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Lee Model with Two V Patticles*f
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For a relativistic field theory including two particles V; with the same quantum numbers described by
Heisenberg fields if;(x), the values of the matrix elements (0~|i;(x) ~ V;) are obtained by the use of the asymp-
totic conditions. For a Lee model including two V particles these matrix-elements are used to obtain expres-
sions for the renormalization constants. The consistency between the dispersion theoretic and Hamiltonian
methods for this model is verified by discussions of several particular situations.

I. INTRODUCTION the asymptotic fields. In Secs. III and IV the calcu-
lation of the renormalization constants and the 2V—0
scattering amplitude will be carried out in the usual
Hamiltonian formalism (solution of Schrodinger equa-
tion). In Sec. V a connection between the dispersion
theoretic and the Hamiltonian methods will be made
clear by illustration of the use of asymptotic fields,
asymptotic conditions, defined in II and by showing
that they are consistent with relations obtained in
Secs. III and IV. This will complete the foundation of
using this hybrid approach in this model, and will be
applied to V—0 sector in a later communication.

'N this paper, we seek to present a nontrivial example
- - of a field theory, describing in its framework two
particles having the same quantum numbers, but
different masses. The major complication in such a
theory is in the definition of Heisenberg field operators
for the two particles. The reason being that the Heisen-
berg fields require an extension off the mass shell, and,
if we have more than one field having the same quantum
numbers differing only through their masses, then the
two fields naturally get mixed. We seek to remove this
arbitrariness by the requirement that the asymptotic
fields, defined by the Yang-Feldman equations, ' de-
scribe independent particles. That is to say, that they
have the usual commutation rules required for non-
interacting independent fields. It is found that such
conditions can be postulated in general.

The model used for illustration is a simple general-
ization of the original Lee model. Just as in the original
I.ee model, our model is essentially nonrelativistic, as
our fields have no antiparticles. The model describes a
very restricted set of interactions of three fermions
Vi, Vs, and X with one boson 0; (Vi %+8 and
Vs A'+0). The fermions are assumed to be infinitely
heavy, while the boson obeys a relativistic energy-
momentum relation. The form of interaction allows us
to define two quantum numbers 8 and S which are
conserved in the interaction. The quantum numbers of
the V particles are 8= j., S=1; those of the X particle
are 8= 1, 5=0, and those of the 0 particle are 8=0,
5=1.It is clear that there are no other states with the
same quantum numbers as N or 0, and, hence, these
do not require any renormalization. The V particles,
on the other hand, can dissociate in E0 pairs, and,
hence, the fields associated with them need normal-
ization. The vacuum state needs no renormalization.

In Sec. II we shall formulate the conditions which we
shall have to impose to insure a proper description of

II. ASYMPTOTIC FIELDS AND THEIR
COMMUTATION RELATIONS

Let us consider two fields iti(x) and ps(x) which
correspond to particles whose masses are p1 and p~, and
whose other quantum numbers are all identical. We
wish to discover sufficient conditions, such that the
asymptotic fields in the remote past and the distant
future describe independent particles; that is to say,
they obey free-field equations and commute with each
other. For simplicity we assume the two particles to
be spinless; hence, the fields obey

( +f i')4t(x)=jr(x)

(&+»')4s(x) =js(x).

(2.1)

(2.2)

Here ji(x) and js(x) depend on gi(x), its(x), and also
on all the other fields which may be relevant in a
particular problem under consideration. Indeed, these
equations may be taken as a definition of the current
operators j;(x). We can integrate these equations
formally to give the Yang-Feldman equations, defining
the asymptotic fields in remote past, in terms of the
Heisenberg fields

it'i (x) 4'i(x) ~&(IJ» x y) ji(y)d y (2 3)
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Ps'"(x) =Ps(x) — Ari(IJ, s, x—y)j,(y)d'y, (2.4)

where Drr(p, , x—y) is the retarded Green's function of
a Klein-Gordon equation with mass p, . The asymptotic
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fields $1'"(x) and Q2'"(x) satisfy free-field equations
with mass p& and p2,. respectively,

comparison with (2.9) thus yields

c,,=(0ly, (0) I p )=s';. (2.12)
( +Pi)4'1' ( )=0 ( +I 2)42' (x)=0' (2'~)

U
'

2 10 2 1 d 2 2)
Equations (2.3) and (2.4) imply, in a certain sense, a

convergence of the operator p(x) to g'"(x) as the time
t —+ —~. Indeed it is required to be a weak-operator
convergence defined by Lehmann, Symanzik, and
Zimmermann':

(o I i'(0)
I
p»= o. (2.12)

These thus give the general conditions which the fields
describing two particles having identical quantum
numbers must obey.

lim I(+ I (0 "'(&)—L0""3 '*)
I
C')

I

=o
taboo

(2.6) III. DESCRIPTION OF THE MODEL

for all pairs of states
I

111& and
I I), where

y,~(t)=i d'xy;(x)8 f2*(x) (2.7)

(oly, -(x) Ip,&=o, (oly, -(x) Ip,&=o,

(014,'-(x)
I p,)=~' "/(2~)2&2,

(Olp '"(x)
I
p2&=e'"2~'~/(22r)2 2

(2.9)

where IP1) and
I P2) are eigenstates of the total Hamil-

tonian with masses p, & and p2, respectively. All other
matrix elements are zero.

