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are being actively investigated. After repeated failures
the author has given up the first question as being
beyond his own mathematical capabilities, but he hopes
this paper will stimulate a competent investigation of
the question.
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An examination is made of the relationship between the un-
certainty principle and minimum amplifier noise. First, the con-
cept of coherence is discussed, and an incoherence parameter is
defined in terms of the uncertainty that enters into the uncertainty
principle. Harmonic oscillator states are examined for coherence.
The concept of noise is then discussed and contrasted with inco-
herence, noise referring to behavior in time of a single system
while incoherence involving comparison among members of an
ensemble. It is shown, with illustrations, that the two concepts
are different, and that an incoherent field of a cavity mode need
not exhibit noise. In particular, the zero-point field in a lossless
cavity is not noise. The superposition of many incoherent effects,
however, usually leads to noise. Spontaneous emission is examined
both for coherence and noise. It is shown that the spontaneous

INTRODUCTION

N recent years, there has arisen an interest in

“fundamental” noise, noise which has been attri-
buted to fundamental physical laws or phenomena,
such as the uncertainty principle, quantum fluctuations,
or spontaneous emission, and which cannot be elimi-
nated in principle. This interest is due, in large part, to
the development of maser amplifiers, in which the noise
is so low as to offer the possibility of approaching,
indeed, the level of fundamental noise.

There has been discussion!? of fundamental noise

1R. Serber and C. H. Townes, in Quantum Electronics, edited
by C. H. Townes (Columbia University Press, New York, 1960).

2W. H. Louisell, A, Yariv, and A. E. Siegman, Phys. Rev. 124,
1646 (1961).

emission field of a single molecule is incoherent but does not exhibit
noise; the (low order) spontaneous emission from a molecular
beam, however, does constitute noise. Spontaneous emission from
complex systems is also discussed. The origin of fundamental
noise in an amplifier is investigated and is shown to come from
spontaneous emission by the amplification mechanism. It is
concluded that fundamental noise cannot be determined by a
consideration of quantum fluctuations of—or by the application of
the uncertainty principle to—the electromagnetic field only, as has
been done in several recent articles. The physical significance of the
zero-point field is analyzed, and is shown to lie in a formal contri-
bution to spontaneous emission by the mechanism coupled to the
field, provided this mechanism is treated quantum mechanically.

that is based mainly on the uncertainty principle or on
quantum fluctuation, and, as will be shown, is more or
less unsatisfactory. A related unsatisfactory situation
exists with respect to the concept of coherence (which
is associated with both noise and the uncertainty
principle), because of the various different meanings
attached to the word ‘“‘coherent.” It is the purpose of
the present article to discuss the concept of coherence,
and then to analyze the relationship between noise on
the one hand, and quantum fluctuations and the un-
certainty principle on the other.

Coherence is discussed in Part I, and noise is the
chief topic of Part II. Various aspects of spontaneous
emission are considered in Part III, and the source of
fundamental amplifier noise is discussed in Part IV.



INCOHERENCE, QUANTUM FLUCTUATIONS,

The physical significance of the zero-point field is
studied in Part V.

I

As mentioned above, the word ‘‘coherent” is used
with various meanings. One hears the expression
““coherent oscillator,” denoting an oscillator the output
of which is a sine wave; here coherence means mono-
chromaticity. The expression “coherent signal” is often
used to distinguish information from noise, and coher-
ence implies, in this connection, non-random variation
with time but not necessarily monochromatic variation.
The word ‘“‘coherent” is also widely used in physics to
indicate correlation between two or more functions of
either space or time, (such as its use in the description
of two light beams obtained by the splitting of a single
beam), although the functions themselves may have
some random properties.

The usefulness and propriety of a definition is deter-
mined by the nature of the problems in which it is used.
For our purposes, it is most convenient to define
coherence by means of a consideration related to the
uncertainty principle. We consider a dynamical vari-
able, ¢(?), usually a coordinate or momentum (but not
an energy), which may be either quantum mechanical
or classical. (In quantum mechanical considerations,
the Heisenberg picture will be used.) We then find its
expectation value {¢(#)) and the expectation value of
its square {¢%(¢)). For a quantum mechanical variable,
the term “expectation value” needs no explanation; it
is the average over a quantum mechanical ensemble.
For a classical variable, the term expectation value will
denote the average at time ¢ over an ensemble which is
appropriate for the situation under discussion. We now
define an incoherence parameter

()= (o))
(@)

g may vary between 0 and 1, since {(@*(¥)) > (o(®))2. If 9
is 0, (2) is said to be (completely) coherent and if 9 is 1,
¢(8) is (completely) incoherent.?

