
P H YS I CAL R EV I EW VOLU M E 128, NUMBER 6 DECEMBER 15, 1962

Asymptotic Symmetries in Gravitational Theory*

R. SAcHst

U. S. Army Signa/ Research and' Development Laboratory, Fort Monmouth, 3(em Jersey
(Received July 23, 1962)

It is pointed out that the definition of the inhomogeneous
Lorentz group as a symmetry group breaks down in the presence
of gravitational fields even when the dynamical effects of gravita-
tional forces are completely negligible. An attempt is made to
rederive the Lorentz group as an "asymptotic symmetry group"
which leaves invariant the form of the boundary conditions ap-
propriate for asymptotically Rat gravitational fields. By analyzing
recent work of Bondi and others on gravitational radiation it is
shown that, with apparently reasonable boundary conditions,
one obtains not the Lorentz group but a larger group. The name
"generalized Bondi-Metzner group" ("GBM group") is suggested
for this larger group.

It is shown that the GBM group contains an Abelian normal
subgroup whose factor group is isomorphic to the homogeneous
orthochronous Lorentz group; that the GBM group contains
precisely one Abelian four-dimensional normal subgroup, which
can be identified with the group of rigid translations; that the

GBM group contains an infinite number of different subgroups
isomorphic to the inhomogeneous orthochronous Lorentz group;
that the infinitesimal GBM group algebra permits at least one
nontrivial representation, which is directly analogous to the rest-
mass-zero and spin-zero representation of the Lorentz group; that
in any representation of the infinitesimal GBM group algebra
there is a "rest mass" operator which commutes with all the other
operations; and that no similar "spin" operator appears to exist.
It is argued that the GBM group is so similar to the inhomo-
geneous Lorentz group that the former may be compatible as a
symmetry group with present microphysics.

Two applications are given: Certain quantum commutation
relations covariant under GBM transformations are presented;
and a denumerably infinite set of integral invariants, for classical
asymptotically Qat gravitational fields, are derived. The four
simplest integral invariants constitute the total energy momentum
radiated to infinity by gravitational waves.

I. INTRODUCTION

F one neglects gravitational e8ects, the Lorentz
~ ~ group can be defined in one of two ways: (1)
Lorentz transform ations leave invariant the basic
differential equations of micr ophysics; (2) Lorentz
transformations are "symmetry" transformations that
preserve the numerical value of the metric tensor. If
one now takes into account the often extremely small
gravitational effects via general relativity, one is faced
with a peculiar situation. Every conceivable coordinate
transformation has the first property mentioned. In
the generic case, no coordinate transformation has the
second property. ' Thus only the homogeneous Lorentz
transformations seem to remain conceptually well

de6ned, as those transformations relevant in discussing
properties at a fixed space-time point; the inhomogene-
ous Lorentz group seems to disappear into thin air.

However, the inhomogeneous Lorentz group plays a
fundamental role in microphysics; it limits the possible
types of elementary particles and its existence leads to
conservation laws. Therefore, one cannot accept the
notion that this group is eliminated by the presence of
dynamically negligible gravitational 6elds. There must
be some reasonable sense in which the Lorentz transfor-

*Research supported jointly by the U. S. Army (U. S. Army
Signal Research and Development Laboratory) and U. S. Air
Force (ARL).

t Present address: Department of Physics, Stevens Institute,
Hoboken, ¹ J' A. Trautman's "Lectures in General Relativity, " King' s
College, London University, 1958, mimeographed notes (unpub-
lished) contain a summary of Trautman's own work, a lucid and
balanced survey of other work done prior to 1958, and a very
excellent bibliography. Although these lectures are obtainable
only by writing to the Department of Mathematics at King', s
their inQuence on the 6eld has been so decisive that they must
serve as the main reference for the ideas presented here. Another
important paper is Trautman's article that is scheduled to
appear in 1962 in a survey volume by L. Witten.
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mations are "approximate symmetry" transformations;
and in microphysics the approximation must be a very
accurate one. Now probably the most reasonable way
to introduce the notion of an approximate symmetry in
curved space-Lime is to consider asymPtoftc symmetries
in a space-time whose metric is asymptotically Minkow-
skian. '' One is therefore led to the questions: What,
speci6cally, does it mean to say that a metric is asymp-
totically Rat? What are the coordinate transformations
that preserve the form of the appropriate boundary
conditions P

Much work has been done on the question: What are
physically sensible boundary conditions to place on
the gravitational 6eldP'' The mathematical problem
is one in global Riemannian geometry and, therefore,
quite difficult. No really definitive results have been
obtained. However, two very extensive and detailed
treatments have been given recently, one by Bondi
and his co-workers' (for axially symmetric fields) and
one by Arnowitt, Deser, and Misner. 4 The approach
due to Bondi was subsequently generalized and related
to the theory of the Petrov-Pirani classi6cation. ' ' In

' Compare Trautman, reference 1; V. Fock, Theory of Space,
Time amd Grasitatiort (Pergamon Press, New York, 1959); R.
Arnowitt, R., S. Deser, and C. W. Misner, Phys. Rev. 122, 997
(1961) (which contains references to the previous papers by these
authors). These are the references in which this idea is presented
most clearly.

3 H. Bondi, M. G. J. Van der Burg, and A. W. K. Metzner,
Proc. Roy. Soc. (London) (to be published).

4 R. Arnowitt, S. Deser, and C. W. Misner, reference 2.' R. Sachs, Proc. Roy. Soc. (London) (to be published).
e E. T. Newman and R. Penrose (to be published).
r T. Unti and E. T. Newman (to be published); the fact that

these authors use a preferred parameter distance rather than a
luminosity distance is not important to our discussion.

For the theory of the Petrov classification see the classic paper
by F. A. E. Pirani, Phys. Rev. 105, 1089 (1957).Two reasonably
up to date papers with fairly extensive bibliographies are P.
Jordan, J. Ehlers, and R. Sachs, Akad. Wiss. Mainz (1) 1961,
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this paper the Bondi approach, in which light-like
("null" ) hypersurfaces play a leading role, will be
followed. However, the basic assumptions in the
Arnowitt-Deser-Misner approach seem quite similar.
It seems reasonable to hope that the two approaches
are essentially equivalent.

One virtue of the approach due to Bondi is that no
a priori assumptions are made about the nature of the
asymptotic symmetry group —not even the assumption
that such a group exists. One constructs the most
sensible boundary conditions one can and then at the
end investigates the question of asymptotic sym-
metries. The result is unexpected: Not only are the
Lorentz transformations asymptotic symmetry trans-
formations; there are also additional transformations
which are not Lorentz transformations but are asymp-
totic symmetry transformations. "' This paper consists
of an attempt to understand this result.

The essential argument to be presented is that the
actual asymptotic symmetry group is so similar to the
Lorentz group that a surprisingly large number of our
Lorentz covariant ideas remain applicable. A detailed
discussion of the similarities is found in Secs. IV and V.
Here we shall discuss only the two most important ones:
(l) The asymptotic symmetry transformations actually
form a group; the structure of this group does not
depend on the particular gravitational field that hap-
pens to be present; (2) the four-parametric group of
rigid space-time translations can be uniquely singled
out from the entire asymptotic symmetry group by an
invariant criterion.

The first result means that, in eGect, one is able to
separate the kinematics of space-time from the dynamics
of the gravitational field at least at spatial infinity.
This separation of kinematics and dynamics is so
familiar in Lorentz covariant theories that its im-
portance is easily overlooked. However, in general
relativity such a separation is usually impossible. One
is then faced by very puzzling questions, especially in
a quantized theory. Should one, for example, regard
coordinates as c numbers or as operators?' Both
alternatives seem unreasonable. By obtaining a partial
separation of kinematics and dynamics one is able to
avoid this and similar questions, at least for the time
being; in particular, if the preferred coordinate trans-
formation group is truly field-independent then one is
presumably entitled to regard the preferred coordinates
as c numbers.

