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Under the hypothesis that a E-7r resonance is vector, we examine its role in the associated production of
h. by x and in A production by E. We shall demonstrate the existence of a new symmetry between two
reaction amplitudes. This symmetry may be regarded as a generalization of Pomeranchuk's relations and
should appear at high energies and low momentum transfers when both amplitudes are dominated by the
same pole or pseudopole, as is to be expected according to the Regge pole hypothesis. Speci6cally, we
Gnd, in considering the details of the role of a strange vector meson in the processes ~+X~ A.+E and
X+X~ h+Fr, that the associated production amplitude in the forward direction (for the E) at high
energies is asymptotically equal to the negative of the amplitude characterizing A production by a E.
The contribution of the dominant pole terms in these amplitudes is constructed for the high-energy limit
and the energy and momentum transfer dependences are compared for the alternative hypothesis of com-
posite or elementary particle behavior of a pole term. We discuss experiments which are needed to supply
data for a test of the Regge pole hypothesis. The results of these experiments, which are feasible with the
new large accelerators, will be most important as guides for the construction of theories of the strong inter-
actions.

I. INTRODUCTION II. PROPERTIES OF THE M MESON

~ 'WO resonances have been found in the E—x
system, one at 884 MeV' and another at 730

MeV. ' It is quite possible that one of these resonances
belongs to the octet of vector mesons predicted by
Gell-Mann and Ne'eman; adopting the notation of
Gell-Mann, we call it the M meson, or simply the M.
There are two important questions to be raised regard-
ing this object: (1) How strongly is it coupled to other
particles? (2) Does the assumption that the M contribu-
tion dominates a given amplitude enable us to under-
stand any important features of reactions in which it
is exchanged?

Both questions are considered in this paper. In
Sec. II, the strength of the coupling of the M to the
Em system is related to the width of the resonance. The
same coupling constant is involved in the production of
the M in the reaction E +p F M +p, which we also
investigate. In Sec. III, the contribution of the M to the
associated production amplitude is studied. We treat
the M according to the Regge pole hypothesis there,
and discuss how experiments at beam energies within
the range of existing accelerators can be used to decide
whether the M behaves as predicted by the Regge pole
hypothesis. The crossed hyperon production reaction,
E'+p~A+Ir+, is examined in the same spirit in

Sec. IV. Finally, the existence of a new class of sym-
metries in asymptotic amplitudes, which are generalized
Pomeranchuk relations, is illustrated in Sec. V.

There is, at 884 MeV, an object which appears as
an I=1/2 resonance' in the Err system. Assuming it
to be a vector particle, we define the coupling constant
&M+ so that the matrix element for the decay M+ —+ E+
+n' is

T=Vsrz. eM (p.—pz),

where eM is the polarization four-vector of the Ã, and

p, prr are the four-momenta of the decay products.
The rate for the decay is

(112)I'(M+ ~ E++Ir') =ysr rr 'ks/6IrmFFI'

where

4mFFrsk'= [msr' —(mrs —m.)'$[msr' —(mrr+m. )'$. (II3)

Since the M has I=1/2, the charged M' decays more
often into a charged pion and neutral E meson; the
branching ratio is two. Neglecting other decay modes,
which certainly have much smaller widths, the decay
rate for the M meson is

I' = (y rr '/4 ) && 58 MeV. (II4)

The width of the M is quoted to be 60 MeV, ' so that

ysrrr„'/4Ir = 1.03. (II5)

According to the unitary symmetry scheme, ' this
number should be comparable to the coupling of the p
meson to the two-pion system, which is y, '/4Ir=0. 50
if we assume 100 MeV for the p width. 4

The coupling constant yM~ enters also in the pion
pole approximation to the 3E production amplitude in
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the reaction K+1V —& M+¹One f)nds

QMK» /47r= 11111 4(g»NN /4Ir)
t—+m ~

(pK/pM) s (t m—') 'mM' da
X (II6)

( t—)[(mM'+mK' t—) 4—mM'mK'$ dn

where s is the square of the total energy in the center-of-
rnass system, and

state. The amplitude contains only two independent
functions of the relativistic invariants, and can be
written as

T=tt&(A(s, t) iB—(s,t)(q+r)/2}N„, (III1)

since the relative (KAÃ) parity is almost certainly
negative. In our work we designate the four-momentum
of the X, A, n, K by p, p', q, r, respectively, and we
adhere to the convention that

4spM' ——Ls—(mN —mM)'j[s —(mN+mM)'j,

4$pK —$$ (mN mK) jLS (mN+ mK) j
2$'~'EM s+mMs ——mN'—
2$'I'EK= s+mK' mN'&—

(II7)

(II9)

(II10)
The subsidiary condition,

s+t+tt=mN +mtt +m» +mK &

(III2)

(III3)

I'M = (yMK.'/4~) X (14 Mev).