Let us now investigate what Eqs. (2.9) imply in
terms of the Heisenberg field. From Lorentz invariance,
we have

Oly, (x)
I p,&=(Oly, (0) I p,&" ."/(2~) ~. (2.10)

Thus, the space time-dependence is explicitly factored
out. By relativistic invariance (0 I p, (0) I p, ) is a function
of pi2= —pp; hence, is a constant. We can thus easily
substitute for Ip, ) a state with wave function g, (x);
thus

«I &"'(0 I g )= i~' g (*)~of'(x) d'x (2.11)

where the C;,'s are constant, equal to (Olp, (0)
I p;).

Application of the asymptotic conditions (2.6) and

'H. Lehmann, K. Symanzik, and W. Zimmermann, Nuovo
cimento 1, 205 (1955).

Here f;(x) is a normalized solution of the Klein-Gordon
equation with mass p, As both @ "(x) and f, (x) satisfy
the Klein-Gordon equation with the same mass, I P "]r*

is actually time-independent.
In order that the in-fields describe noninteracting

particles, we not only want them to satisfy Eqs. (2.5)
but also proper commutation relations. These are

Lyi' (x),yi'"(x') 1=i'(pi, x—x'),

I @2'"(x),y2'"(x')f=ih(p2, x—x'),
aild

(2.S)

These lead to the following matrix elements for the
in-fields,

L+4+k' j ~k k'~ {4'12 ~4'&}

{41'41}= 1/~1 {O'6}= 1/~2,
and

{41',1h}= 1/Z2.

(3 3)

All other anticommutators between fermion operators
vanish. It shall be noticed that the anticommutator of
the field operators 1Pit and 1P2 does not vanish, as is
usual for field operators of particles having different
quantum numbers. In that case it follows' from the

4 As the anticommutator is a c-number, me have

{12~,A)=(oI {1t~t,A) Io)
=&ano

I
At

I 2)&2 Iit 2 I o)+(0 Iii2 I ~)(2 I 121'I 0)j,

The model used here describes the interactions of
three fermions, U~, V~, and Ã with a boson 8. The
allowed interactions are V~ SO and V~ EO. These
interactions, along with the restrictions that there are
no antiparticles in the model, allow only a very restricted
class of reactions, and thus make the model especially
simple. The model is described by a Hermitian Hamil-
tonian,

(2121+f12221)~1/1 1'+ (2222+ ~2122)+2/2 1P2

+8 (4'1 4'2+H C )++k MQk Qk

+{(g14'1'+g2A')4'~~+H c }~ (3 1)
where

g =Pk LN(~)/(2(gg)'~ )12k, (g= (P +P) ~ (3.2)

Here 1P1 and 1P2 are renormalized field operators de-
scribing Vi and V2 in a certain asymptotic sense which
shall be made explicit later. 1P~ is the field operator
for the T particle, and nj, is the annihilation operator
for the 8 particle in the state of momentum k. m~ and
m2 are the renormalized masses of the particles V~ and
V2, respectively, and p is the mass of the 8 particle.
The mass of the E particle is taken as the zero for
energy. It is clear from the Hamiltonian that V and E
particles are taken to be fixed in position; hence, their
energy is the same as their mass, whereas the 0 particle
obeys a relativistic energy-momentum relation. We
have quantized in a box of volume 0; later the limit
0 —+00 will be taken in all integrals. The cutoff function
21(cd) is so chosen that all the relevant integrals exist
and that there are no ghost V-particle states.

The equal-time commutation relations obeyed by
the field operators are
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N(~) fr(k)
+Zs (gil 1)+g I»)

(2~g) 1/2

fact that the equal time anticommutators of the (3.3) and Eqs. (4.9) and (4.10), we have

Heisenberg fields are c-numbers in any proper Hamil-

yq a iz'dby eca o a 'o m n &l~)=z ( +~ )II)+f~*l2)+ & l&0)
rules. In the present case, since U~ and V~ have the (2oiQ)'"
same quantum numbers, we cannot put (fi pals}=0;
however, even here we shall assume that it is a c-number.