Unless the second result —the uniqueness of trans-
lations —held, one would have little hope of introducing
reasonable energy-momentum conservation laws. In
fact, the question of energy conservation which has
plagued general relativity for many years is, of course,

and R. Sachs, Proc. Roy. Soc. (London) 264, 309 (1961).A key
paper is L Robinson and A. Trautman, Proc. Roy. Soc. (London)
265, 463 (1962).

'This point was raised by J. Anderson (private communi-
cation).

intimately related to the question of symmetries. ' It
seems to the author that it would be more accurate
to claim that the notion of energy is simply not well

defined in a general gravitational Geld than to claim
that there are very small corrections to the energy
due to the gravitational effects. Again, the most
reasonable way out of the dilemma is to work with
asymptotically Qat space-times. '

Of course, one should also ask about the angular
momentum conservation laws. Here there is a possi-
bility that, even if the arguments for assuming that the
asymptotic symmetry group is larger than the Lorentz
group turn out to be correct, a theorem like IV.1 may
avoid gross contradictions with microphysics. '

In Sec. II a series of known results needed in the
remaining sections is collected. The basic ideas and
definitions are introduced. The name "generalized
Bondi-Metzner group" ("GBM" group) is suggested
for the particular asymptotic symmetry group analyzed
in this paper.

In Sec. III a new derivation of the asymptotic
symmetry transforrnations is given. The discussion is
less general than those previously given because it deals
only with infinitesimal transformations. However, by
using the methods of Newman and Vnti, ~ one can
avoid a rather dubious and controversial assumption
made in the former discussions.

The main section, Sec. IV, opens with a discussion of
a simple way to avoid the undesired extra asymptotic
symmetry transformations; this can be achieved by
setting additional boundary conditions at infinite
times; the author does not think that this trick is a
legitimate one according to our present knowledge of
gravitational fields because it is based. on assuming that
the space is completely flat (or, say, static) at infinite
times; but it may be that further investigations will

validate the legitimacy of the trick.
A quite detailed analysis of the structure of the

GBM group is then given, and two results on repre-
sentations of the GBM group algebra are proved,
Primary emphasis is placed on the similarities and
differences between the GBM group and the inhomo-
geneous Lorentz group. Standard group theoretical
techniques are used throughout Sec. IV, although
there are some (rather trivial) difhculties that arise
because the GBM group is not locally compact.

In any general relativistic discussion of asymptoti-
cally Rat spaces one can give relatively precise treat-
ments of otherwise inaccessible problems once one
knows what the allowed coordinate transformations
are."' Section V contains two applications of the
group theoretical discussion given in Sec. IV. One can
write down some GBM covariant quantum commuta-
tion rules for certain of the gravitational field variables.
One can then use these commutators to guess at

"Compare the arguments in P. G. Bergmann, Phys. Rev. 124,
274 (196i).
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integral invariants of the classical theory by looking
for generators of GBM transformations in the quantum
theory. In Sec. V a denumerably inhnite set of integral
invariants is obtained and their transformation proper-
ties in the classical theory are discussed in detail; four
of the integral invariants represent the total energy
and momentum carried to innnity by outgoing gravi-
tational waves during the history of the field and
transform as a I.orentz "free vector" under all GBM
transformations.

In Sec. VI a brief discussion of the main results is
given and three unsolved problems of interest are
mentioned.

The detailed calculations in Secs. III, IV, and V are
believed to be new. As emphasized in the acknowledg-
ments, the essential ideas are based on previous papers
and on discussions with others.

II. PRELIMINARY CONSIDERATIONS

In this section a few known results of interest in the
following discussions will be collected. Proofs will be
omitted.

A. Lorentz-Covariant Theories

Suppose one wants to analyze the solutions p, of
O'Alembert's equation

P, ab'g

(Lower case Latin indices range and sum from zero to
three; q

' is the I.orentz metric dehned by the equations

for which

implying

8=H(8,y), y= I(8,@),

ds'= K'(8,$) (d8'+sin'8 dQ')

K4= sin'8 Js(8,@;8,@)(sin8) ',

(II.6)

where J is the Iacobian and

d8=—(8H/88) d8+ (8H/Bg) ~,
d@= (8F/88) d8+ (8F/ay) dd

As a convention we choose E positive. It is known"
that conformal transformations in two dimensions

correspond to analytic transformations of a complex
variable z; here

z = cot (8/2) e'e.

In order for the transformation (II.6) to be regular
everywhere on the sphere the corresponding transfor-
mation of z must be single valued, have at most one
simple pole (at the new North Pole), and have at most
one simple zero (at the new South Pole). Therefore,
if z denotes the transformed z, one has

z= (bz+ri)/(Pz+r), 8r rtPA0, —

where 8, tt, P, and r are complex parameters. Without
loss of generality one can demand

Infinitesimal distances on the surface of the unit

sphere are given by"

ds'= d8'+sin'8 dg'= oh—pzdx"dxz,

(A, 8, = 2, 3). (II.S)

By a conformal transformation we mean any relation

ds'=rt, adx~dx = dt'+dx'+dy—'+dzs, rt,yls~=8, ', (II.2) 8r —rtP= &1. (II.10)

commas denote ordinary derivatives. ) It is then often
convenient to introduce as new coordinates a retarded
time u and the spherical coordinates r, 8, g:

u=t r, r cos8=z, r s—in8e'4'=x+iy. (II.3)

In terms of the new coordinates the Minkowski metric
takes the form

ds'= du' 2dudr+r' —(d8'+—sin'8 d@') -(II.4)

How do I.orentz transformations look in the new
coordinate system? If one subjects the coordinates x'
to a Lorentz transformation x' —+ x then Eq. (II.3)
determines a corresponding transformation (u, r,8,@)-+
(u, r,8,&). The full transformation equations are some-
what complicated; however, it turns out that analyzing
the transformation law of u, 8, and Q at r= oo and
discussing only those ("orthochronous") transforma-
tions that involve no time reversal is sufhcient for our
present purposes. Even at r=~ the two angles in
general undergo what is called a "conformal transfor-
mation" and we must digress briefly to introduce a
few relevant ideas and results.

And the composition law also turns out to be the
composition law for unimodular matrices. Therefore, "
the conformal transformations of the unit sphere into
itself form a six parametric gr-oup isomorphic to the

homogeneous orthochronous (impro per) Lorentz group.
One can now state the asymptotic result obtained

when the coordinates are subjected to a Lorentz
transformation. To every orthochronous Iorentz transfor
matt on corresponds 'precisely one transformation

lim8= H (8,&),

limy=I(8, y), (II 11)

limu= K "(u+es+ er sm8 cosQ+ es stn8 sin@+ es cos8),

uhere H, I, and K are the functions of a conformat
transformation and e, (a=0. .3) are four parameters;

"The second equality merely serves to define 0hz', the range
(2,3) for capital Latin letters is chosen for later convenience.

"The various geometrical concepts here introduced are dis-
cussed in L. P. Eisenhart, Eiemunniue Geometry (Princeton
University Press, Princeton, New Jersey, 1949); and in J. A.
Schouten, Eicci Calculus (Springer-Verlag, Berlin, 1959).

