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It is argued that the common occurrence of low-energy resonances and the fact that the cross sections
for strongly interacting particles seem to approach nonzero high-energy limits may be related to a physical
principle which determines the values of the strong-interaction coupling constants. It is conjectured that,
in some cases, these constants may be determined approximately by neglecting inelastic processes and
requiring that certain of the low-angular-momentum phase shifts approach ==/2 at high energies. Such a
calculation may be made by using unsubtracted dispersion relations for the inverse partial-wave amplitudes.
This prescription is illustrated in a few simple models. Our present knowledge of the various pion-nucleon
forces is insufficient for a realistic calculation of the pion-nucleon coupling constant f2. However, a simple
calculation involving drastic approximations predicts a value of /2 close to the experimental value and a low-
energy resonance in the (3,3) state. The relationship of our prescription to that of Albright and McGlinn is

discussed briefly.

I. INTRODUCTION

N recent years many physicists have come to be-
lieve that the strong-interaction coupling constants
are calculable from some basic principle as yet un-
known, formulated in the framework of dispersion
theory. There are several reasons for this optimism. For
one thing, it has become increasingly clear that the
differences between weak and strong interactions are
basic. A perturbation theory, with coupling constants
specified at the start, is applicable to weak interactions
but not to strong ones. On the other hand, a surprising
number of the properties of strongly interacting par-
ticles have been shown to follow from a few basic prin-
ciples such as Lorentz invariance, unitarity, and cau-
sality (i.e., analyticity). It does not require a large
stretch of the imagination to suppose that when the
analyticity requirements are known more precisely, the
strong-interaction constants themselves may be calcu-
lable. The experimental fact that these coupling con-
stants are of order one is encouraging, since quantities
of order one occur frequently in dispersion theory.

There are two outstanding features of the scattering
amplitudes for pairs of strongly interacting particles
that may be related to a basic principle that determines
coupling constants. The first feature is the common
occurrence of low-energy P-wave resonances and of S-
wave scattering lengths larger than the expected range
of the forces. Such strongly enhanced § waves are
known in K-N scattering, and possibly also in m-m
scattering, while low-energy P-wave resonances occur in
m-N scattering, and possibly also in m-A and n-K scatter-
ing. The possible connection between a principle that
determines coupling constants and the common occur-
rence of strongly enhanced amplitudes is illustrated in
Secs. I1I and IV.

The second outstanding fact is the apparent existence
of nonzero high-energy limits for the total cross sec-
tions. This fact is crucial in leading Chew and Frautschi
to formulate the principle that the strong interactions
are as strong as they can be consistent with unitarity.!

1 G. F. Chew and S. C. Frautschi, Phys. Rev. Letters 8, 41
(1962); this paper contains references to earlier works. See also

These authors argue that constant high-energy cross
sections imply “saturation of unitarity,”? which in
turn implies saturation of forces, since the amplitude
for one process is related by analytic continuation to
the forces in the “crossed” processes. It is not clear
how one applies this principle, but it is clear that the
substitution (or “‘crossing’”’) rule, formulated within
dispersion theory, is crucial.

In order to explain the motivation of our calculations
we must discuss the following critical question—Does
the existence of finite, high-energy cross sections require
particular values of the coupling constants? A definitive
answer to this question is not likely in the near future,
since states involving many particles are important at
high energies, and no one knows much about how to
include such states in a theory. Hence the question is
very much a matter of speculation. In order to illustrate
our viewpoint by means of a specific example, we
assume that if only = mesons and nucleons existed, the
m-r and w-N cross sections would still approach non-
zero limits. We further assume that it is legal to con-
sider different possible values of the pion-nucleon and
pion-pion interaction constants. If these constants were
very small, we would expect the total cross sections to
approach zero at high energy. We would also expect
that those partial waves most directly coupled to the
basic interactions (the P-wave 7N states and the S-
and P-wave m-m states) would obtain the largest
magnitudes. If the interaction constants were increased,
we conjecture that at certain specific values some of
these low-angular momentum partial waves would
saturate the unitarity condition in the high-energy
limit. We define “saturation” to mean that the real
part of the scattering phase shift approaches 490°,
which in turn implies a total partial-wave cross section
vanishing no more rapidly than as 1/E2 High-energy
saturation of a few low-j waves might lead to satura-
tion of many states of higher angular momentum be-
cause of the connection of the high-7 states to states of

G. F. Chew, in Dispersion Relations, edited by G. R. Screaton
(Oliver and Boyd, Ltd., Edinburgh, 1960).
2 M. Froissart, Phys. Rev. 123, 1053 (1961).
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three or more particles, two of which are in saturated
low-7 states. Such a causal mechanism could conceivably
lead to saturation of an infinite number of partial waves,
and to nonzero total cross sections in the high-energy
limit.

A common viewpoint concerning w-NN resonances is
that the principal forces responsible for the (3,3
resonance resu't from the nucleon pole and from two-
particle states, while higher 7V resonances result from
the connection of the w-IV states to states of three or
more particles, two of which are resonating. We are
proposing that a similar causal relationship between
enhanced partial-wave amplitudes exists in the high-
energy limit.