For quantum mechanical variables, the above
definition of incoherence may be described as quantum
mechanical incoherence in the sense of the uncertainty
principle, for the uncertainty occurring in the latter is
just 9{¢*(#)). Thus, the incoherence parameter 9 is equal
to the relative uncertainty. Our concern will be mainly
with quantum mechanical dynamical variables. For the
reader who is accustomed to think of coherence in
terms of correlation, it might be pointed out that there
is, in fact, correlation involved in our definition, namely,
correlation between members of an ensemble.

l

g (1)

31If ¢ is increased by a constant value, the incoherence param-
eter changes. The above definition of coherence is, therefore,
meaningless when applied to variables to which the addition of a
constant has no physical significance (such as the energy).
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It is instructive to apply the definition of coherence
to a simple situation. Let us consider a harmonic
oscillator and study the coherence of its displacement
(or momentum—the two are symmetrical). The
quantum mechanical oscillator will be considered first.
For simplicity, we use dimensionless quantities for
coordinate and momentum, which are defined by the
Hamiltonian

3e=3ho (47, 2)
and by the commutation relationship
[:%P]=7'~ 3)

The solution of the equations of motion yields

q()=¢q(0) coswi+p(0) sinwt,
p(®)=p(0) coswt—¢(0) sinwt. 4)

The only nonvanishing matrix elements of ¢ and p in
the Heisenberg representation are

Gn,nt1=nt1,,=[F(n+1)]'7
pn,n«]—l: _Pn-{—l,n: _7«[“%(11‘*‘1)]”2. (S)

It is easy to see that if the oscillator is in an energy
state, the coordinate is incoherent, since {¢)=0 and,
therefore, 9=1. If, however, the state of the oscillator
consists of a superposition of two or more adjacent
energy states, the coordinate is no longer completely
incoherent. It can be shown? that, for a given energy
expectation value (x+3)%w, the coherence is a maxi-
mum when the oscillator is in the state

V= T e VO 1) g, (0)
¢ being the nth energy state, in which case
g=3(+3)7" (7)

Let us consider now an ensemble of classical oscil-
lators, all having the same energy. If the phase of the
oscillation is well defined, that is, if it is the same for all
members of the ensemble, then =0, and the oscillation
is completely coherent. If, however, the phase is a
random variable with all phases being equally probable,
then §=1 and the oscillation is completely incoherent.
The latter case is evidently the illustration (in classical
terms) of the quantum mechanical energy state.

II

We come now to the subject of noise. Although
ensembles are useful in the study of statistical properties
of noise, they are not essential in the definition or in the
understanding of noise. One considers the variation of
a coordinate of a single system (which may be a com-
posite of many subsystems) as a function of time. If
there is any randomness in this variation, then this
randomness is referred to as noise. Thus, the variation

41. R. Senitzky, Phys. Rev. 95, 904 (1954); 95, 1115 (1954).

See also reference 2, Appendix I. ¢, in Eq. (6) should be used
either in its real form or multiplied by the phase factor exp (in8).
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(fluctuation) in time of a coordinate of a thermodynamic
system usually exhibits noise. A sinusoidal variation in
time is not, of course, noise.

A convenient method of measuring the noise content
of a stationary, or steady-state, function of time is
offered by the correlation function. Let us consider the
(c-number) function f(f) in the interval —37<¢<37,
where T is large compared to other times of interest.
The correlation function is defined as

T

1
CHD=LAO k= lim— [ O, ©

_ir

If we express f(f) as a Fourier integral
10= [ dofe, f9=@, O

and if we define the power spectrum of f(#) as

p@)=lim | /)T (10)
then, as is well known,®
Cf(T)=47T/ do p(w) coswr, (11)
and . ’
p(w)z—/ dr Cs(7) coswr, (12)
2% Jo

that is, the power spectrum and correlation functions
are Fourier transforms of each other.