'3 P. Roman, Theory of Ftementary Particles (North-Holland
Publishing Company, Amsterdam, 1960).
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conversely, to each set (H,I,e,) corresponds precisely one

orthochronous Lorents transformation. '
Here, and throughout, the symbol "lim" means the

limit as r approaches infinity with Axed values of u, 0,
and P. The parameters e, correspond to the translations.
For example,

lim8=8, limg= P, limu= u —e8 cos8 (II.12)

determines a rigid translation in the s direciion. The
transformation law for r is lim(r/r) =E(8,d).

3. Uniform Smoothness and the Outgoing
Radiation Condition

Suppose one has a solution of Eq. (II.1) which is
everywhere nonsingular and consists merely of a burst
of radiation that comes in from spatial infinity, passes
through the origin, and travels back out to spatial
inhnity. The two solutions

p, = a(u)/r a(u+—2r)/r,

(where a is any function that vanishes outside a
bounded interval),

ti2= (sinu)e ~'/r —sin(u+2r)e &"+2"&'/r (II.13)

are typical. Each of these solutions is 0(r—') as r —& ~
for fixed u, 8, and @, where the order symbol "0"has
its usual meaning. Moreover, the derivatives obey

the above simple comments about the Sommerfeld
condition into a form suitable for gravitational theory.

In gravitational theory it seems to be unreasonable
to consider solutions analogous to (II.16) because these
solutions carry, crudely speaking, an infinite amount of
energy in the radiation modes of the Geld; this energy
apparently gives rise to an infinite mass term in the
field. In this sense the assumption of asymptotic
flatness (which certainly excludes an infinite mass
term) may by itslf imply a Sommerfeld-type condition;
if correct, this statement indicates a marked difference
between gravitational theory and linear theories.

C. The Gravitational Case—Local
Considerations

In analyzing gravitational fields it is sometimes
useful to introduce coordinates which share some of the
properties of the coordinates u, r, 8, and P. The crucial
properties are: (i) the hypersurfaces u=constant are
everywhere tangent to the local lightcone; (ii) r is the
corresponding luminosity distance; (iii) the scalars 8

and P are constant along each "ray." A ray is defined
as the line with tangent k = —u qg, where g

~ is the
metric tensor.

Given any normal hyperbolic -Riemannian manifoLd

with line element ds' and in it any point I', there exists
at least one set of coordinates u=x', t=x', 8=x', P=x'
such that in a finite neighborhood of I'

&ti i,2/&u =0 (r '), &IJ,
—,/&8 =0 (r '), —

(II.14)
Dpi, 2/Br=0(r '), Bp, , 2/—By=0(r ')— ds'= e'PVr 'du' —2e'~dudr

+r2hAB (dxA PAdu) (dxB U Bdu) (11.18)
where

2, J3, . =2, 3; determinant(h~e) =b(u, 8,@).

Definition': A function y=O(r ~) of u, r, 8, and P is
called "uniformly and radially smooth (at infinity)" if

one sees that
p = sinu/r —sin (u+ 2r)/r; (II.16)

Bp/Br=0(r ')—(II.17)

so the radial smoothness assumption is violated. Why
this difference

It is easily seen that for Acids which approach zero
at r= ao the behavior as regards uniform smoothness
depends entirely on the Sommerfeld outgoing radiation
condition. In fact, the two solutions (II.13) both obey
the Sommerfeld condition in the following sense: For
fixed u, 8, and @ the outgoing radiation condition is
obeyed at large r; for fixed 8, P, and v=u+2r the
imcomieg radiation condition is obeyed for large r. Qn
the other hand the solution (II.16) does not obey
either the outgoing or incoming radiation condition for
any r. Various recent papers" " attempt to translate

14 R. Sachs, reference 8.

Bti/Br=0(r ~ '), Bp/88—=—0(r "),
(II.15)

Bp/Du =0 (r "), Bti/8&
—=0 (r ~). —

Not all solutions of Eq. (II.1) are uniformly and
radially smooth. Consider, for example, the solution

The form (II.18) holds if and only if the coordinates u,
r, 8, and Q have the geometric properties (i)—(iii) stated
above. Here V, P, L', and h~eLdeterminant(h~e)$ oi'&

are any six functions of the coordinates and b(u, 8,&) is

any function of its arguments.
The proof was given in reference 5; rather than

repeat the proof we repeat here a diagram (Fig. 1)
from that reference which shows the geometric prop-
erties of the coordinates in the generic case.

D. Gravitationa1 Case—Global Considerations

In references 3 and 5 a more interesting, global
problem was attacked. It was assumed that there was
some global coordinate system in which the metric
takes the form (II.18). The convention b=sin'8 was
made and it was assumed that the coordinate ranges
in which the form (II.18) holds are

uo&u&ui, ro(r( ~, 0&8(v, 0&&&2v (II.19)

(compare Fig. 1). It was further assumed that the
metric approaches the Minkowski metric for large r:

lim(ds') = —du' —2dudr+r'(d8'+ sin'8 dP'). (II.20)



ASYM PTOTI C SYM M ETRI ES IN GRAVITATIONAL THEORY

And, finally, an outgoing radiation condition was
assumed. In references 6 and 7 these assumptions were
generalized by considering relations valid over diferent
ranges for 8 and p and weakening the outgoing radiation
condition. By these manipulations one tried to analyze
the set of all gravitational fields which are asymptoti-
cally Bat at infinity. The author feels that the work of
these references is not as rigorous or clear as one would
like"; he also feels that this work represents a serious
attempt to handle the main problems of gravitational
theory using the physical and mathematical knowledge
available at present.

By analyzing the field equations it was shown in the
references" ~ that the detailed asymptotic behavior of
the quantities in (II.18) is the following:

V= r+—2M (u, 8,@)+0(r '),

P = c(u,8,&)—c*(2r) '+0 (r
—4),

—
(II.21)

h~ttdot"dx = {d8'+sin'8dqP)+0(r ')
PA. —0 (r

—
2)

c* is the complex conjugate of c.
Definition. A space-time is said to be an "AF field"

if there exists at least one set of coordinates (u, r,8,&)
for which Eqs. (II.18), (II.19), and (II.21) hold. If
the order symbols in Eq. (II.21) are, together with
their first X—j. derivatives, uniformly and radially
smooth the AI field is further said to be "uniformly
and radially smooth of order E (at infinity). "

All our subsequent discussions are confined to such
space times.

E. The Generalized Bondi-Metzner Group

Bondi and Metzner' analyzed the set of all coordinate
transformations which preserves the form (II.18),
(II.19), (II.21) in the case that the field is axially and
reflection symmetric (technically, the tt directions form
a congruence of closed, spacelike, Killing curves which
are orthogonal to hypersurfaces). Their considerations
were subsequently generalized'7 and the following

group obtained.
Suppose one has a space smoothly covered by the

three coordinates 0, g, and I, where 0&0&x, 0&@(2+,
—oo(u(eo; the points &=0 are identical to the
points g = 2s.. The space is to be topologically equivalent
to the topological product of the real axis with the
surface of the unit two-dimensional sphere. Consider a
transformation

8= 8(8,$,u), Q= P(8,$,u), u= u(8,@,u), (II.22)

"Specihcally, our following discussion is not very interesting
unless all spaces that could reasonably be called asymptotically
Aat are actually AF spaces in the sense of the definition given
below; that such is the case has been made quite plausible but
not really proved; in order to avoid prejudicing this important
point the neutral term "AF 6eld" is used rather than the more
vivid term "asymptotically Qat Qeld. "

U CONST

R~ CONST

U= CONST

"RAY': U=

COORDINATE SINGULARlTIE

R ~Ra

Fxo. 1. The coordinate system. The coordinates I, ~, and @
and the vector h shown in the hypersnriace e = e-/2. In Sec. II(c)
we consider a small patch cut from the picture; thereafter, the
global picture is appropriate.

to another set of coordinates with the same coordinate
ranges.