IV. PHYSICAL V-PARTICLE STATES

We define the physical U-particle states as the
eigenstates of the total Hamiltonian with eigenvalues
fQy and m2.'

7Ã] ]
6+2 oifi(k) I

ii/02)

=m,n,
l
1)—m, (z2/zs)n, l2)

If
I ~1) mil ~1&, (4.1) +mi &2 fi(k)

I
&02) (411)

(4.2) Comparing the coeflicients of the states I1), I2), and

I
iV02), we obtain the equationsThese equations are however not sufficient to deter-

mine all the renormalization constants in (3.1) and
(3.3). We thus require further restrictions which are
provided by the discussion in Sec. II. We require in

analogy with (2.11)

m 1+~m 1 (m tel 1/Z 1)

gI+—Q I u(oi)/(2olQ) "2]f1(k) = 0, (4.12)
Zy

(0I& l~)=1, «I@I~)=0,

(Oliiil V2)=0, (Olit
I
V )=1.

(4.3)
8*+g2 g k LN (oi)/(2oin)'"] f1(k)

(4 4) +mini (Z2/Z3) =0, (4.13)

(~o —mi) f, (k)+g,Lu(o~)/(2oiQ)'"]=0. (4.14)

Substituting fi(k) from Eq. (4.14) in (4.12) and (4.13),
and taking the limit of infinite volume, we have

ml+™1 (ml&l/Zl) (gl /Zl)4'(ml) (4 13)

+ (mt&1/Zi) (Z1Z2/Z3) glg24(ml)l (4.16)
(4 5) and

where

(~iI~1)=1, (~2I~2)=1,

(V, l
V,)=0.

I et us define, for convenience in writing,

0), I2&=~tstlo

" k'232 (oi')d~'1
4(~)=——

4m'

We had shown the consequences of such conditions for
a relativistic theory involving bosons; however, it is
also valid for the nonrelativistic model under con-
sideration.

Besides (4.3) and (4.4), there are the usual norrnal-

ization and orthogonality requirements on these eigen-
states,

(4.7)

It shouM be noted that we carefully avoid calling
states I1) and I2) V-particle states, as they do not
represent bare U-particle states. They are not even
orthogonal to each other.

%e now expand the physical V-particle states in
terms of I1), I2), and les).

232 (oi') 1
= lim Qs ——, (4.17)

(2oi'Q) '~2 oi' —oi

A similar procedure can be used for the
I V2) state;

namely, we begin by defining

I
V ) l1)+ 12)+2 f (k) ISO ) (4.8)

Following the procedure of Eqs. (4.9)—(4.17), we have

and
n2 —(Z2/Z——3)tr„

(~i/Zi) LI —(ZiZ2/I Zs
I
')]=1.

(4.9)

(4.10)

Using the Hamiltonian (3.1), the commutation rules

where
~
s) is a complete set oi states. II the tmlds i/~ and it2 have

difterent quantum numbers, then for every member of the set
~
s) the summand in the above expression vanishes. Hence,

Imposing the requirements (4.3), we can deduce the
following relations between n~ and o.2.

ms+ Sms —m2 (ps/Z2) = (g2'/Z2) 4 (m2), (4.19)

8 +m2 (p2/Z2) (Z1Z2/Z3) glg2& (m2)

(p,/Z2) I
1—(Z1Z2/I Zs

I
')]= 1,

(4.20)

(4.21)

f (&) = —
g L~( )/(2 0)'"]I:I/( —m )] (422)

A simple algebraic manipulation of Eqs. (4.10),
(4.12), and (4.13), (4.14)—(4.16) yields the following
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results:

where

Z 1 +&].) Z2 +&2)

1/Z3 ——(1/E) (g&g2/n ip2) F (m i,m2),

Using the Hamiltonian (3.1) and commutation rules
(3.3), we obtain

(4.23a)

f (t) = [EE,O(t)]+m e (t)

where

E=[1—(ZiZ2/I Z3I')]
=1—(gi'g2'/~ip2)F2(mi, m2). (4.23b)

hami= mi[(1/E) —1]+(gP/Zi)p(mi), (4.23c)

Sm2 ——m2[(1/E) —1]+(g22/Z2)p(m2), (4.23d)

Z2 8
= —tlmut'i(t) — —(m2+&m2)$2(t) ~2(t)

Z3 Zl

gI g2——Pi(t) —~~(t)A (t)——A (t)A (t), (4.32)
Z3 Zl Z3

and
Z1

f,(t) = sm—p2(t2) —(m—,+-sm, )p, (t) ~,(t)
Z3 Z2

and

1 ktt ((0)dc'
F (mi, m2) =

42r2 „(o)—mi) ((o—n2, )
(4.24) 8 g2 gs—~2 (t) —~~ (t)A (t)— A(t—)A (t). (4.33)

Z3 Z2 Z3
1 " ork2P(a))d(o

(4 25) Similarly we can define the 8-current operator y(t),E(mi, m2) =
42r2 „((v—mi) (a)—m, )

j(t) = [(2(uQ)'~'/u(cu)][ —i(d/dt)+a)]+2(t). (4.34)

(4.35)(g&~& ~&+g2~& ~2).