It is not the purpose of the present article to go into
a discussion of the mathematics of randomness or of the
properties of noise which may be obtained from the
power spectrum. We will make use, however, of the
obvious fact that if the power spectrum is a § function,
then f(#) does not contain noise; it is a pure sinusoidal
oscillation. (We do not know the phase of the oscilla-
tion, since it is not determined by the power spectrum.)
In other words, a frequency spread is a necessary
condition for the existence of noise.®

5J. L. Lawson and G. E. Uhlenbeck, Tireshold Signals
(McGraw-Hill Book Company, Inc., New York, 1950), p. 39.

8 From a physical viewpoint (as contrasted to a mathematical
one), there may be a subjective element involved in the classifica-
tion of a function as noise. The essential property of noise is
randomness, or unpredictability. Whether a function of time is
predictable or not may depend on the length of time it has been
under observation. Consider, for instance, a function which is a
superposition of a large number of sinusoidal oscillations of
different conmeasurate frequencies. This function will be periodic
and to an observer whose time scale is large compared to a period,
the function will not look like noise. In fact, he can Fourier-
analyze it and predict it for future time. If, however, the function
is observed for less than a period, predictability cannot be
achieved, and the function may look like noise. Thus, the
observer’s time scale, related to the collection of frequencies con-
stituting the function, determine whether the function is regarded
as noise. The infinite time scale involved in Eq. (8) is, of course,
an idealization. Generally, a function composed of components
whose frequencies are closely spaced with no particular regularity
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We apply the above considerations to the harmonic
oscillator again. In the classical case, the correlation
function for the coordinate is expressed as the product
of ¢(¢) and ¢(t+7). In the quantum mechanical case,
q(¢) and q(t+7) are operators, however, and do not
commute. We, therefore, take, as the equivalent of the
classical quantities, the symmetrized product of the
corresponding operators. We then have a correlation
operator. Using the notation {4,B}= (4B+BA4), we
obtain from Eqs. (4) and (8),

1
am=m;ﬁﬂ
=[¢*(0)+2%*(0)] coswr.

For a harmonic oscillator which is in the nth energy
state [belonging to the eigenvalue (z+3%)], a measure-
ment corresponding to the correlation operator will give

3T

dt 3{q(0),q(t+7)}

(13)

(2n-+1) cosowr, (14)
which yields a power spectrum
2n+1
pnl0)= 3w —w). (15)
/3

We see, thus, that a harmonic oscillator in an energy
state oscillates sinusoidally (hardly a surprise!). Even
when the oscillator is in the lowest energy state, =0,
the same is true. The motion of the oscillator, therefore,
does not exhibit noise.”

A question arises concerning quantum (and zero-
point) fluctuations. Are these fluctuations noise?
Quantum fluctuations are fluctuaticns in the result of
a measurement carried out on members of a quantum
mechanical ensemble. Thus, if we consider an ensemble
of oscillators which are all in the same energy state, and
we measure the coordinate of each oscillator at the same
time, the results will fluctuate from oscillator to oscil-
lator. These are the quantum fluctuations, and their
presence indicates incoherence, as defined in the present
article. The motion of each oscillator, however, is free
of noise.

When a single system is under consideration, we see
that there is no connection between incoherence (or
quantum fluctuations) and noise. There is, nevertheless,

in frequency spacing or in the phases of components, is noise for
all practical purpose. A somewhat analogous situation exists in
observation of a complicated (classical) system. A small portion
of the system may exhibit what appears as random behavior (such
as Brownian motion) while the system as a whole behaves in a
predetermined manner. It should not be assumed, however, that
all the noise functions that we will consider are of this type.
Functions which are unpredictable, no matter how long the
period of observation, will also be encountered.

7The correlation operator of Eq. (13) may also be used for
oscillators which are not in an energy state. A measurement of
the correlation function will yield ecoswr, still the correlation
function for a sinusoidal oscillation, but with ¢ now a random
variable with respect to the members of the quantum-mechanical
ensemble.
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a connection between incoherence and noise when the
cumulative effect of many systems is under considera-
tion. Let us consider a large group of oscillators, all in
the same energy state, and fix our attention on the sum
of the coordinates of a subgroup of oscillators, the
number in the subgroup being fixed and smaller than
the total number of oscillators. Let us now change,
either at regular or random intervals, the identity of
some of the oscillators in the subgroup, removing them
from the subgroup and replacing them with others from
the remainder of the group. We know from previous
discussion that the coordinate of each oscillator is a
sinusoidal oscillation of completely random phase. Thus,
changing the identity of an oscillator in accordance
with the above procedure produces a random change in
phase of one of the terms in the sum of the coordinates
of the subgroup. It is evident that this sum will be a
function of time which exhibits noise, the noise being
due to the fact that the oscillation of each oscillator is
incoherent. If, however, our original ensemble were
composed of coherent oscillators, the sum of the
coordinates of the oscillators of the subgroup would be
noise-free. We see, then, that incoherence—or quantum
fluctuations—leads to noise only when we are dealing
with the superposition of effects from many systems,
but not when we are dealing with a single system.
Loosely speaking, one might say that incoherence on a
microscopic scale usually leads to noise on a macroscopic
scale.