Defirtitiort. A transformation (u,8,$) -+ (tt, 8,$) is
called a generalized Bondi-Mentzner transformation
("GBM transformation") if

8=H(8,&), @=I(8,$), u=E 'Lu+tr(8, $)], (II.23)

where H, I, and E are the functions of a conformal
transformation (II.6), (11.7), and ot is any twice
differentiable function of 8 and P.

The GEM trartsfortnutiorts forte tt group. In fact, the
conformal transformations form a group, so that II, I,
and E have all the necessary properties. Thus, one
must check only the fact that if one carries out two
transformations (II.23) in succession, the corresponding
n for the product transformation is again a twice
differentiable function of 8 and P. This fact can be
verified by noting that any transformation (II.6),
(II.7), can be written as the product of "spatial
transformations, " characterized by the relation K=1,
with the special Lorentz space-time rotation (in the
s, t plane)

cot(8/2) =8s cot(8/2), rtr=$, u= u, (II.24)

where 5 is a real constant. "Both the spatial rotations
and the transformations (II.24) lead from twice
diGerentiable functions o. to other twice differentiable
functions n. Q.E.D.

"S. Schweber, Relativistic Qualtuttt Field Theory (Row-
Peterson and Company, Evanston, Illinois, 1961).
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F. Isometrics

In the next section we will give a detailed discussion
of the relation between the GBM group and the
asymptotic symmetries of AF fields. This preliminary
section will be concluded by a discussion of the geo-
metrical notion of symmetry in a curved space time.
Suppose one has the metric tensor g ~ as a function of
coordinates x . Suppose that there exists a one-para-
metric set of transformations x =x'(oi;xo), x~(0;xb)
=x, which are such that the transformed metric is

the same function of the new coordinates as g y ls of
the x . Then the transformations are called symmetry
or "isometry" transformations. Let P=LBx /Boij„o,
P is a contravariant vector. The ba,sic way to look for
isometrics in a given space time is to use the following
well-known theorem: The vector t obeys "Kitling's
egNGAOQ

(II.25)$;o+ko;~=0

if, and only if, the corresponding transformations are
isometrics. " Here and throughout semicolons denote
covariant derivatives.

Sy means of specific examples one can convince
oneself that any reasonably general space-time permits
either no solutions of Killing's equation or at most one

solution of Killing's equation. To look for general,

physically realistic properties of gravitational radiation
from bounded sources in a space-time that permits two

linearly independent solutions of Killing's equation is

not a sensible procedure. Minkowski space, of course,
permits ten linearly independent solutions, corre-

sponding to the ten-parametric I-orentz group.

the Lie derivative of the metric in the $' direction;

bg.o= k—', o k—o;. (III.1)

Suppose now, that one is dealing with an AF field
(which is here assumed uniformly and radially smooth
of order 3 at spatial infinity). By virtue of Eqs. (II.18)
and (II.21) one must demand the following conditions
in order for the coordinate conventions and boundary
conditions to remain invariant:

bggj =0) Sggg=0) 6gggg =0)
bgoo=0(r '), &go~=0(1),

bgoi ——0(r—'), 8g» 0(r)——

(III.2)

(111.3)

Theorem III.1. The infinitesimal asymptotic symmetry
transformations (III.1)-(III.3) form an infinitesimal
group isomorphic to the infinitesimat GBM group

Proof. The crucial point is that Eqs. (III.2) can be
explicitly integrated to find the functional dependence
of &' on r. One then sees explicitly that & does not
contain any logarithmic terms (or any terms which
are not uniformly and radially smooth) unless the
metric itself contains such terms; in this way one
proves that P is sufficiently well behaved for the
former proofs to be applicable.

The reader who wishes to follow the proof in detail
will find it useful to consider only the axially symmetric
case treated by Bondi, Van der Burg, and Metzner;
the Christo6el symbols for this case have been given'
(while the general case has been investigated only in
the tetrad formalism); moreover, as frequently happens,
considering non-axially symmetric fields merely leads
to extra calculations without any new ideas appearing.

From the first equation in (III.2) one finds that
III. INFINITESIMAL ASYMPTOTIC SYMMETRY

TRANSFORMATION 8

The proofs given in the references' ' that the GBM
group is that group which preserves the boundary
conditions (II.21) all contain one ad hoc assumption.
It is assumed that the transformation functions can be

expanded in inverse powers of the luminosity distance

r over the coordinate range (II.19).Thus, the transfor-

mations r=r+lnr+0(r ') and all similar transfor-

mations are banished a priori. This would be merely a
point of technical rigor were it not for the fact that in

a closely related paper by Bergmann" it is precisely
such logarithmic transformations which play a crucial

role. It is desirable to remove the ad hoc assumption

mentioned. In this section the required theorem will

be proved for the case of in6nitesimal transformations;
the proof exhibits particularly clearly what is meant by
the words "asymptotic symmetry. " It is a straight-

forward extension of calculations by Unti and Newman. '
Letx'=x'(~ x ) wherex =u, x'=r, etc. Letx'(0 xo)

=x~ and let P be defined as in Sec. II F. Then the
inhnitesimal change 5g q of the metric tensor as a
function of its arguments is, as is well known, given by

Therefore,
&$,/&r= 2&,dP/or. (III.4)

~~=f(ulcc)e'e (III.5)

where f is an arbitrary function of its arguments. The
next two equations in (III.2) similarly imply

&ag"'= f"(u, e,4)+fU"+ dr' e'ef,g», (111.6)

where the functions f~ are arbitrary. The last equation
in (III.2) can be solved algebraically for (o as follows:

ko= ore (—(g,a+col"»o+(il'ga')g».
Here Fg~ and I'g~' are Christoffel symbols in the
original coordinate system.

The remainder of the proof is quite trivial. One
substitutes into the remaining six equations (III.3)
and finds that Eq. (III.3) holds if and only if the
previously arbitrary functions f and f~ are now
restricted by the relations

(a) Bf"/Du=0, (III.8)

(b) fg:a+ fag= —2(Bf/Ou)oh»m , Bof/duo=0
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Here the indices of f" are lowered with the metric shying

of the unit sphere (II.5) and the colon derivates denote
covariant derivatives with respect to this metric (in
other words, since f~ is independent of r one must
work merely with the limiting form gzii —+ shze).
Equation (III.Sb) is the well-known equation for an
infinitesimal conformal transformation. " Therefore,
Eqs. (III.5)—(III.S) are precisely the infinitesimal
analogs of Eq. (II.23), which defines the GBM group;
QED

Equations (III.1), (III.2), and (III.3) should be
compared with Eq. (II.25). One sees that, while $ is
not a solution of Killing's equation, it is as close to
being an isometry as the curvature of the space-time
allows. Thus, in the particular case under consideration
here, Eqs. (III.1), (III.2), and (III.3) provide an
unambiguous and detailed definition of the notion of
asymptotic symmetry. '

IV. THE STRUCTURE OF THE GENERALIZED
BONDI-METZNER GROUP

A. General Discussion

The results given up to this point are quite discon-
certing. We wanted to find the inhomogeneous Lorentz
group as an asymptotic symmetry group; instead we
obtained the GBM group. One way out is to assume
that the space is completely fIat for a semi-infinite
retarded time interval N&&N& . Then one simply
insists that the metric take the form (II.4) at u= oo

and all r. Since the function n, which causes all the
trouble, is time independent this additional, convention
can easily be shown to lead right back to the inhomo-
geneous orthochronous Lorentz group. " But the as-
sumption that the space is strictly flat at u=+ ~ is
rather ad hoc and may be unrealistic. The object of
this section is to argue that there is also a subtler way
out of the difFiculty. One retains the GSM group, and
then finds that it has so many simple properties that
an indirect kind of Lorentz covariance can still be
said to hold.