The constants n& and P2 can be easily determined by I us)the use of the normalization condition (4.5):

1.e.)

= I~ I'(1/Z)[1 —(Z Z/IZ I2)]+Balf (k) I', Taking the matrix element of (4.32) between vacuum
and one-V-particle states, we get

Similarly,

= 1—gPF (mi, mi).

pp=1 —g22F (m2, m2).

(4.26)

(4.27)

g~ g~A
(o If IV)=-~ ——+—~( )+ 4( ),

Z3 Zl Z8
(4.36)

It is clear from the expression (4.24) that as mi and m2

are less than t3 the constants ni and P2 are real and so
are all the renormalization constants Z~, Z~, Z3, 8,
bus~, 2nd bm2. We shall thus ignore the asterisks from
all our subsequent equations.

The orthogonality of
I Vi) and

I
V2) is a direct

consequence of (4.14), (4.22), and (4.23a—e).

(Vi I V2) =niP2( —Zi/Z3(1 I+(2 I) (I 1)—Z2/Z3I 2))
+g2 f, (k)f, (k)

Ealp2/Z3+glg2F (ml m2) (4.28)

We are now in a position to prove by direct calcu-
lation the equations corresponding to Eq. (12) of Sec.
II. Before we undertake this, we have to define the
operators at arbitrary time in terms of the operators
we have been working with until now (i.e., operators
at time t=0).3 This is easily done by the transfor-
mation,

0 (t) —giHtog iHI—(4 29)

[—i(d/dt) ym, ]y, (t) =f, (t),

[—i(d/dt)+m2]$2(t) = f2(t). (4.31)

The current operators can now be defined by the
foH.owing eqnations:

(4.30)

The expressions on the right of these two equations
can each be easily shown to vanish by use of the
relations (4.23). Similarly, we verify directly that

(OI f I
V,)=0 and (0I f IV)=0. (4.38)

The constants gI and g~ appearing in the Hamiltonian
(3.1) can be easily seen to be the renormalized coupling
constant, as taking the matrix elements of (4.35), we get

(IVI jI Vi)= —gi and (iVI jI V2)= —g2. (4.39)

V. THE N-0 SCATTERING STATES

Now we are interested in the scattering of the
0-particle by an E particle, and calculate the scattering
amplitude. We shall see that the form of the scattering
amplitude is as required by unitarity and the mass
spectrum.

The scattering states can be got as the continuum
solution of the eigenvalue equation

Z2 8
(0I fiI v2)= —(m +sm2) ———

ZB Zl

gsga g2
y(m, )+ y(m2—) (4.37.)

Zl Z3

The time label of all the operators is ignored when referrjng
fo time. t=0. (EX cv i3)

I
N8„t)=0. ——(5 1)
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The positive imaginary part for co is introduced in the
equation to insure the proper boundary condition at
time t= —~ where we assume that only incoming
plane waves exist. We split the state as

Substituting f(k') in (5.7) and (5.8), and taking the
limit of 0 —&~, we have

al(ml M) [czl+gl P(mli M+zp)]+a2(m2 M)

when ~

where

I
&0-+)=

I
~'tI.)+ I

x+(M))

(H M —i p)—I
x+(M)) = &r—

I
&'ok),

Hg =H —Hp.

(5.2)

(5.3)

Zlz2
+glg2F (m2& M1z p)

EZ3

u(M)
gl, (5.11)

(2MQ)'"

Z1Z2
+glg2F(mi, M+zp) +a2(m2 M)

EZ3

Here, Hp ——+2M2czk c22, the Hamiltonian for a non-
interacting EO system.