III. ASSOCIATED PRODUCTION

(II12)

t = {EM EK)' —pM' p—K'+ 2—pMpK cosg. (1111)

Angular distributions for this reaction are not yet
available, so that the coupling constant cannot be
determined by this extrapolation procedure. However,
Beg and DeCelles' and Chan' have proposed that
existing experimental data on the total production
cross section be fitted in the pion pole approximation.
Alston et at.' state that at s=3.48 GeV', the total
cross section for M production is 1.4&0.3 mb. If it is
assumed that the pion pole dominates the amplitude,
this leads to a value of (0.21&0.05)&ro for yMK '/4n. ,
which is not in agreement with the value obtained from
the M width. Theoretically, however, we have no reason
to expect the pion pole to dominate the total cross
section at such low energies, and one suspects strongly
that any agreement would be fortuitous. That it, indeed,
must be so has recently been demonstrated by a
measurement of the total cross section for M' production
by the Alston group. ' Their value of 0.7 mb is 8 of
what should be expected if the pion pole dominates. It
is, thus, apparent that angular distributions at con-
siderably higher energies are needed to test the correla-
tion expected between M production and its decay
width.

If the 730-MeV resonance is to be identified with the
M meson, then Eq. (II4) becomes

expresses the well-known fact that there are only two
relativistically invariant variables in the problem.

Let us proceed by analyzing the t-exchange channel.
In this channel only a system with unit hypercharge,
zero baryonic charge, and I= 1/2 can be exchanged. By
developing the Ir+K ~A+5 amplitude in partial
waves, as is done in Appendix A, it can be shown that
the exchange of a state of spin J, which must necessarily
have parity (—)$, gives the following expressions for
the invariant functions 2 and 8:

A (s,t) & C$(" (t)$$,

B(s,t) —+ JC$(s& (t)s~

(III4)

(III5)

g
—i&raM(t) ( S & aM(t) 2$,

A(s, t) ~
' " 2 sintr(IM (t) k s()j mN+mit

X[ bt NMKa +&M(t—)bANMKa j& (III6)

Only the term which dominates at high energies has
been retained.

If the Regge pole hypothesis' is correct, the functions
A and 8 will be dominated at high energies in the
forward direction, i.e., s —+ ~, and t small, by a term
associated with the exchange of a vector meson with
one unit of hypercharge —the M meson, which in the
numerical formulas we assume to have a mass of 884
MeV. The asymptotic form of these functions at high
energies will be:

t&
i&taM(t)

t& S a—M(t) —1

In considering the amplitude for associated produc- B($ t) ~
tion by pions we shall treat the reaction: 2 slntlQM(t) k st)

n. +p —+A+K'.

All other amplitudes can be obtained from it, since
when A's are produced, the reaction is in a pure I= 1/2
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Xbt, NMK. ('& (t). (m7)

The signature of the Regge trajectory is negative, since
the resonance has J= 1, and the two functions b ('& (t)
are independent. The constant so is arbitrary, and

S. Frautschi, M. Gell-Mann, and F. Zachariasen, Phys, Rev.
126, 2204 (1962).
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should be chosen so that the functions b(t) vary as
slowly as possible.

On comparing these asymptotic expressions with
those resulting from the exchange of the M meson in
the pole approximation, which are derived in Appendix

8, one can identify various quantities at t=m~ . First
of all, since the resonance occurs in p-wave E 7r-
scattering, we have Ren~(m") =1. The width of the
resonance is proportional to 1m'(m'"')=IM, and
inversely proportional to the slope of the Regge
trajectory, e"=Re(dn/dt) &

8, in which case one finds

do./dt= {16m[s—(m~ —m )']
X[s—(m~+m )']} 'XsrZI TI',

where

s&ITI'= IAI'[(m. +m~)' t—]+ReA*B[(m~+m~)
X(2s+t ms—' m—') 2m—"m" 2m—sm ']
+ IBI [s'—s(mg'+m"'+m~'+m. '—t)