The most important result is that there is a unique
way to identify the four rigid displacements in space-
time. Only if one has the translations defined can one
hope to get a reasonable Hamiltonian theory or sensible
energy-momentum conservation laws. Another rather
comforting result is that at least one irreducible
Hermitian representation of the infinitesimal inhomo-
geneous Lorentz group algebra corresponds in a natural
way to a similar representation of the infinitesimal
GBM group algebra. Moreover, as will be seen, the
group theoretical notion of a rest mass operator can be
retained without essential modifications. However,

"A quite similar calculation has recently been carried through
by A. Komar, Syracuse University. The author is grateful to
Dr. Komar for making his results available prior to publication.

'8 A similar conclusion was previously and independently
reached by R. Arnowitt, S. Deser, and C. W. Misner PC. W.
Misner (private cornrnnnication) g.

there are also important differences; in particular, the
spin operator is not an invariant of the group repre-
sentations.

It will be useful to introduce special names for some
of the subgroups of the GBM group. The transfor-
mations (II.23) for which I defined in Eq. (II.7) is
positive form the subgroup of "proper" GBM transfor-
mations. We have already discussed the "conformal"
subgroup L obtained by setting a=o in Eq. (II.23).
The transformations

8=8, &j =+, u=u+n (IV.1)

B. Normal Subgroups

An important question about any group is the
question of what normal subgroups the group contains;
a normal subgroup S of any group G is characterized
by the property that if n is an element of X and g an
element of G then the "commutator" g 'g g~=~' is
an element of E.""

Theorem IV.1. The suPertranslations form an aphelian
normal subgroup E of the generatized Bondi cVetzner
group; the factor group is isomorphic to the orthochronous
homogeneous Lorentz group.

Proof. The supertranslations are characterized by
the fact that they leave the angles 8 and P unchanged.
Using this fact, one finds that the supertranslations
form a normal subgroup, The factor group is obviously
isomorphic to the conformal subgroup I. defined above.
In Sec. II we have shown that this conformal subgroup
is isomorphic to the homogeneous orthochronous
Lorentz group; that any two supertranslations commute
follows from Eq. (II.23), Q.E.D.

Lemma 1. The translations form a normal four
dimensional subgroup of the proper Bondi Metzner group-.
In fact, any translation commutes with any super-
translation. As can be seen from the Lorentz group the
commutator of a translation with a conformal transfor-
mation is some translation. Therefore, the translations
form a normal subgroup. This normal subgroup is
four dimensional since it requires, as one sees from
Eq. (IV.2), exactly four parameters to span the
translation group, Q.E.D.

Lemma Z. If 1Pis a four dimensional normal -subgroup
of the proper GBM group then 1P is contained in the
supertranslation group E. In fact, let G be the proper
GBM group and consider the image 1PjlV of 1P under

"A few essential ideas about group theory will be reviewed
here; for a complete treatment many excellent texts can be
consulted, for example, L. Pontrjagin, Topological Grolps (Prince-
ton University Press, Princeton, New Jersey, 1946); or N.
Bourbaki, Grompes et A lgebres de Lie (Hermann R pie, Paris, 1960),
Vol. 26, p. 1.

form the "supertranslation" subgroup Ã. The super-
translations for which

rr = es+ ei sin8 cos$+ es sin8 sing+ es cos8 (IV.2)

form the "translation" subgroup.
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the homomorphism G —+G/X; since fq' is a normal
subgroup of G, X'/iV is a normal subgroup of G/X.
Therefore, according to theorem IV.1, 1P/E is a normal

subgroup of the proper orthochronous homogeneous
Lorentz group I.'. However, the only normal subgroups
of L' are L' itself and the identity "e"of L'. If 1P/X= L'
then 1P/E must be six dimensional; then E' is at least
six dimensional, contrary to hypothesis. Therefore,
X'/E=c; X' is, therefore, contained in X, Q.E.D.

C. Infinitesimal Transformations

Q=BsP„, Q'=BQ. (IV.7)

Here the 8& are again constants and 8 is an arbitrary
constant. Conversely, to every set {Q'), defined by
Eq. (IV.7) with fixed B& and arbitrary B corresponds
precisely one one-dimensional subgroup of the group.

To the commutator of two group elements g and h

that lie in the relevant neighborhood of the group

'OThe GBM group is not locally compact (see reference 19).
Therefore, one must be somewhat careful in trying to deduce
properties of the finite group from properties of the infinitesimal
group. En the proof of Theorem IV.2, following, no questionable
deductions are necessary.

To complete the discussion, one must introduce the
infinitesimal GBM transformations. "Suppose one has
any 5-dimensional Lie transformation group of an
R-dimensional space. Let the coordinates of the space
be y (rr, P=1 R) and the parameters of the group
be s" (p, p=1 S), where s"=0 is the identity of the
group. Then the transformations have the form

g =f (y~; s"), where f (ys; 0)=y; (IV.3)

the functions 1 are assumed to be twice differentiable.
Consider the quantities

q„= (Bf /Bs&)„=s, (n=1. R; @=1 .S). (IV.4)

qi is a vector defined everywhere on the R-dimensional

space; there are S such vectors, one for each of the
group parameters. If the group is truly S dimensional
and the s& are chosen suitably, these vectors are
linearly independent; that is, if one has S constants
BI" then

B&q„=0m B"=0, (n= 1 E; @=1 S). (IVS)

To investigate the group structure one introduces
the di6erential operators I'„:

P„=q, (8/By ), ( =1. R;6=1 . .S); (IV.6)

these are again linearly independent in the above sense.
Consider a sufficiently small, finite neighborhood of
the identity s&=0 in the space of diferent group
elements. Every group element in such a neighborhood
lies in precisely one one-dimensional subgroup of the
full group. To each one-dimensional subgroup corre-
sponds precisely one set (Q'} of multiples of a particular
linear combination of the basic linear operators

identity corresponds the Lie commutator

(G,H) = (H—,G) =G~H ~ (P„,P,)
= (G"H~ H"—G&) (q„"Bq,s/By ) (8/Bys), (IV.8)

G=G P„, H=H P„, (rr, )=1. R; p, y=i .S),
of differential operators C and II that correspond to
the subgroups in which g and It lie. The group axioms
imply that the Lie commutator must be a linear
combination of the basic differential operators:

(P„,P,) =A„,&Pp, (p, p, , y=1 S). (IU.9)

Here the quantities A»& are constants, known as the
structure constants. The differential operators, con-
sidered as abstract quantities whose only relevant
properties are given by their commutator table, are a
complete linearly independent set of basis elements
for what is called the "Lie algebra" of the group. The
Lie algebra itself consists of the linear combinations of
the differential operators; commutators are imposed
on these linear combinations in the obvious way and
then obey all the usual abstract properties of Poisson
or commutator brackets, such as antisymmetry and
bilinearity. "

To an S'&S dimensional subgroup correspond 5'
linearly independent operators Q„(in this subsection
the symbol B with indices will denote constants):

Q„=B,»„(@=1. S'; y=1 .S;S'&S). (IV.10)

These operators have the property that their Lie
commutators are linear combinations of themselves:

(Q„,g„)=B„,g„(...=1 S). (IV.»)
If the S' dimensional subgroup is a normal subgroup
then the Q„obey the stronger conditions

(Q. P.) =Q,B,.", (p 9=1' ' 'S
i 7=1' ' 'S) (IV 12)

The fundamental theorem on Lie groups states that
these relations can be inverted: If one can find in the
Lie algebra combinations Q„ that obey Eqs. (IV.11)
or (IV.12), then there exists, respectively, a subgroup
or normal subgroup to which the Q„correspond. Thus
the structure of the Lie algebra characterizes the
structure of the Lie group up to those global properties
that cannot be analyzed by analyzing a small finite
neighborhood of the group identity.

