smaller than
one might expect from the magnitude of (v/c)']. The
small correction obtained is of the same form as th. e
electrostatic one; no unusual effects (which one might
have expected from the unusual forces) are apparent
in the result.

The consideration of only the short-range relativistic
terms had the effect of introducing a shielding param-
eter. It may appear that the restriction to short-range
relativistic interactions with subsequent summation of
ring terms is somewhat redundant since in the static
case it is known that the summation of diagrams in the
lowest approximation for the average potential leads
to Debye shielding; if an attempt is made to investigate
whether an analogous statement can be made for the
relativistic term, it is found that the equivalent sum-
mation leads to an undefined result, as discussed in Sec.
IV, and thus no definite conclusion can be reached.

Beyond the restriction discussed above, the problem
is of formal interest for statistical mechanics because of.
the inclusion of velocity-dependent interactions. This
velocity dependence required a departure from the
usual reduction of reducible clusters to irreducible ones
by necessitating an expansion of the f,; early in the
treatment rather than after the irreducible integral
forms are obtained. Related to this requirement was
our restriction to the activity series, rather than use of
the virial series.

"S.Ono and Sohei Kondo, in FXandbuch der Physik, edited by
S. Flugge (Springer-Verlag, Berlin, 1960), Sec. 40, p. 224.
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Although the particular tensor form of the relativistic
interaction term was of no importance up to Eq. (3.7),
it became critical for the steps involving integration
over momentum. It was only because of this form that
we were able to get a simple product term which could
be easily summed.

The system is necessarily restricted to electrical
neutrality, and the approximations introduced some-
what limit the possibility of taking higher approxi-
mations. In addition, in extending the treatment to
systems other than electrodynamic ones there appear
to be insurmountable difficulties. We have restricted
ourselves to the ring approximation; this is justified
because treatments extending the Debye-Huckel theory
in the nonrelativistic approximation by taking into
account higher order clusters show that these corrections
are small compared to those of the rings. Bowers and
Salpeter' have shown this to be the case for a low
density gas, and Ichikawa" for high densities; while

Ichikawa attributed these higher order effects to the
long-range oscillation mode, it has not been shown that
at lower densities certain higher order clusters are
equivalent to the plasma oscillation mode.

We have not considered the effects of suitable
repulsive terms which could be considerable but for
which we have no explicit form. Apart from the fact
that these terms might have inhuence on the problem
of treating the total interaction, the bypassing of these
terms is not feasible in computing higher order
corrections. '8

Our approximations impose restrictions on the
density. For usual plasma densities at high tempera-
tures the Debye-Huckel terms are quite small compared
to the kinetic energy contribution. At higher densities,
such as those found in stars, these terms become larger.
However, for these higher densities, degeneracy plays an
important role and thus we shall 6rst estimate the
expected limitations of the classical result. The thermal
DeBroglie wavelength X=h(2vmkT) '" is of the order
of 10 "cm for T 10' 'K, so that for densities below
about 10" cm ' the classical treatment is applicable.
At a density of 10" cm—' and temperature of T=10'
'K, the static Debye-Huckel term is of 0(10—'—10—').

The approximation made when the f,; in (3.3) are
expanded and retained in the first order in (4.1) leads
to an upper limit on the density for a given tempera-
ture regardless of the classical limit restriction. Thus
kT&&H;, ' leads to a good approximation. We see that
roughly (using only the static approximation for this
order-of-magnitude calculation) r))e'/k T. We have
actually used this condition in Sec. V in linearizing
expressions by treating $(p) as small compared with
unity. Thus the limit of approximation on the density,

"D. L. Bowers and E. K. Salpeter, Phys. Rev. 119, 1180
{1960).

'SK. Meeron, in I'/asma Physics, edited by I. E. Drommond
{McGraw-Hill Book (."olnpany, Inc. , New York, 1961), Chap. 3,
p. 88.

considering a fixed high temperature (and excluding the
classical limit criterion), is p«(kT/e')'. For T=10' K
the limit is p((10" cm ', which is less restrictive than
the classical criterion p(&10" cm ' obtained before. If
the densities appropriate to the problem are extended.
to 0(10"), the static-classical Debye-Hiickel term
approaches unity for T 10' 'K. Treatment of the
quantum case would probably decrease the size of this
term relative to the kinetic energy, owing to the in-
creasing degeneracy which will tend to diminish the
effects of interaction.