,'t—(m—s+m~)'+;'(m-s'+m')'
+m'm '+msm~(m"+m ')] (II.I15)

r~=I-/m~e~ (III8) In units of an energy of1GeV, Eq. (III15) becomes

(mglf )/KeM=6 pMK- YANs'r) (III9)

Finally (leaving off some of the subscripts where their 1«(s—0 636) (s—1161)d&/«
omission results in no ambiguity), we have = IA I'(4.22 —t)+ReA*B(4.10s+2.05t —4.88)

+ IBI'(s' —2.39s+st—1.055t+1.415). (III16)

and

b "&(m')/~e~
6"—p"~ $ys~Q+/is%~(ms+m&)], (III10)

where &~If-,„and p»~ are, respectively, the coupling
constants of the M to the Em and the AX currents, and

p»~ is the anomalous magnetic moment in the ASM
vertex.

To calculate the cross sections and polarizations, it is
convenient to write T in a reduced form which is

sandwiched between two-component spinors. Defining
functions T'and T" such that T —+ T'+iT"o qXr/qr,
one finds

{(Es+m')(Ex+m~) }"T'
= (E~+ms) (E~+m~) [A+B(E,+E~)/2]

+B[(Es+m')q'+(E~+m")r']/2
+qr cos0[—A+-,'B(2s't'+ms+mal)], (III11)

[(Es+m') (E"+m~)J"T"
=qr sin0[A sB(2s'"+—m'+mN)] (III12)

In these reduced expressions, E refers to the energy of
the particle and q, r the magnitude of the three-
momentum in the center-of-mass system. The A' s

produced will be partially polarized in the @)&p'
= —q)&r direction; the degree of polarization, P, is

easily shown to be

P=2 ImT'eT" sin0/[IT'I'+ IT"
I

sin'0]. (III13)

The cross section for associated production is then

do/dQ= (1/64"s) (r/q) {I
T'I'+

I
T"I' sin'0}, (III14)

where

At high energies, the cross section in the backward (A)
direction will approach

gg 1 1—e'«""2 s'"~le —&

p Ib'"(t) I'
dt 16~ 2 sin~n~(t) see

Ib&'&(t) —n,"(t)b&'&(t) I' . (III17)
SSg f8~

Ke may recall that at high energy in the center-of-mass
system,

t =ms'+m"' 2E~E~+2p—'p cos0
—+ ——', (s—m" —m"' —m' —m ') (1—cos0), (III18)

or, in units of (GeV)',

t —& —-', (s—2.39) (1—cos0).

Data on this reaction at high energies are not yet
available. The best one has at this time are those of
Eisler et at. ' at a pion lab momentum of 1.43 Gev/e,
which corresponds to s=3.58 GeV'. This is certainly
not a large enough energy for us to suggest that the
Regge pole on the M trajectory must dominate the
associated production amplitude; at ten times this
energy, which is now possible with the CERN and
Brookhaven machines, we would expect the dominance
of this Regge pole in the forward (E') direction. The
A production is backward-peaked even at these low

energies; however, the degree of peaking should be very
much greater at the higher energies. The peak should
be exponential, considered as a function of t, with a
width that falls off logarithmically with the pion lab
energy. This latter statement is made on the assumption
that the 3E meson behaves as a composite particle; we

(r/q)'= [s—(ms —m~)'][s —(m'+m~)']/ F. Kisler, R. Piano, A. Prodwell, N. Samios, M. Schwartz, and
J. Steinberger, Nnovo cimento 10, 468 (1958). See also review oi
J. Steinberger, Proceedhngs of the 1958 Annlal International
Conference on IJigh-Energy Physics at CAME (CERN, Geneva,

This may be rewritten in terms of the functions A and ]958), p. $47.
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expect e,~r to be of the order 1 (GeV) '. In contrast, if
the M contributes in the fashion of an elementary
particle, the trajectory degenerates to a point, and the
amplitude will not. drop o8 exponentially in the momen-
tum transfer.

It is very important that the angular distributions at
small angles and high energies be measured in order
to determine the character of the M pole. The formulas

we have derived will be useful in interpreting such data.

where

5= up{A (s,t)+—',iB(s,t)(q+r)}u„,

s= —(p—q)'= u„,

t= —(p' p)'= t

u= —(p+r)s= s„,

(IV1)

(IV2)

and the functions A and 8 are analytic continuations of
those in the preceding section.