To apply these ideas to the GBM group let us
expand cx in spherical harmonics~':

~=K 2 «.I'i.(~~), si.=s*i.. (IV.»)

From Eq. (IV.6) one finds for the supertranslations

Pi = I'i-(~A)(~/»),
(Pi =Pi *, Pi„——0 for im~)1). (IV.14)

"Such an expansion is always possible, since the function a is
twice differentiable; R. Courant and D. Hilbert, 311ethoden d.
Mathematischew Physik (Verlag Julius Springer, Berlin, 1937),
Vol. 1.
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The six differential operators corresponding to the
proper conformal group I, will be written L ~, with I. ~=
—I. b. I. ~ generates an infinitesimal rotation within the
(xc,xb) plane of minkowski space. For example, a,

rotation in the (x,y) plane is given by

0= 0, /= et+ const, u= u;

a, rotation in the (s,t) plane is given by

cot(0/2)= (1—const) cot(0/2),

ib= E—'(0)u,

(IV.15)

(IV.16)

I 12 g —I30

L+= +iL"+L"= e+'&[B/B0&i cot(B/BP)], (IV.18)
—R~= +iJ" L"=e+—'~fcos0(B/B0)

~i s c0c(B/Bg) —u sin0(B/Bu)].

The Pz~ and I.' together form a complete set of
li nearly independent diff erential operators for the
infinitesimal GBM group. From Eq. (IV.18) one finds

the basic commutators

Therefore, Eqs. (IV.4) and (IV.6) give

L"= (B/BP), L"=sin0(B/B8)+u cos0(B/Bu). (IV.17)

It is often convenient to introduce the following linear
combinations:

From the last four relations in Eq. (IV.19) one sees
that the conformal transformations transform the
translations only among themselves (because of the
factors l—1), but completely mix up all the other
supertranslations with each other. This fact can be
used to prove the uniqueness of the translation group.
Theorem IV.2. The only normal four dim-ensional sub

group of the GBM groupis the translation group
In fact, suppose there were a second four-dimensional

normal subgroup. Label the four linearly independent
differential operators that correspond to the supposed
second group as P, (a=0. . .3). Then from lemma 2

above one infers

P,=Q Q Bc' Pr~.
Z=O m=—

Z

(IV.21)

Moreover, there must be at least one value of m, one
value of "u," and one value of l&2 for which 8 ™40,
since the four linearly independent operators Pz with
tt(2 are merely the four operators of the translation
group. Now let e&2 be the minimum value of l&2
for which there is at least one 8'r™,/0. Now choose
one value of "e" for which 8 " /0. Let mO be the
minimum value of m for which 8," /0 with this
choice of "a."Now commute P, (n —mo) times with the
operator L+. The resulting operator Q has the form

(J ab J cd) ~cdJbc+~bcJ ad ~ccLbd ~bdLcc ~

(L"nB/Bu) =
t (L"n)—n(0 y)W(L")]B/Bu

Q
—BP +pi~ Q BlmP

8/0, no sum on "e,"
(IV.22)

(J.„R,)=
(J...J.+)=
(L„R+)=
(L+,L )=
(L+,R )=
(L,pi-) =—

(L+,R+) =0,
i(R„R+)=iL+,
—i(L+,R,) = iR+,
—(R+,R )=2iL„
2E. '

(L+,P, *)*=(L+,P, )*.

(IV.20)

implying

(J.„Pi„)=impi,
(L+,P -)= —

I (l—m) (i+m+ 1)]""'P,-
(R, Pim) = (l 1)E(l m+1) (i+m+1)] i

XL(2i+1) (2l+3)] '"Pi~i, ~
—(l+2) (l2 —m')'"(4l2 —1) '"P i „, (IV.19)

(R+,P&„)= (l—1)L(i+m+2) (i+m+1)]'i'
Xk(21+1)(2l+3)] '"Pi+i, ~i
—(i+2m) L (l—m) (l—m —1)]'"

X(4l' —1) '"Pi i, —i

Here W(Lcb) is defined by the relation B(L"f)/Bu
Lc'Bf/Bu+—&Bf/Bu for arbitrary f(u) All other.

commutators can be obtained from those given in Eq.
(IV.19) by taking linear combinations or complex
conjugates, for example,

as one sees from the commutator table (IV.19). Com-
mute Q four times successively with the operator L;
one obtains

(L,Q) =Q'= B'P,„ i—+, (n) 2; B'NO),

(L Q')= Q"=B"P .. +— (B"&0),—
(L-,Q")=Q"'=B"'P.

,„,+. , (B"'WO),

(L Q"')=B' P- --+, (B' &0)

(IV.23)

Now the five operators shown in Eqs. (IV.23) and
(IV.24) are all linearly independent, since the P„
appearing in them are linearly independent. On the
other hand, by virtue of Eq. (IV.12) and the hypothesis
that we are dealing with a normal four-dimensional
subgroup, these 6ve operators must depend linearly on
the original four P, (with complex coefFicients). This
is a contradiction and establishes the theorem, Q.E.D.

As desired, the theorem characterizes translations
uniquely.

The homogeneous Lorentz transformations are not
similarly unique. In fact, let 1. be the conformal
subgroup and t any 6nite supertranslation. Then the
group 3E=tLt ' is a subgroup of the GBJvI group
distinct from I, and isomorphic to the homogeneous
orthochronous Lorentz group. If t is the infinitesimal
supertranslation n(0,$) (B/Be) then the infinitesimal
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elements of M have the form

L, ' =L,+ (L„n) (8/8u),
L'+ =I.++ (L+n) (8/8u),

R,'= E,+L (A,n) —n cos0] (8/8u),
8'+=R++ f(R+n)+n si n0e'&$ (8/8u)

(IV.24)

Because of the outgoing radiation condition this limit
always exists. Moreover, it obeys the conditions placed
on f and g above. We shall show next that the relation
between p and p is one-to-one.

In fact, expand the field p in spherical harmonics I z,„,
spherical Bessel functions ji(kr) and a Fourier time
integrap':

oo, z

D. Representations of the GBM Group
2=0 m=—z

k'»dk F,.(0,y)

One powerful way to examine group structures is to
look for group representations, and this method is
particularly important for physics. In this subsection
two theorems on representations of the GBM Lie
algebra are proved.

Theorens IV.3. There is at least orze irredud hie Her-
mitian representation of the GBM Lie algebra; the

induced representation of the orthochronous Lorents group
isequiztalent to/heres( mass se-ro, spin serorepresen-tation

Proof. Consider the (indefinite) scalar product for
any two functions f(iz,0,$) and g(@,0,$):

Xji(kr)e' 'A&„(k)+c.c. (IV.28)

Here the Ai (k) are the expansion coefficients. From
the Fourier-8essel theorem"

~00

r'dr j&(kr) j&(k'r)=zrb(k —k')(2kk') ', (IV.29)

one finds

eCO ~ 7l

(f g)=z du d0
—00 0

sin0dg (8f/Bzz)*g. (IV.25)

Ai,„(k)= (zzr) ' d'x I'*i ji(k)""&

X (0tz/8t+zktz) i=o. (IV.30)

Consider the set of all twice differentiable functions

{f) which are, together with their first two derivatives,
integrable in the sense that Eq. (IV.25) remains finite
when any pair of functions are integrated. Suppose
that they and their first derivatives vanish at e=- ~~.
With the scalar product (IV.25) one obtains a kind of
Hilbert spa, ce (the scalar product is the analog of the
charge density operator for a rest-mass zero boson and,
therefore, is not positive definite). Consider now the
linear operators

~z '=&z,
L t

L'+= L+,

R,' = It.,+cos0,

E'+=E++e+''z sin0. (IV.26)

the last relations verify the existence of a Hermitian
representation.