It is to be noted that the density limit criterion
prevents one from taking a high-density limit in the
sense of Ichikawa. Nevertheless, the densities are high.

The relativistic correction is small, and generally
negligible. At extremely high temperatures of 0(10"'K)
it can become comparable to the static Debye-Huckel
term, although this result is not reliable since the (v/c)'
approximation is plainly violated in this region. At
temperatures of 0(10" 'K), ~ approaches 1, and by
(4.15) E(a) becomes imaginary when a) 1. This point
roughly corresponds to a temperature at which the
mean thermal energy is equal to the electron rest
energy, a region in which pair production processes
(which can not be treated classically) become important.
It is to be expected that radiation effects become
important at somewhat lower temperatures; the prob-
lems involved in a treatment of these effects were
discussed in the Introduction.

The fact that the meson field is short ranged might
lead one to expect that the treatment used here for
electric charges could be applied mututis mltaedhs to
nucleons. Several features of the nuclear problem appear
to vitiate such an attempt, however. First, no condition
of neutrality can be imposed in this case, while such a
condition was critical for our earlier argument leading
to a separation of momentum and coordinate terms.

Another diTiculty comes to the fore when we examine
the form of the interaction. If one retains terms of order
(v/c)' in the solutions of the Klein-Gordon equation
and substitutes these in the Hamiltonian for scalar
mesons, one obtains interaction terms of the form

CCi u&' u&
exp( —«)+ «p( —Xr) x(p,'r)'+

2sPc r

This form does not permit reduction of the general
cluster integral to a product form gas in (A6) for
electrodynamicsj. Similar difhculties exist for vector
rnesons. These difhculties are not related to the fact,
mentioned in the Introduction, that in the meson case
action at a distance and symmetric field theory are not
entirely equivalent'; the difference does not show up in
the approximation considered here.

Instead of using the potential above, one might
attempt to use the Werle'~ "equivalent potential. "

"J.Werle, Bull. acad. polou. sci. Classe Dl, 1, 281 (t953l.
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Now we divide the interaction into two parts
p4

exp( —pHio) —dp.2' c
(AS)

where

Q H', "=~&ssg .s+-Hr, a,
i(j

Evaluating (A3) and (A7) by the formal device of
adding a convergence factor exp( —xr) and taking the
limit as x —& 0 after the integration is performed, we
obtain

Hsp+s ——Q—L Q F~(k,p) exp(~k r, ;)
U i('

+ Q Fs(k) exp(ik r;;)7,
all k

where

usg+s(t) =0,
I &I3g s) (t) = —2N, (/),

where kD is the reciprocal of the Debye radius, and
(A9)

Hz~ (1/——U) P P F~(k,p) exp(ik r,;).i(j 7c(k~

Ns(&) = (2/~)'"~ '. (A10)

Substituting these expressions into Eels. (A1) and (A6),
we get

(—p) "+' p47r "+'
so

i
d3]

kp
(A11)

[(P~/2) 7 "+' 8~~ "+'
Ro

2 (2m)'
(A12)

P H, = (1/V)P P [Fs(k)+F~(k,P)7 exp(~k r;;),

where

Fs(k) =4~&'/k'

S~e' p;p,F~(k p) = — sinO'; sinO; cos(C', —4,).m'c'

To separate the long- and short-range interactions,
we first Fourier-analyze (4.2) in a box of volume V
using (A5), (A7), (A9), and (A10), to get

Following the previous discussion we shall absorb HL, R
into the unknown term H* and the remainder of the
argument will go through as before with HER+8 instead
of the exact potential.

Now by summing over k in HgR+q, we get"

Hss+s= P(e, e,/r, ;)(1 $(2p,p—,/m, m, c ) sino~; sinO';

Xcos(~,—C,)7L1—(2/~) Si(k ...)7},
where Si(y)=—Jo'(x ' sinx)dx. As shown in reference
32, the last term in square brackets is equivalent to a
screened potential of range ka and thus

H»+s =2 (~'~~/r'r)—

XL1—exp( —kDr;, )(2p;p;/m;ns;c') sino~, sino~.

Xcos (C,—C;)7.

Next we repeat all the steps leading up to (4.10) and
(4.11), as the form of the interaction allows the same
reduction of reducible to irreducible integrals, and
obtain the results (4.10) and (4.12) discussed in Sec. IV.

D. Bohm and D. Pines, Phys. Rev. 92, 609 (1953).