Let us expand the state Ix+(M)) in terms of the
physical states

I Vl), I
V2) and the noninteraction I1VO&)

state.

al(ml —M)

u(M)
g2. (5.12)

(2MQ)'"
X [82+g22F (m, , M+ip)] =—

ku (M)dM1
P(»~M2~M2) =

4X2
(5.13)

GO C01 GO M2 Q7
—M3

al(mi M) I Vl)+a2(mz M)
I
V2)

+Qk f(k')(M' M i p—) I/V—82)

Ix+(M))=all Vl)+azl V2)+2' f(k') I/Vg') (5 5)

Substituting (5.5) in Fq. (5.3), we get, using (4.3) and Using the relations (4.23) and defining

(4.4) and the Hamiltonian,

f(k') u (k')+&2, (gll 1)+gp
I
2))

(2M'Q)'/2

u(M)
(g I1)+g I2)) (56)

(2MQ)1/2

Using the expansions of Vl) and
I
V2) (4.8) and (4.18)

and comparing coeKcients of I1), I2), and IlV02),

o 1Z2
~1~1 ++1 ~2 ~2

we can recast (5.11) and (5.12) in the following form:

al(mi M)[1—gl (ml —M)P(ml, ml, M+ip)]

+ a2 (ml M) (m2 M) [ glg2F (mz ml M+Zp)]

u(M)—gl, (5.14)
(2MQ)'"

al(ml M) (m2 M)[ glg2F(ml m2 M+zp)]

+a2(mz —M)[1—g2'(m2 —M)F(mz, mz, M+'ip)]

f(k') u(M')
+glg

(2M'Q)'"

P2Zi
al(m2 M) +a2(m2 M)p2

(
gl, (5.7)

(2MQ)'"

u(M)
g2. (5.15)

(2MQ)'"

We can easily solve these simultaneous equations for a1
and g2.'

and

f(k')u(M')
+g2E

(2M'Q)"'

u(M)
(5.8)

(2MQ)'/2
where

al ——/V 1 (M)/A(M) and a2 ——/V2 (M)/h(M), (5.16)

alf1 (k') (ml —Mac)+ azf2 (k') (mz —M')

+f(k') (M' —M) =0. (5.9)

Substituting fl(k') and fz(k') from (4.14) and (4.22)
in (5.9), we get

u(M')
f(k') = al

(2M'Q)'/2 (M' ml) (M' M —ip)——

u(M') (m, —M)
a2 . (5.10)

(2M'Q)'/ (M' m2) (M' M z—p)——

u(M)
/Vi(M) = —gl- (m2 —M)

(2MQ)'"

X[1—g,'(m, —M)F(m2, m„M+i p)

+g22(ml —M)F (m„ml, M+i p)]

u(M)= —gl——(m2 —M)
(2MQ)'"

X[1—gz'(m2 —ml)F(mz, mz, ml)), (5.17)
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A(lo) = (ml —co) (m2 —lo)D(lo),

where

(5.19)

D(oo) ={(1—gP(ml —co)F(ml, ml, (+is)
X[1 g2—'(m2 1)—F(m2, m2, oo+io)]

gPg2'(m—l lo) (m2 —1o)F'—(m„m2, co+i&)} (.5.20)

We shall later find it useful to rearrange the expression
for D(1o).

and similarly,

u(&o)
N2(lo) = —

g2 (ml —1o)
(2(oQ)'"

X[1—gp(ml —m2)F(ml, ml, m2)], (5.18)

Thus,

D(ot)= 1 gP—(ml cv)F(ml, ml, Gp+Zo)

g—2'(m2 (—o)F (m2, m2, co+is)

+g pg2 (ml M) (m2 co)

— 1 " dlo'k'u'(co')
X

4tl' „(M'—ml)'(M' —m2) (6)'—co—26)

X (ml m2)F (m2, m2 ml)

1 dlo'1'2'u2(lo')

((o'—m2) (lo' —ml) ((u' —lo —ie)

X (m2 —ml)F(ml, ml, m2) . (5.23)

COeKCient Of gPg2' in D(co)
= (ml o1) (m2 co)[F(ml ml 1o+i&)F (m2 m2 ~+ i&)

—F'(ml, m2, (o+ie)], (5.21)

which reduces, after small algebraic manipulation, to
T(k) =(1V&l, j EEr I && +). (5.24)

Using explicit form of Hq and the commutation rules,
we have

The scattering amplitude can now be calculated in
terms of the state ~XO„+):

(ml oo) (m2 &) (ml m2)F(m2 m2 ml)

k u (Q) )de
X

Otr & (M ml) (M m2) (—GJ —N —'l E)

+ (m2 m, )F—(ml, m„m, )

k'u2 (oo') de'
X

4tr2 „(1o' m2)2(1o—' ml) ((o'—lo is)— —

u(&o)
T(k) = (Xi 7 ice„+)

(21oQ)'"

u(1o)
(0

I g,p,t+g,y,t I
Xe.+)

(2&oQ)'"

u(1o)
(gllrl+g2112) ~

(21oQ)'"
(5.22)