It is useful, for later purposes, to consider explicitely
the electromagnetic field of a single mode of a lossless
cavity, and inquire whether its quantum—or zero-
point—fluctuations may be regarded as noise. Now,
the cavity is a macroscopic system. In quantum
mechanics, we usually deal with microscopic systems,
and macroscopic systems are generally considered to be
composed of a large number of microscopic systems. It
is well known, however, that the field of a resonant
circuit is a single quantum-mechanical system equiva-
lent to a harmonic oscillator. When this system is in the
lowest energy state—or any other state—the field
oscillates sinusoidally, and does not exhibit noise.

III

We will now consider spontaneous emission with
reference to its coherence and noise properties. We
consider first the case of a single atomic system, which
we call a molecule, emitting spontaneously into a
resonant cavity (with loss®). The molecule is considered
to have only two energy states, and is initially in the
upper state. It is coupled to the field through its electric
dipole moment, and its frequency is the same as that of
the single cavity mode into which it radiates. The time
during which we consider its radiation is long compared

8 A general quantum-mechanical method of analyzing a lossy
cavity (or lossy harmonic oscillator) is given by I. R. Senitzky,

Phys. Rev. 119, 670 (1960), and the behavior of a molecule in a
lossy cavity is described by I. R. Senitzky, ibsd. 115, 227 (1959).
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to the relaxation time of the cavity but short compared
to its lifetime, We may, therefore, use perturbation
theory. The lowest order spontaneous emission field in
the cavity is given by?®

w t
PU(f)=——u / diy v 1 (1)~ WDBU1) sing (1—11), (16)
4 0

where

0 —iwt
Yo (t)=7( ) ) (16)
[4

iwt 0

the unperturbed dipole moment along the electric field,
and the bracketed superscript indicates the perturbation
theory order. The spontaneous emission field PUI(7)
becomes stationary (within the limits of perturbation
theory) after an initial transient period given by the
cavity relaxation time. Since (y[1(#))=0, we have,
from Eq. (16)

an

which yields 9=1, and shows that the spontaneous
emission field is completely incoherent. We look next
at the correlation operator for the first order field. If
we ignore the initial transient period, then

{PU(1),PU (14-7)} = (4e?127/OB) coswr.  (18)

We see that the correlation operator is that for a pure
sinusoidal oscillation. The lowest order spontaneous
emission field from a single molecule may not, therefore,
be regarded as noise.

Let us consider now a molecular beam passing
through the cavity, the molecules entering in an excited
state as in a molecular beam maser, but with conditions
such that the amplification by the beam is negligible.1?
We now have a situation in which each molecule
produces a sinusoidal field during its transit time, but
due to the incoherence of the field of each molecule
these fields have random phases. [Strictly speaking,
Eq. (17) implies that the fields produced by different
molecules with each in a different cavity have random
phases. It is quite obvious, however, that if the mole-
cules are in uncorrelated states!! when they enter the
cavity, their (lowest order) spontaneous emission fields
are uncorrelated. A formal method of exhibiting the
absence of correlation of the spontaneous emission
fields of two molecules in the same cavity is to consider
the expectation value of the product of these two fields.
Equations (16) and (16a) show it to be zero. ] In analogy

(PU(2)=0,

9 The electric field of the single cavity mode under consideration
is written as E= —4wcu(r)P(¢), where u(r) is a normalized func-
tion describing the spatial variation of the field and P(¥) is a
quantum-mechanical operator. For simplicity, u(r,), where r,, is
the position of the molecule, is assumed constant in time while
the molecule is in the cavity.

10 A molecular beam amplifier is analyzed in detail by I.R.
Senitzky, Phys. Rev. 127, 1638 (1962).

11 The correlation of molecular states, as well as the interaction
between molecules and a lossless cavity, is discussed by I. R.
Senitzky, Phys. Rev. 111, 3 (1958).
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with the case of the subgroup of incoherent harmonic
oscillators considered previously, we see that the result
constitutes noise. It can be shown that the frequency
spread of this noise is just the bandwidth of each
individual oscillation of finite duration (if the molecular
transit times are equal).!?