According to the Regge hypothesis, at high energies
in the forward direction, (s„~~, u„~ —~, t„small),
the functions A and 8 are again dominated by the pole
associated with the M meson. In fact, all our results

regarding the asymptotic form of the functions and
cross sections for the reaction ~+Ã —+ A+K apply as
well to this inelastic KcV scattering process. In partic-
ular, the following asymptotic relations will be valid

IV. HYPERON PRODUCTION IN KN SCATTERING

As a specific example of the I= 1 reaction K+X —+ A

+~, let us consider Zo+P —& A+a. , which corresponds
to the u-channel of the associated production reaction
studied in the preceding section. If q and r again denote

the pion and E meson four-momentum, respectively,
then the amplitude for this EÃ inelastic scattering
process is given by

4NSrKw (") +bANMKr (t)1

4NMIC~ (t) +4NsrIrn(t) ~. (IV5)

(IV6)

)The sign change coming from (q+r) on going from the
s to the I channel is responsible for the extra minus
sign in Eq. (IV3) as compared to Eq. (IV4).) At a
given center-of-mass energy in the asymptotic region
and at a given small momentum transfer, the amplitudes
for s.+lV~ A+E and K+1V —+A+a. are related by
a minus sign, and thus the differential cross sections,
polarizations, etc. , will be the same for the two processes.

The changes in the cross-section formulas are very
slight and may be obtained by the interchanges,
mx~m, s ~ s„=u. For example, from Eqs. (III15)
and (III16) we find the diEerential cross section for
Z'+ p —+ A+~+:

as u ~ ~, t small:

~
—im.u~(t) I e~ (t)

A (s,t) —+ ——
2 sins asr (t) ss rite+ mdiv

&& {—bi'&'(t)+crier(t)b&'&'(t) }) (IV3)

&
—2~~~(t) I ~(t)—1

B(s,t) —+ — — 2nsr(t)b&"'(t). (IV4)
2 sinm. sr (t) ss

But we can go further than this. The functions b and b'

are characteristic of the crossed channel, i.e., the t

channel, which is the same for both the associated
production and the KÃ reactions. Therefore, the
functions b and b' are essentially one and the same,
provided only that we put in the angular functions in a
consistent fashion. This latter requirement is easily
fulhlled simply by continuing to write xt=cos0t as
(s+2ExE,—ming

—m ')/(2q, p,). On going from the s
channel to the I channel in the asymptotic region, the
only change is that of the sign of xt. But such an
interchange gives back the same amplitude except for
the factor 0., where a is the signature of the Regge pole.
Accordingly, we see that

do {~

A
~

'(4.22 —t) —ReA*B(4.10s„+2.05t—4.96)+
~

B
~

'fs„'—s„(2.39—t) —1.055t+1 415)}

df 16'.Ls —0.195jLs—2.06]
(IV7)

in units of an energy of 1 GeV.
The CERN and Brookhaven machines produce meson

beams with energies in the 10—15 GeV regions; however,
experiments with these beams have so far not been
designed to measure the two-body inelastic processes.
It is essential that such experiments be undertaken
because of the greater simplicity in the analysis of
these reactions.

V. GENERALIZATION OF THE POMERANCHUK
RELATION

In the course of this work we have found a new set
of relationships between asymptotic cross sections, "

"See the forthcoming report by M. Gell-Mann in the Proceed-

which may be regarded as generalizations of the
Pomeranchuk relations. " Our basic result, that Regge
pole dominance implies that the two asymptotic
amplitudes in the s and I channels are equal to each
other for small values of t (except possibly for a sign)
is quite general for the case of scalar particles. In our
problem, we saw that going from one channel to the
other in the asymptotic region amounts to changing the
sign of cos0t, This change of sign results in the factor 0-,

which is the orbital parity or "signature" of the Regge
pole in the l channel.