Thus the S-wave amplitude is

(5.25)

ku (M){gl (m2 —~)[1—(m2 ml)g2'F—(m2 m2 ml)]+g2 (ml oo)[1 ( 1 m2)gl F( 1 1 2)]}
T(1o)= . (5.26)

4tr(ml —co) (m2 —(o)D(lo)

Let us denote this expression by

T ((o)= [ku2 (cu)/4m-]M (co) .
ku2(lo)

(5 27) Im+(~) = {gt (ml ~)[1 (m2 ml)
4x

Analytic Properties of M(1o)

It is clear from (5.26) that M(&o), as a function of the
complex energy variable co, has poles at m& and m2 with
residues —g&' and —g2', respectively, since

D( 1) [1 g2 (m2 1)F( 2 2 1)]

D(m2) [1 gl (ml 2)F( 1 ml 2)]'

Besides these poles, the function M(&o) has a cut from

p to ~ in the complex cv plane, coming from the func-
tions F(m;,m;,co). To calculate the jump across the cut,
we use the explicit expression for F(m, ,m, ,lo). Then we

Xg2 F(m2, m2, ml)7+g2 (m2 —lo)

X[1—(ml —1o)gpF (ml, ml, m, )]} (5.29)

= —[ku2(co)/4tr]Ã(oo), (5.30)

where X(lo) is the numerator function in the expression,

M ((o) =1V((o)/6(lo). (5.31)
Thus we have

ImM (lo) =Pu2(~)/4tr]
~
M((o)

~

2. (5.32)

M(&v) thus has poles and cuts as required by mass
spectrum and unitarity. There are no other poles as
long as D(co) has no zeros, which is certainly true if
g&' and g&' are sufficiently small.
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VI. AN ILLUSTRATION OF THE USE OF THE
HEISENBERG FIELDS Qi AND Q2

We observed in Sec. III that pi and 1t 2 describe in an
asymptotic sense the particles V& and V2, respectively.
We shall now show that it is possible to use these
operators, in the reduction formulas of the standard
formalism, as the field operator for V~ and V~ particles,
respectively. This is instructive in view of the fact
that fit and $2 do not anticommute, and hence the
states I1) and I2) do not represent bare Vi and V2
states. We shall first define in- and out-fields, and then
later illustrate the assertion that gati(t) and iit2(t) can
indeed be used as field operators for U& and V2, by
showing that their use does not contradict the Hamil-
tonian formalism used till now.

In complete analogy with the discussion in Sec. II,
we can define the asymptotic fields, iit i'"(t) and f2 (t),
which shall anticommute with each other:

vanishes. We now use the asymptotic condition (6.4):

(olp, l
v,)= iim(ol {p„y,'(t)}lo)e'- i (6.7)

(Ol {1t„f,t(t) }IO)0(—t)e'- dt

+(o
I 8 i 1t,'}

I
o). (6.g)

f(t) —&iHtf (0)e 2Hi (6.V)

and then integrate over time when

We introduce the complete set of in-states and use the
time translation property,

1t i'"(t) =pi(t) — Sg(mi, t —t') fi(t')dt', (6.1) &o
I &il ~+)&~+

I
fi'I o)

&ol~ I
v )=—+E. (6.10)

Z1

1t2in(t)=1tq(t) — Sii(mq t t')f2(t')—dt' (6 2) Using the fact that the current operators do not have
any matrix elements between vacuum and single-
particle states, we have

(—i(d/dt)+m)P(t) = f(t). (6.3)

where S~(m, t—t') is the retarded Green's function of
the equation 1 1 "ke'(ei) Li(ei)Ei*(ei)

&ol~ lv)= —+-, (6.»)
Z] 7l p 47/ Q) 5$]

where
The asymptotic condition can be written down as

»m(+II, (t) I4')= (0 I4 "(t) I4). (6.4) and

Ki(~) =(0l fil &0-+)I:(2~11)'"/&(~)l, (612)

I i(cd) =(0 lentil ive„+)I (2eiQ)'i'/u(~d) j. (6.13)

We need not use the wave functions f(x) as fields f(t)
have no space dependences. The operators fit '"(0) and
iP2t '"(0) can now be used as the creation operators for
the V particles in the remote past, as they obey

{tt, -(0),y, '-(0)}={p, '-(0),p, '-(0)}=1,

Following a procedure similar to (6.6)—(6.11) we can
get the following:

1 1 "Lg((0)K *(ei) kN'(ei)
&ol1t lv)= —+- d~e, (6.14)

Z2 7l . n (Ce m2) 47I

{p t in(()) p in(0) } {) (6.5)
1 1 "Li(ei)E2*(ei) kN'(id)

(o I 1t i
I
V~) =—+- d~, (6»)

Z3 m „(ei—m2) 4~

In the same way it is possible to define P&t '"'(0) and
$2t '""(0), which can be used as creation operators in
the distant future.