In the case of large amplification by the molecular
beam, we have a maser amplifier or oscillator. Let us
consider the latter, in which oscillation has built up
“spontaneously.”® In the steady state, a molecule
passing through the cavity sees a strong field and emits
mostly induced emission, which sustains the field at its
high steady-state level. The field in the cavity, as has
been verified experimentally, is a sinusoidal oscillation
with a high degree of purity. It is not possible to follow
analytically the complete history of the system of
molecules and field up to the steady state (perturbation
theory is not applicable, of course). It is, however,
possible, from very general considerations (see reference

11), to show that,
(P(2))=0, (19)

in other words, the field is incoherent. This should be
hardly surprising—if one bears in mind that coherence
involves an ensemble average—since all that in-
coherence implies in this case is that in an ensemble of
maser oscillators the phase of the steady-state oscilla-
tion is unpredictable. (The same is true for any self-
starting oscillator.) Here we have another instance of
maximum uncertainty in the sense of the uncertainty
principle—but no significant noise. [There is always
some (low order) spontaneous emission from the beam,
but the difference between 9 and zero can be made
insignificant. ]

So far we have considered exceedingly simple systems,
the harmonic oscillator and the two-level molecule,
systems which are characterized by a single frequency.
Let us now consider the opposite extreme, a very
complex multifrequency system with close energy level
spacing (or even a continuum), one that is described
thermodynamically, for instance. The spontaneous
emission from such a system (when it is excited) con-
sists of the superposition of many frequencies with no
particular regularity in the frequency spacing and in
the phases of the oscillations of the different frequencies.

12 The output of a single molecule has a frequency spread, but
is not noise. The random superposition of the outputs of the
individual molecules of the beam supplies the randomness which
converts the combined output into noise, the frequency spread
remaining the same. The analysis is analagous to that of the shot
effect, with additional randomness coming from the random
phases. For the (realistic) case of a dispersion in transit times,
see reference 10.

13 Tf we regard all the molecules as a single system, self-starting
oscillation could also be called spontaneous emission. From the
point of view of perturbation theory, it is a high-order behavior.
Our present interest is in low-order spontaneous emission, and this
is what we will have in mind in our further discussion of—and
reference to—spontaneous emission.

1 J, P. Gordon, in Quantum Electronics edited by C. H. Townes
(Columbia University Press, New York, 1960).
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In accordance with our previous discussion, such an
output is clearly noise. If the state of the system is
described by a superposition of energy states in which
the superposition constants are completely determined,
then a coordinate of the system may show much
coherence, which merely means that in an ensemble of
identical systems, all in the same superposition of
energy states, the coordinate exhibits approximately
the same time variation for all systems, so that we have
“correlated noise.” Usually, however, we do not know,
and cannot control, the exact values of the superposition
constants. If we know only their absolute values, our
system may be pictured as being a member of an
ensemble in which the absolute values of the super-
position constants are the same for all members but the
phases of the superposition constants have random
(but constant in time) values, all phases being equally
likely. An average system of such an ensemble is often
said to be in a mixture of energy states rather than in
a superposition of energy states. The coordinates of
such a system are obviously completely incoherent. One
may go further yet in the lack of knowledge about the
state of the system, and specify only the ensemble
average of the absolute value of the superposition
constants. (In this case, the average system is also said
to be in a mixture of states.) This last specification is the
one used in thermodynamics, and likewise, of course,
leads to incoherence.!® A large number of simple
systems may be considered to form a single complex
system; the above considerations then apply.

v

We come now to the matter of noise in an amplifier.
Consider a type of amplifier which may be regarded as
being composed of three coupled systems: (1) the
electromagnetic field of a single cavity mode (or a
harmonic oscillator); (2) a loss mechanism (this may
or may not be essential for the desired amplification
properties, but cannot be eliminated); (3) an amplifica-
tion mechanism, which is a source of power.