ings of the 1962 International Conference on High-Energy Physics
at CERE (to be published)."l. Ia. Pomeranchnk, J. Exptl. Theoret. Phys. (USSR) 54,
725 (1958) Ltranslation: Soviet Phys. —JETP 7, 499 (1958)g.
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There is another way to obtain the foregoing result.
In the diagrammatic representation of amplitudes, two
channels of a scattering process are related to each other
by the reversal of two external lines. If the lines to be re-
versed involve scalar bosons, the effect is unambiguous
and simple. We are dealing with a three-point vertex
representing the coupling of two spinless particles to an
intermediate boson of spin J, which we take to be
integral for the purpose of formulating the rule. Such
an intermediate boson may be represented by a tensor
field of rank J, which is symmetric and divergenceless
in all indices, and traceless in any pair. The vertex
must also be a completely symmetric tensor of rank J
constructed from the four-momenta r„and r„' of the
two bosons. It is more convenient, however, to consider
the linear combinations, Z„=r„+r„' and q„=r„r„', —
which have simple transformation properties under line
reversal when the energies are high enough that any
mass differences may be neglected, namely, 2„—+ —2„,
q„—++q„. We also note that the tensor must be
constructed solely from Z„and 8„„;the other vector q„
and the antisymmetric tensor e„„z, are ineffective
because they give zero contributions to the residue of
the pole when they are dotted into the propagator of
rank 2J representing the intermediate state of spin J.
Since the tensor is a sum of terms, each of which is the
direct product of (J—2n)Z„'s and n5„,'s (n being an
integer), under line reversal we get the factor (—)~,
which is the signature of the intermediate state.

For the reversal of baryon lines, we must consider
as well the transformation of the Dirac matrices. This
transformation is the same as for particle-antiparticle
conjugation, under which

Vs ~ Vsq VpVs ~ VpVsy Vp ~ Vp, q 0)ttp ~ (Tpv

A O.„„term will always appear here in the combination
0-„„q„which is a vector and is odd under line reversal.
In vertex tensors of rank J involving the pseudovector
Dirac matrices, the operation of line reversal results in
the factor —(—)~, the negative of the signature. It is
apparent that the result of line reversal is thus the
factor Oe, where 0. is the signature, and c= —1 if the
Dirac matrix y,ya is involved and e=+1 for the other
Dirac matrices. The factor e is always +1, whenever
(signature)(parity)=+1, which is the case for the
exchange of the E*, the p, and the co.

In some cases, the existence of particular symmetries
among the baryons provides an alternate rule. These
symmetries obviously must be such as to prohibit the
mixing of the two pseudovector forms Z„Vs and V„Vs.
Charge conjugations C and more generally the isoparity
operation 6, yield the desired selection rules when the
object being exchanged has a definite value of C and/or
G. Reversals of baryon lines in the same isotopic
multiplet introduce the factor (—)rG, which is C for
the neutral objects. However, we must stress that the
result of line reversal is fundamentally determined by

TABLE I. Some quadruplets of asymptotic amplitudes.

Pole Asymptotic amplitudes

T (~+N —& A+K)
T(K+—N -+ h+vr)

T(~+—h ~ N+K)
T(K+77 ~N+m)
T(n+N -+ z+K)

—T(K+N ~ z+w)
T(~4—z~ N-+K)
T(K+X —+ N+m)
T(1V+E~x+x)

—T(A+N ~ A+N)
T(N+—A ~N+Z)
T(x+x ~ N+N)
T(N+N ~ z+z)
T(z+N—~z+N)
T(Nyz —~N+Z)
T(z+z N+N)
T(m'+n -+ ~ +p)
T(m.++n ~m'—+p)

—T (w'+ p -+ m+n).
T(~++@—+ ~'+n)
T(p+n -+ p+n)
T(n+n ~—p+p)
T(p+p ~ n—+n)
T(n+P —+ n+p)

Number

(1a)
(1b)

(1c)

(1d)

(2a)
(2b)
(2c)
(2c1)

(3a)
(3b)

(3c)

(3d)

(4a)
(4b)
(4c)
(4d)

(Sa)
(Sb)
(5c)
(Sd)

(6a)
(6b)
(6c)
(6d)

"See, for example, James S. Ball and Geoffrey F. Chew,
Phys. Rev. 109, 1385 (1958); and G. F. Chew, ProceeChngs of the
1058 Annual International Conference on High-Energy Physics
at CLEAN (CERN, Geneva, 1958), p. 109.

the I orentz transformation properties of the couplings.
Only when the particles being reversed belong to the
same isotopic multiplet is the factor the same as (—)IG
or C. It is easy to imagine possible couplings where this
last rule would fail. As an example, one may consider
the coupling of m and g to a fictitious particle with
quantum numbers J, I =1, 1 .

It is interesting to note that our above results, when
applied to the relation between that part of the interac-
tion between g and E due to the exchange of pions
and the corresponding part in the NS interaction,
yield a conclusion differing from that usually quoted. "

Apparently, no symmetry exists if the exchanged
object has half-integral spin.