We can now check the consistency of this section
with Hamiltonian formalism by direct calculation.

&olp, l
v,)=&oil,pit .Io)=(ol {p,A,~ -}lo). (6.6)

The extra term introduced by the anticommutator

where

E ( )=(oI f l&~-')L(»ft)'"/~( )j (617)

L.(-)=(ol~.l».')L(2 ~)'"/ (-)] (6»)

1 1 "Le(id)Ei*(~e) km'(ei)
&0l1t 2I Vl) —+— — d~, (6.16)

Z3 m „(e~—mi) 4~

We are thus required to calculate the functions E,(ei)
cimento 6, 319 {1957). and L, (ei), and again we follow the dispersion-theoretic
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technique:
(2~0)'"

E,(~)=&olf, leg„+&-
u((u)

(2(oQ)'"
= lim(0I Lf, ,ni, '(t)]lÃ&e'"'

u((u)

(2a&Q)'"
= (o

I I:fi,~")I &&
u((u)

(6.19)
&olf I")("IJtl»

S—M —Ze

Making use of the expression (4.32) for fi, the commu-
tation relations, an el ', d th current matrix elements, we
obtain

gS g2
Ei((d) = — —+-

Z] Z3

1 "Ei(a&')e "&"'i sin6(o)')
d(o' (6.20)

M M Z6

u(&o) ku'((u)
( I

'Ill +)= M(~)=e"i"' sin5(&o). (6.21)
(2' Q)'" 4~

FIG. 1. Contours in the
co plane.

(ojy, I
~+)&~+

I gjx& (2~v) i&~

Li(~)=Z.— (6.26)
S M 26

As only
I
Vi& and the I1%0„+&states contribute, we get.

gy 81 " "i"'i sinb(0~')Li(or')dry'
Li(~) = —— +-

M M Z6

. (6.27)

Again we can utilize the results from Appendix 85 and
87 and write down a solution of this integral equation:

where we have used Eq. (C9) in the last step. Ci is a
contour inMp ane e nel d fin d in I ig. 1.A reduction formula
similar to (6.19) can also be obtained for the function

The equation for Iti(~) is the standard form of mtegral
equation discusse yd d b omnesv and its solution can be
written down directly. If we define

I i (Q3) =
m] —M

1
+eP((o)+~b(~i e

—P(a)'i

p

I' " b((u')
p(co) = dG0

&
(6.22)

dM

&& sin5 (ar') (6. )
gs

M —OS' M —M —Ze

the solution may be written in the form,

giQ(mi)

SS] M M

(6.29)

p ( ra) +i 5 ((u)E, (co) = —
I

—+—+e& "
&Z, Z,

f gi g25E, ~= —
I

—+—
I

1——
5 Zi Z3 ) 2iri Q(co)

S M 261

g g Q( ) Q(~)—+— = —gi
Q(~) Q(~)3

dh (6.24)

(6.25)

' R. Omnes, Nuovo cimento 8, 316 19~8

d(v'. (6.23
x „Zy Z3 M —M —ze

Using the results (85) and (87) from the Appendix,
we get

Similarly,

g2Q(~~)
and L,(~)=— g Q(~2)

. (6.30)
(~2—~)Q(~)

Substituting (6.25), (6.29), and (6.30) in (6.11), (6.14),
and (6.15), we obtain

1 gi2Q'(m, ) "ku'(~d)
ol4, lv, &=—+

'

1 1
d(u, (6.31)

M M —m2

1 gPQ'(I, ) "ku'(cu)
&ol~. l ~.&=,—+

2

1
des, (6.32)

M M 8$y
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and whence it follows that

1 "k00'(10)
=—+g,g,Q(mi)Q(m, )—

Z3 4m.

X
GO CO

—mI Q) —822

These integrals have been evaluated in the Appendix C,
with the results expected:

«I&I ~1)=1 (oI A I Vi) =o

Q(~) =Q(")
k B (01 ) (01 010) dM

(A-7)
„(01'—mi) (01'—mp) (01' (o—i0—)

I»Q(~) = [kN'(~)/4~)[(~ —~0)/(~ —m, ) (~—m, ) J

for pp) p. (A-6)

Although we have obtained the explicit form for Q(p&)

in terms of D(cp), it is sometimes more convenient to
use the form,

and

«Ilail Vp) =0 «I &pl Vp) =1 (6 34) which follows from (A-6) and the fact that Q(~) is
finite. This gives an important relation:

These are identical with the conditions which we
imposed on the eigenstates in Sec. IV. Thus, we see
that the use of the asymptotic condition in the form
(6.4) is perfectly consistent with the Hamiltonian
formalism, at least for the matrix elements calculated
above.
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APPENDIX A

Now
Q(010) —Q(~ ) =P(m„mp). (A-8)

D(00) =nipp —(1—K)nipp ——Knipp. (A-10)

Another form can be obtained using the forms of
D(mi) and D(mp):

1—gi'P (mi, mi) =D(mp) —
gpP (mi, mp)

1 gp'P(m&, m&) =D(mi) —
gp F(mi mp). (A-11)

D(pp) = (1—gPF(mi, mi)) (1—gp'F(mp, mp))
—gpgppF (mi, mp). (A-9)

Using (4.25), we get

D(~) =D(m, )D(m, )
—[gpD(mi)+go'D(mp))F (mi, mp). (A-12)gl (mp —cv)D(mi)+go'(mi —01)D(m2)

M(pp) = . (A-1)
(mi —pp) (mp —01)D (01) Using (A-12), (A-8), and (A-9), we get

~ ~

It has been proved in the text that the )V—8 scatter-
ing amplitude can be put into the following form:

gl Q(ml) (010 ml)/(m2 mi)

g2 Q(m2) (pop m2)/(ml mp) ~

Also, it is evident that

(A-3)

We can now define a function Q(01) such that

M (01) = [(~0—~)/(m —~) (m —~)][1/Q(~)), (A-2)

where 010 is the zero of the numerator in M(pp). As
M(01) has poles at mi and mp with residues —gP and
—g2', respectively, we have

Since

1 " b(01')dpi'
p(~)+is(&u) =-

& CO
—4)—Z6

(B-1)

Q(&00) =D(mi)D(mp)/[gPD(mi)+go'D(mp)). (A-13)

APPENDIX B

Here we calculate certain integrals which are required
for explicitly writing down the solution of the Omnes7

type equations encountered in Sec. VI.
As defined in the text,

Q(pp) D(01)/[gl D(mi)+go D(mp)). (A 4)

The function Q(pp) has a cut from p —100. The jump
across this cut can be evaluated from the unitarity
relation,

e "~"& sinb(01) =
kpi'(~) (~p —

pp)

(B-2)
4~ (m, —~) (mp —~) Q(~)

(B-3)

1»M(01)= [ku'(01)/4n') IM(&p) I' for 01)p, (A-5) where use has been made of the fact that 5(01) is real
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,( )+'~( )=— lnQ(s)
dS

27lZ g1 S CO Z6

„d Qo ( ) —Q(~*). It follows that U mg (A-8) we find

1

(B 4) 1

F(

Q ( ) Q( ) g Q( ) Q

A minor manipulation g
.

n ives theresult,

t-1/, ogo(m, )jp1 —(1/Z~) j

(C-5)

Thus,

1 lnQ(s) ds 1+-
2m z s—or —le 2x'i

= —lng(oo)+ing(~ ).

~"'+'""'=Q(~)/Q(~),

~ ""'s &( )= —I:I Q( )/Q(")3

lnQ(s)ds

S cO Zt
Similarly,

1 "k'e' (u')dko'
I ——

(B-5)

(B-6) I,=—

(

~
Q(~') ~' (~'—m, )''

1
1 )

goog2(m2) - Z2—

(C-6)

(c-7)

' ~'-mI ~ -m2
dZ1 "k'I'(o)')d&u'

I ——
4x

—, (C-1)
CO M —m]

"Img(co')dko' ((v' —mo

l:Q(~')j' (~'—mo) (~'—~o)

, g(Z)(Z —o)

ds 1 dS

2''L s s—Cop 2' L z—(oo)Q(s)

Using (A-8), we have

1 F(m~, mo)
Making use of (A-6), we have

1 k Q (Go )dc'inte rais encountered inHere we evaluate some in eg

4m
Sec. VI.

1

2ori c, Q(~) (~—mc) (s—~o)

(m& —m&) 1

(m, —coo) Q(mg)

(C-3) ( ) Q(") Q( o)Q( )

and, fromfrom A-13,

1 En, ,j. (C-8)Io LF(mg, mo)/——Q(m))Q(mo)]L1/En) o .
no er

'
ful is roved using (4.25):Another result which is use u, is p

Zg Zo ) EngPo(~o—m~) Q(~o) Q(~—
Making use of (A-3), we get

'Q'( ~) g~'Q(mi)Q(~o)

—Q(~o) Q(")—

(1—(mo mg) goo—F (mo, mo, mg) 5
En)Po

gag(mg)

Q(")
a~ ) gog(m )

(C-4) (C-9)