Let us examine the sources of noise. In accordance
with our previous discussion, the electromagnetic field
is a simple single-frequency system and does not
produce noise. The loss mechanism is a complex system
which does produce noise when in an excited state,
namely, thermal noise. This can be made arbitrarily
small, in principle, by cooling the loss mechanism to a

15 Another, more refined, method of regarding these three types
of specification is in terms of an ensemble of ensembles. The
superposition of energy states is the usual quantum-mechanical
ensemble—Ilet use call it sub-ensemble—in which each system is
in the same quantum mechanical state; the second case, above, is
an ensemble of these sub-ensembles, the phases of the super-
position constants for each sub-ensemble being random but the
absolute values of the constants being the same; and the thermo-
dynamic system may be regarded as one of a super-ensemble of
the ensembles. Three types of averaging are thus possible. The
first gives the quantum mechanical expectation value and the
third gives the thermodynamic value. One may omit the second
case and go directly from the sub-ensemble to the super-ensemble.
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sufficiently low temperature. The amplification me-
chanism is either a collection of many simple systems
(such as a molecular beam) or a complex system. It will
produce spontaneous emission—which, as the previous
discussion shows, is noise—if it is in an excited state.
But the amplification mechanism must always be in an
excited state, since it is a source of power. Thus,
spontaneous emission from the amplification mechanism
is the fundamental limiting noise in an amplifier (of the
type considered. We will not discuss the question
whether this type includes all amplifiers.)

One might, perhaps, argue that the amplification
mechanism could be a simple system and would, there-
fore, not emit noise. Most real macroscopic systems
(here the field of a single mode seems to be in a class by
itself) are not simple systems, however, although we
may sometimes idealize them as such. Their spon-
taneous emission is, therefore, noise.

It is not possible to give a quantitative expression for
the spontaneous emission from a general amplification
system. The details of each specific situation must be
considered. The spontaneous emission depends not only
on the amplification system but also on the loss me-
chanism. In the case of a molecular beam amplifier, this
calculation has been made, and the result exhibits an
explicit dependence, both on the properties of the
amplification system and on the losses.’® The depend-
ence on the latter follows from the fact that the lowest
order spontaneous emission power from a molecule in a
cavity is a function of cavity loss.!® It is clear that the
limiting noise cannot be derived from an application of
the uncertainty principle to the electromagnetic field,
as is done in references 1 and 2.7

\'

An intriguing question related to the subject under
discussion is that pertaining to the physical significance
of the zero-point field. It is very weak, of course. Can
it be amplified? Louisell, Yariv, and Siegman,? in their
analysis of fundamental noise in a parametric amplifier,
arrive at the result that the zero-point field of a lossless
cavity is amplified together with the signal, and call
it noise.

We have already seen that the zero-point field of a
lossless cavity is not noise. We may go further, however,

16 The dependence of spontaneous emission on cavity loss was
first discussed by E. M. Purcell, Phys. Rev. 69, 681 (1946).

17 Serber and Townes do attribute the noise to spontaneous
emission from the molecules in their analysis of a molecular
amplifier. (They do not, actually, speak of noise but of “fluctua-
tions.” The context of their discussion, as well as Prof. Townes’
remark that follows the article, indicates, however, that they are
referring to noise.) Their signal-to-noise ratio for the amplified
field bears close resemblance to expressions which follow from the
uncertainty principle applied to the unamplified field. This would
seem consistent with their claim that the uncertainty principle
determines the ultimate signal-to-noise ratio. However, the
relationships on which their argument rests are true only for the
case of a lossless cavity—the only case they analyze. For a
generalization of their problem which includes cavity losses, see
I. R. Senitzky, Phys. Rev. 123, 1525 (1961).
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and inquire whether it can be amplified. Let us try to
amplify the zero-point field of a lossless cavity'® by
sending a “bunch” of molecules, of the two-level type
considered previously, through the cavity. (The
analysis for the “bunch” is simpler than that for a
molecular beam, since all the molecules of the ‘“bunch”
are exposed to the same field; essentially similar
considerations, however, apply to the beam.) We
consider conditions such that perturbation theory
applies. The lowest order field is the zero-point field
itself. The time average of the square of the electric
field cavity is in its lowest energy state is given by

PLR2=F/8rc?. (20)

This expression may be considered either as a multiple
of the unit operator, as an eigenvalue, or as an expecta-
tion value. (In the latter case, time averaging is not
necessary, since ensemble averaging gives the same
result.)