We may close this article by listing, in Table I, some
quadruplets of asymptotic amplitudes which should
be equal, except for the "signature" factor, on the basis
of the Regge pole hypothesis. We note that our results
about the asymptotic equality of (Sa) and (Sb) are
actually quite weak, since by charge independence we
know that the two amplitudes are negatives of each
other at any energy and angle. Similarly for (Sc) and
(Sd). Also, G conjugation is sufficient to guarantee
strict equality between (Sa) and (Sc), (Sb) and (Sd),
(6a) and (6d), and (6b) and (6c). We may also remark
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that the Pomeranchuk relations hold when the ampli-
tudes are dominated by the Porneranchuk pole, '" for
which C=+1.

The basic ideas of this paper were suggested by
Professor Murray Gell-Mann, to whom the authors
are deeply grateful for constant advice and encourage-
ment. One of the authors, WGW, wishes to thank
A. (L.) D. Lewis for many stimulating conversations
throughout the course of this research.

p= —p= (0,0, —p„iE~),
p'= (0,0,p(,i'),
q= (—q~ sin8„, 0, —q, cos8„iE,),
r= r= (q, sin8„—0,q~ cos8„iElr).

(A1)

In terms of relativistic invariants, the momenta and
energies are given by

4tpP= [t (mg m~—)2][—t (mg+m—A")'], (A2)

4tq [t (mls m ) ][t (mlr+m. )'), (A3)

2t"'E~ t+m~' mg-—', —
2t"'Eg = t+my' —

mph'

2tU'Err ——t+mrs' —m ',

2t'"E =t+m' —m '

(A4)

(AS)

(A6)

x,= cos8,= (s+2E~F m~' m')/(—2q„pg).—(A&)

The first step is to evaluate the helicity amplitudes in
terms of the functions A and. B appearing in Eq. (III1).
The computation is straightforward, and so only the
results will be given here. If the helicity states are
denoted by (X) ), the amplitudes are

T(++)= T( )= [(Eg+mg—) (E—~+m,v)j
X { AP~(EJ+Ex+m—~+m~)
+Bq~(E~y+m~) (E~+mq E~+mv)cos8—~

+,'Bp, (EJr E,) (Eg-+my E~—m~)), —(A9)—

T(+ )= T( +)= —Bq~[—(E~+—m~)/ (Eg—+mg) ]'I'
X (E~+E~+m~ m~) sin8, . (A 10)—

Secondly, we must determine the form of the helicity
amplitudes for a partial wave with angular momentum
J and parity (—)s. With our sign conventions, the
following helicity combinations are eigenstates of 5,
and 5„

13 G. F. Chew and S. C. Frautschi, Phys. Rev. Letters 7, 394
(1961).

APPENDIX A

Partial Wave Decomposition for ~+K ~ A+X
In the center-of-mass system, choose coordinates

such that

(S,S,)

(0,0)
(1,1)
(1,o)
(1, —1)

(h,K)

2 '"L(N) —(4T)j
(t5

2 '"[(N)+(4t)3
(4)

(xX)

2 '"[(++)+(——)j—(+—)
2 "'L(++)—(——)1

(—+)

where
X&S,S„l,ml J,O;l; S),

&(X)) lS,S.; l,m)=&(X)j) ls,S.)V) (8,&),

and (S,s„' l,m
l J,O; l; S) are the Clebsch-Gordan vector

coupling coeKcients. For a given J, there are, in general,
four elements of the T matrix, corresponding to S=O,
l= J; and 5= 1, l= J, 1+1,J—1. (For J=O, of course,
there are but three. ) If we choose to label them in the
following way:

r(J,O, t) = [(2J+1)/S~]"'(i=J, S=OIIT(t)ll J»
r(J,1,t) = [(2J+1)/Sm J(J+1)j'~ (l=J, S= 1l T(t) llJ),

r (J,1+ t) = [(J+1)/Snj'"&l= J+1, S= 1
l T(t) ll J),

and ,(J,l-, t) = [J/g~j ~2&i= J—1, S= III T(t) II»,
the helicity amplitudes can be written in a rather
simple form:

T(++)= r(J,O,t)Ps(x,)—r(J,1+,t)Ps+g(x()
+.(J,1 ,t)P, ,(x,-), (A»)