Let us leave the question of irreducibility aside for
the moment and examine the relation to representations
of the Lorentz group. Consider the solutions of
D'Alembert's Eq. (II.1) which are nonsingular, vanish
at spatial infinity, and obey the Sommerfeld outgoing
radiation condition for fixed m and large r. Consider
the quantity

p (u,0,&) = limLrtz (zz, r,0,&)]. (IU.27)

By direct calculation one verifies that these linear
operators again obey the commutation relations of the
GBM Lie algebra. Moreover, let L"~ be the linear
operators that correspond to L,', L'~, E,', and R'~ via
Eq. (IV.18). For the scalar product given one finds

(f zP( g)+=(g zP( f) (f zL~'bg)+=(g zL~z f)'

Inserting the asymptotic values"

j( (y) —+ y
—' sin (y —lzr/2) (IV.31)

into Eq. (IV.28) one finds

z=o m=—z

X Vt e"Ai +c.c. (IV.32)

from Eq. (IV.32) one infers that the knowledge of p
enables one to calculate all the coeKcients Az,' from
these coeKcients one in turn obtains p. Thus, p and p
determine each other uniquely.

If one now writes down the standard rest-mass-zero,
spin-zero, representation of the Lorentz group Lie
algebra acting on tz, for example Potz=i(8tz/8t), etc. ,
one is able to induce a corresponding representation of
differential operators acting on p. The latter turns out
to be just given by the relevant quantities in Eq.
(IV.26). Therefore, we have verified the equivalence
of the two representations as far as the orthochronous
inhomogeneous Lorentz group algebra is concerned.

The irreducibility of the given representation of the
GBM Lie algebra now also follows. In fact, suppose
the above GB&/t Lie algebra representation contained
an invariant subspace. By means of the above one-to-
one correspondence betwen p and p there would be an

"We carry out the proof for real p and p. The extension to the
complex case is trivial."I.N. Sneddon, in Hundblch der I'hysik, edited by S. Fliigge
(Springer-Verlag, Berlin, 1955), Vo]. 2, p. 299.
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induced invariant sub space of the corresponding
representation of the inhomogeneous Lorentz group
algebra by operators acting on p. But the latter repre-
sentation is well known to be irreducible; consequently,
there is also no invariant subspace for the given GBM
Lie algebra representation. This completes the proof of
the theorem, Q.E.D.

The next theorem concerns an operator that com-
mutes with all the operators of the GBM Lie algebra.
Consider the "rest mass" operator

m'= &oo'—~»o' —~»»~*»». (IV.33)

Using the differential operators (IV.19) one finds

m2=0. (IV.34)

Since it is only the Lie commutators that can be taken
over from the Lie algebra to representations of the
Lie algebra, Eq. (IV.33) does not imply the (possibly
correct) statement that the matrix corresponding to rn'

must vanish in every representation of the GBM Lie
algebra. However, Eq. (IV.19) does imply Theorem
IV.4. in every representation of the GBM lie algebra,
re cornrnetes with all the operators.

Presumably theorem IV.4 implies (though no
rigorous proof is known to the author) that in any
irreducible representation of the GBM group m' is
represented by a constant —a linear operator which
has only one eigenvalue and has every function as
eigenfunction.

In the case of the Lorentz group there is a second
operator, the "spin" operator, which also commutes
with all the other operators. ""Sy direct calculation
one verifies that the analogous operator in the case of
the GBM group fails to commute with those super-
translations that are not merely translations. Therefore,
it is tempting to conjecture that the general unitary
irreducible representation of the GBM group contains
some mixture of Lorentz group representations with
diRerent spins. Perhaps one such representation may
contain precisely the mixture of spins that is found in
nature.

value p at spatial infinity is one-to-one, the free rest
mass zero scalar field can be quantized simply by
imposing commutation relations on p. In fact, the field
ti obeys its Nsitat cornrnetation relations if and only if p
has the commltation relations

Lp (u,0,@),p (I',0',@')7=0,

fp(N, 0,y),p*(N', 0',y')]= 2—ihS(u I—')b(Q, Q')
(v.1)

Here square brackets denote commutators, "*"denotes
adjoint, 5 denotes the step function, and b(Q,Q') is the
invariant delta function on the surface of the two-
dimensional unit sphere, e.g. , B(Q,Q') = (sin0) '&(0—0')
&&8(g—P'). Equation (V.1) can be deduced either from
the orthonormal expansions used in proving theorem
IV.3 or by subjecting the standard commutator for p,

to the limiting process (IV.27).
Now in any AF gravitational field there exists a

quantity very similar to p, namely, the complex functio~
c(u,0,@) which appears in Eq. (II.21). This function
has been discussed in great detail in the references, ' '
where the real and imaginary parts of Bc/BN are called
the "news functions. " Here we shall need only the
following three properties of c: (i) In order to specify a
solution of the classical field equations one specifies
arbitrarily the values of the news functions (and of
certain other functions); (ii) the quantity r 'B'c/Bu' is
the amplitude of the outgoing asymptotically plane
gravitational waves at infinity; (iii) the transformation
law for c under a GBM transformation (II.23) is

c(u, 0,y) =Ke '&{c(e,0,y)—

——,
' sin0 6$(sin0) 'Aa(0, $)j}. (V.2)

Here K and n are the quantities introduced in Kqs.
(II.7) and (II.23), it is twice the angle between the old
and new 0 directions on the sphere at infinity (e.g. on
a two-space ii=const, r= ~), and d, is defined by the
equation

6= B/B0+i(sin0) 'B/Bp (V 3)

As in the references we shall assume (Bc/Bu) ~„——0,
corresponding to a Sommerfeld-type outgoing radiation
condition. Note in passing that the quantity

V. INTEGRAL INVARIANTS OF AF SPACES
y —=c(u,0,y) ——,'c(—m, 0,y) ,'c(~,0,y)——(v.4)

The purpose of this section is to exhibit certain
integrals that can be constructed in any AF space and
have very simple transformation properties under
GBM transformations. The integrals were originally
obtained by the quantum arguments of subsection A;
the derivation given in subsection A is purely heuristic
and the mathematically minded reader should simply
skim through the equations without attempting to
follow the arguments in detail.

A. Quantum Considerations

Since the relation (IV.27) between the Lorentz
covariant D'Alembert Geld p and its Dirichlet boundary

(U.5)

Because of properties (i) and (ii) above we can
regard c as the boundary value that replaces the
canonical variables for the transverse modes of the
gravitational Geld in an asymptotic treatment and
attempt to quantize the field by imposing commutators
on c. From Eq. (V.1) and dimensional arguments one
can guess at possible commutation rules. In fact, the
commutation rules

Ec,c']=0, $c,c~')= —2iM(u —it' )8(Q,Q') (V.6)

and the new functions have the simple transformation
laws

y=Ke '&7, Bc/Bu=K'e '&Bc/Bn—
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PO= I{8/Bu}=-,' cP,

(IV 1y) and PV.1g)hstitute Eqs. ( '

(V 4) and (V ~ )
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following corollary: P„vanishes if amd oddly if the

Riemanrt tensor falls og as r ' (or faster) for all retarded
times z~. We omit the proof.