The lowest order field that is due to the molecules is
given by the operator

PUO=2 P (1),

w [t (21)
Pm[ll (t)= ——Mf dtl 'me](tl) sinew (l_tl),
¢ Jo

P, being the field due to each molecule. Applying the
same reasoning as that used previously for the molecule
in the lossy cavity, we can see that there is no correla-
tion between the first order fields of different molecules.
The second order field is given by

PEI()~[8o(t)/ 2k 1P O (1) 22 I,

8o(t) = 2w y2L,

(22)

where

and I,, is a diagonal matrix in the energy representation
of the unperturbed molecule, with eigenvalues —1 and
+1 for the lower and upper states of the mth molecule,
respectively. The second order field has the formal
appearance of an induced field, for, if PLI(f) were a
classical driving field, P®!() would indeed be the
induced field, reenforcing the driving field if the mole-
cule is in the upper state (emission), and diminishing
the driving field if the molecule is in the lower state
(absorption). In the present instance, however, there
can be little justification for saying that spontaneous
emission is induced by the zero-point field. In the first
place P! is a higher order term than P! where the
zero-point field does not even occur; and in the second

18 The amplification mechanism is a macroscopic system com-
posed of a large number of microscopic systems and driven by an
external source. A treatment which starts from fundamental
principles applied to all the microscopic systems is, of course, very
difficult and probably unnecessary. The extent to which simpli-
fications may be made and a phenomenological description
introduced needs examination. It is unlikely, however, that a
purely macroscopic view of the amplification mechanism may be
maintained.
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place, it is impossible to diminish (absorb) the zero-
point field. P®! may not, therefore, be considered apart
from PU. The physical meaning of PI and PP is
clarified in a calculation of the second order spontaneous
emission energy for a single molecule. The electric field
energy comes from two parts: P12 which is propor-
tional to the unit operator, and 2PIIPEI which is
proportional to I,, with the same proportionality
constant.* The energy is, therefore, proportional to the
operator (I,+1), which makes the spontaneous
emission energy zero, as it must be, when the molecule
is in the lower state. We see, thus, that it is impossible
to attach physical significance to the role of the zero-
point field. It plays a purely formal role in contributing
one of the two terms that are needed for a correct
expression of spontaneous emission. The spontaneous
emission cannot be said to be an amplification of the
zero-point field, since the spontaneous emission fields
of different molecules are uncorrelated (unless the
molecules happen to be initially in a correlated state),
and yet the zero-point field is essential for the proper
expression of spontaneous emission.

Now, spontaneous emission is not only a quantum-
mechanical phenomenon, but it is a fundamental
phenomenon in classical electrodynamics. If the mole-
cule is treated quantum-mechanically, however, the
above analysis shows that the field must also be treated
quantum-mechanically in order to obtain the correct
spontaneous emission expression. Likewise, if the field
is treated quantum-mechanically, one can see easily
that the molecule must be treated quantum-
mechanically. It is reasonable to generalize this state-
ment and say that if the field is to be treated quantum-
mechanically, or if the zero-point field enters into
consideration, then the amplifying mechanism must
also be treated quantum-mechanically. The zero-point
field will then play its role in contributing toward a
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correct expression for the spontaneous emission from
the amplifying mechanism (and no other role).

A possible omission in the article of Louisell, Yariv,
and Siegman now suggests itself. They did not treat the
amplification mechanism quantum-mechanically; they,
therefore, obtained terms which, when appearing alone,
give the effect of amplification of the zero-point field.
Had they included some essential quantum-mechanical
properties of the amplification mechanism, they would
probably have obtained an expression for spontaneous
emission which includes all zero-point field effects. (Had
we ignored the PMZ2 term and considered only the
PLIPE] term, we, too, would have obtained ‘“amplifica-
tion” of the zero-point field for molecules in the upper
state.)

The above discussion of the significance of the zero-
point field refers to a lossless cavity. We could have
carried out an entirely parallel discussion for a lossy
cavity, and arrived at the same conclusions. It should
be pointed out, however, that the formal description
of the zero-point field in a lossy cavity is different from
that in a lossless cavity. In the former, as discussed in
detail elsewhere,® the zero-point field is no longer that
of the harmonic oscillator but rather the field generated
by the zero-point oscillation of the loss mechanism. It
is not a purely sinusoidal oscillation, and comes under
our definition of noise; but it is not noise which may be
amplified. Its role is identical to that of the zero-point
field of the lossless cavity: It acts (formally) in such a
manner as to give a correct expression for spontaneous
emission from the system coupled to the field in a
formalism in which both the field and the system
coupled to it are treated quantum-mechanically.
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