T( —) = r(J)0,t—)Pz(xg)+r(J, 1+)t)Ps+i(x,)
—r(J,1 )t)Ps i(x(), (A12)

T(+—)/sin8, = r(J,1,t)Ps'(x, )
r(J,1+,t)Ps+~—'(x~)l(J+ 1)

r(J,l,t)P—s i'(x,)/J, (A13)

T (—+)/sin8, = —r&J,1,t)Ps'(x()
—.(J,1+,t)P„,'(x,)/(J+ 1)

—r(J,1,t)Ps y'(xg)/J. (A14)

Only two of these amplitudes r(J,S,t) occur if parity is
conserved. In our case, r(J, 1&, t) =0, since the parity
of the system is (—)s.

From these formulas, we can read off the form of the
functions A and 8 resulting from the exchange of a
pure J state with parity (—)s in the t channel:

B(s,t) = r(J,1,t)Ps'[x—, (s,t)j/{q~(Eq+E~+mq m~)—
X [(Kr+mx)/(Ex+ma) J")t, (A15)

A (s,t) = r(J,O, t)Ps(x, )[(EJ—,+m~) (Ex+me) j"'/
{p, (E~+Eg+my+ m~) )t r(J,1,t)Ps'(xg—)
X [(E~+my)/(Ex+me) 5'"
X (Eg+E~+mg+m~) '(Eg+Ex+mx m~) '—
X {(Ex E.) (Ex+ma &r mx—)/qc- —

x, (Etym~) (E~+m~ E~+m~)/p, ) ) (A16—)

The projection of a partial wave amplitude onto a
given helicity state is given by

&(XX) l J,O) = Q g P g &P.k) l S,s, ; l,m)
S, S l m
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where we recall that as s ~ ~, x~ ~ s/2q&p&. We may
put these formulas into a convenient relativistic form
by introducing

Fj&'~ (t) = r(—J,O, t) P(Eq+mq) (E~+m~)]'~'/

{(2q,p,)~p, (E~+E~+mg+m&) ), (A17)
and

FJ~2~ (t) = —r(J,1,t)L(Eg+mg)/ (EQ+mN)]"/
{(2q,pt) ~ 'qt, (E&+E&+mz—m&) ), (A18)

in terms of which we have our Anal result for the
functions 3 and 8 resulting from a pure J state:

p(g t) F~(2)(t){(2pgq )J 1P~—
X [(s+2E~E m~' —m')/2—Ptqt]}, (A19)

A(s, t)=Fg ' (t){(2p,q, ) Fg
X t (~+2ENE mN m.')/2P~q~]}
+Fz&'& (t){(2q&p, )~—'Pp') {(mp+m&)

X (s+2E~E. m~' m—.')/[t —(mg+m—p)']
+ (mp —m~) (mls' —m ')/2t) . (A20)

APPENDIX B

Contribution of the M Pole to the Amplitudes

Using Feynman's rules as in perturbation theory, we
can compute from the diagram in Fig. 1 the "pole"
in the amplitude at t=m~' due to the exchange of the
M meson. (We write "pole" since this pole lies off the
physical sheet because of the instability ot the M.)
Near the pole, the amplitude for associated production
is given by

(—i) (m~' —t)
—'6' 'yt~ r(rq+r)

X$8.p+ (r—q). (r—q)p/m~']ugXpm„, (81)

FIG. 1. Feynman diagram for contribution due to
exchange of M meson.

where

Xp= v~x~vp we~~—p. (p' p).+i—t ~+~'(p' p) p
—(&2)

p~~~ is the anomalous magnetic moment term in the
coupling of the M to AS. p~~~' is an additional term
which is seldom encountered since this type of coupling
is ruled out in electrodynamics and in some other
theories by a certain class of symmetries having to do
with the existence of mirror diagrams.

By using various formulas for the spinor matrix
elements, one can show that the pole contributions to
the functions 3 and 8 are:

a(s, t) = $ 6't'/(t m—~') )p~r—r.2{ygxw

+t ~x~(m~+mx)); (&3)

A (s,t) =
t

6't'/(t m~—')]p~lr—
X{(m~ mx) (mr—r' m.'h J m—s/mM'

+t g~~(mg'+m~'+mIr'pm. ' 2s t)——
p~~~'(t —m~') (m—rr' —m ')/m~'}.

We note that p~~~' does not contribute a singular
term to the amplitude, and, consequently, it can be
eliminated from consideration near the pole.