Suppose P 40. According to the lemma just proved
one can then, by a GB& transformation, go into one
of those frames for which

Po/0, P,=O (a/0) (V.16)

and this convention @rill be made.
Theorem V.1. The iutegrals (V.10a) are absolute iete

gral iv~eariauts of AF spaces up to a commoe rotation of
Euclidean three dimes-sional space Pro.of By .direct
calculation one can verify that all supertranslations
leave the integrals (V.10a) invariant. One is thus left
with the conformal transformations. A conformal
transformation leaves the convention (V.16) invariant
if and only if it is a spatial transformation, provided
P,/0 as we shall assume for the time being. Under a
spatial rotation the 2m+1 quantities I{F'„8/Bu), with
fixed I and m= I, ——v+1, , u, transform as
spherical harmonics —e.g. , as a symmetric, trace free,
e-index tensor of Euclidean three-dimensional space.
Thus the only arbitrariness in the quantities (V.10a)
is that due to a transformation of the three-dimensional
rotation group, which must be applied to all simultane-
ously. If P,=O then all the integrals (V.10) are zero
and the theorem is trivially valid, Q.E.D.

Corresponding to the arbitrariness (IV.24), the
transformation properties of the integrals (V.10b) are
more complicated. Consider, for example, a rigid transla-
tion in the (x,y) plane:

8=8, g=P, u=u+ei sin8 cosQ+e2 sin8 sing. (V.17)

Then
I{X,) =I(I.,)+eiP2 —e2Pi, (V lg)

as one would expect from the fact that I(I,} is obvi-
ously something like the total angular momentum in
the s direction that is radiated to infinity by the field.
Expressions similar to (V.18) hold for the transfor-
mation law of I(I.'~} under any supertranslation.

The following corollary of theorem V.1 is obvious:
A rtecessary (but Not suf5ciertt) couditiort for two AF
spaces to be isometric is that the sets of iutegrals (V.10a)
for the two spaces car be brought into each other by a
single rotation. Thus, the integral invariants are geo-
metrically interesting quantities quite apart from their
rather dubious derivation as generators of infinitesimal
GBM transformations in the quantized theory.

Suppose one has an AF 6eld that is everywhere
nonsingular, has no sources anywhere, and contains no
stable bound state of the gravitational 6eld so that the
field consists merely of a burst of radiation that comes
in, scatters itself, and then escapes back out to inlnity.
It then seems sensible to consider P„defined above
for the outgoing waves, as the total energy of the field.
What is not known is whether the incoming energy,

defined in essentially the same way using an advanced
time rather than a retarded time, is equal to P ."

VI. CONCLUSION

An attempt was made to reconcile the crucial im-
portance of the inhomogeneous Lorentz group in
microphysics with the fact that there are dynamically
very weak gravitational fields whose mere existence
prevents one from giving a clean definition of the
inhomogeneous Lorentz group as an isometry group.
The method used was to try to interpret the Lorentz
group as an asymptotic symmetry group in asymptoti-
cally Qat gravitational fields.

It was found that if one uses a set of rather carefully
chosen and reasonably plausible boundary conditions
for the gravitational fields the asymptotic symmetry
group is not the Lorentz group but the generalized
Bondi-Metzner group.

It was then argued that this apparent contradiction
may not be fatal because the GBM group has certain
very attractive properties. First, and foremost, its
structure does not depend on the particular asymptoti-
cally Oat gravitational field under consideration.
Second, it contains the inhomogeneous orthochronous
I.orentz group as a subgroup. Third, as in the case of
the inhomogeneous orthochronous Lorentz group, one
has an Abelian normal subgroup whose factor group
is the ortho chronous homogeneous Lorentz group.
Fourth, the four rigid space-time translations can be
de6ned uniquely by the property that they form the
only four-dimensional normal subgroup of the GBM
group; therefore, one can hope for a Hamiltonian
formalism and energy-momentum conservation laws.
Fifth, at least one representation of the GBQ Lie
algebra essentially coincides with an irreducible
Hermitian representation of the Lorentz group Lie
algebra. Finally, it is possible to introduce a rest-mass
operator which commutes with all the elements of the
GBM Lie algebra. One nontrivial difference was noted:
It seems to be impossible to introduce a spin operator
that commutes with all the elements of the GBM Lie
algebra.

Among the many unsolved questions connected with
the work discussed here three seem to the author to be
particularly interesting. First, does the GBM group
permit representations for which the rest-mass operator
differs from zero, do these representations, if they
exist, correspond physically to a mixture of different
spinsP Second, what can one say about time-reversal
transformations within the kind of approach used hereP
Third, can one use the fact that the group structure is
metric independent to create an S-matrix theory of
gravitational waves? The second and third questions

"The author is indebted to P. G. Bergmann, J. N. Goldberg,
J. Knight, C. Misner, and R. Schiller for discussions of the
material in Sec. V and to Dr. Goldberg for making available the
contents of his paper "Asymptotic Invariants" prior to publi-
cation.
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are being actively investigated. After repeated failures
the author has given up the 6rst question as being
beyond his own mathematical capabilities, but he hopes
this paper will stimulate a competent investigation of
the question.
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An examination is made of the relationship between the un-
certainty principle and minimum amplifier noise. First, the con-
cept of coherence is discussed, and an incoherence parameter is
defined in terms of the uncertainty that enters into the uncertainty
principle. Harmonic oscillator states are examined for coherence.
The concept of noise is then discussed and contrasted with inco-
herence, noise referring to behavior in time of a single system
while incoherence involving comparison among members of an
ensemble. It is shown, with illustrations, that the two concepts
are different, and that an incoherent field of a cavity mode need
not exhibit noise. In particular, the zero-point field in a lossless
cavity is not noise. The superposition of many incoherent effects,
however, usually leads to noise. Spontaneous emission is examined
both for coherence and noise. It is shown that the spontaneous

emission field of a single molecule is incoherent but does not exhibit
noise; the (low order) spontaneous emission from a molecular
beam, however, does constitute noise. Spontaneous emission from
complex systems is also discussed. The origin of fundamental
noise in an amplifier is investigated and is shown to come from
spontaneous emission by the amplification mechanism. It is
concluded that fundamental noise cannot be determined by a
consideration of quantum ftuctuations of—or by the application of
the uncertainty principle to—the electromagnetic Geld only, as has
been done in several recent articles. The physical significance of the
zero-point Geld is analyzed, and is shown to lie in a formal contri-
bution to spontaneous emission by the mechanism coupled to the
field, provided this mechanism is treated quantum mechanically.

INTRODUCTION

''N recent years, there has arisen an interest in
~ ~ "fundamental" noise, noise which has been attri-
buted to fundamental physical laws or phenomena,
such as the uncertainty principle, quantum fluctuations,
or spontaneous emission, and which cannot be elimi-
nated in principle. This interest is due, in large part, to
the development of maser amplifiers, in which the noise
is so low as to oRer the possibility of approaching,
indeed, the level of fundamental noise.

There has been discussion'' of fundamental noise

'R. Serber and C. H. Townes, in Qgantlm Electronics, edited
by C. H. Townes (Columbia University Press, New York, 1960).' W. H. Louisell, A, Yariv, and A. E. Siegman, Phys. Rev. 124,
1646 (1961).

that is based mainly on the uncertainty principle or on
quantum fluctuation, and, as will be shown, is more or
less unsatisfactory. A related unsatisfactory situation
exists with respect to the concept of coherence (which
is associated with both noise and the uncertainty
principle), because of the various different meanings
attached to the word "coherent. " It is the purpose of
the present article to discuss the concept of coherence,
and then to analyze the relationship between noise on
the one hand, and quantum fluctuations and the un-
certainty principle on the other.

Coherence is discussed in Part I, and noise is the
chief topic of Part II. Various aspects of spontaneous
emission are considered in Part III, and the source of
fundamental amplifier noise is discussed in Part IV.