Unfortunately, very little is known about the effects
of many-particle states in dispersion theory. However,
one can attempt an approximate determination of the
coupling constants by neglecting inelastic processes
and trying to find the lowest values of the constants
that lead to high-energy saturation of any partial-wave
state. Even this kind of calculation is difficult without
drastic approximations, since the crossing relations
couple many amplitudes together. In this paper we con-
sider some situations where the drastic approximation
of considering only one type of process and a small
number of partial waves may be reasonable enough so
that an order-of-magnitude calculation of a coupling
constant may be made. In Sec. II the general technique
used in the calculations is introduced and illustrated.
In Sec. IIT this technique is applied to a fictitious
meson-baryon scattering problem in a kind of scalar
meson theory, and in Sec. IV the problem of deter-
mining the pseudoscalar #/VN interaction constant is
considered. The relationship of this work to that of
other authors is considered in Secs. V and VI.

II. GENERAL TECHNIQUES AND THE
wAX PROBLEM

At least one subtraction is usually made in dispersion
relations for meson-baryon scattering, the subtraction
constant being given in terms of the residue of the
baryon pole (the coupling constant). The particular
method we will use is a modification of the N/D
method for a partial-wave amplitude, in which one
attempts to avoid the necessity of a subtraction in the
dispersion relation for the denominator function, thus
allowing a determination of the coupling constant. The
fact that this prescription results in high-energy satura-
tion of the partial-wave amplitude is shown later.

We consider first a scalar meson theory in which
there is no meson-meson interaction and the baryon
mass is infinite, although a finite mass difference may
exist between different baryons. In such a simple theory
only .S waves scatter and the static model is correct.
The S-wave amplitudes are defined by the formula
T=¢® sin/k, where & is the phase shift and % is the
meson momentum. The constants % and ¢ are set equal
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to one throughout the paper. The unitary condition on
the right-hand cut is Im7'=—Fkn, where 5 is the
ratio of the total cross section to the elastic cross section.

We consider an amplitude 7' that is directly coupled
to some one-baryon state so that T contains a direct
pole term, i.e., limgy, T (w) =N/ (0—wy). In the conven-
tional N/D method, in which the right-hand cut is the
only singularity contained in the D function, an un-
subtracted dispersion relation for D contains the integral

- ) (1)

/‘” dw' ImD (w’)_ —/‘” do' BN (0" )n(w")

/

’
W —w

W —w

where w is the meson energy and the meson mass is
taken to be one. If singularities associated with the
crossed channels are neglected so that N(w') contains
only the simple pole term N/(w'—w,), this integral
diverges since n(w’)=1. Hence the crossed singularities
are absolutely necessary; a subtraction may be avoided
only if these singularities are such as to reduce the high-
energy behavior of V.

A well-known example in which an unsubtracted dis-
persion relation is convergent is the static model of
m-A scattering under the assumptions that the Z-A
parity is odd and the only interaction is a scalar 7A2
interaction.? In this model the direct pole term and
“crossed pole term” partially cancel; they may be
combined to give a numerator function N=—2F?A/
(w?—A?), where A is the Z-A mass difference and F is
the coupling constant. If inelastic processes are neg-
lected, the integral of Eq. (1) converges with such an
N, and F? may be determined by applying the condition
D(A)=1 to the solution. This critical value of F? leads
to a phase shift approaching —37 at high energy,
whereas, if one makes a subtraction and chooses a
smaller F?, the phase shift approaches zero. (A value of
F? larger than the critical value leads to a ghost.) This
equivalence between the “no-subtraction” criterion and
the “saturated partial-wave” criterion will be present
in all examples considered in this paper, and results
from the following facts. The imaginary part of D is
fixed by unitarity, so the most convergent behavior of
D that is possible occurs when the real part of D be-
comes small compared to the imaginary part at high
energies. Since N is real on the right-hand cut, this con-
dition implies that T'() is imaginary or, equivalently,
6(0)==1r.

Aaron, Vaughn, and Amado have shown that in the
cutoff Lee model there is a critical value of the coupling
constant, which corresponds to the assumption that the
V vparticle is a 6-N bound state.* If the coupling
constant is less than the critical value F2 the 0-N
(S-wave) phase shift approaches zero at high energies;
but if F2=F 2, this phase approaches’—m. The fact that
in the critical case the phase limit is — rather than

3 Richard H. Capps, Phys. Rev. 124, 945 (1961).

4 M. T. Vaughn, R. Aaron, and R. D. Amado, Phys. Rev. 124,
1258 (1961).
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— 3 results from the presence of the rapid-cutoff func-
tion, which causes the imaginary part of the amplitude
to decrease to zero more rapidly than the real part at
high energies. It should be noted that phase shifts
approaching 43w at infinity do not occur in ordinary
potential scattering.’

It is unfortunate that one must neglect inelastic
processes in order to get simple equations, since these
processes are known to be important at high energies,
and since their inclusions would change the form of the
high-energy limit. However, the principal variations in
the amplitudes occur at kinetic energies smaller than the
rest energy, so it is hoped that the inclusion of inelastic
effects would lead only to a small correction to the
calculated F2 Furthermore, the connection between
saturated partial waves and unsubtracted dispersion
relations would apply even if inelastic effects were in-
cluded, because the condition Red(e)==27 (which
corresponds to an imaginary elastic amplitude) implies
that the sum of the elastic and inelastic partial wave
cross sections is greater than C/w? as w-—, where C
is a positive constant.

Another feature of the mAZ model which is common
to all other models considered in this paper is the occur-
rence of at least one amplitude characterized by re-
pulsive forces and at least one amplitude characterized
by attractive forces. In such a situation one must ask
whether or not the special value of the coupling con-
stant determined from the no-subtraction procedure is
large enough to imply a bound state in the “attractive”
channel.® If a strongly bound state (binding energy not
small compared to the meson mass) occurs, then the
quantitative conclusions of the model cannot be ac-
curate unless the branch cut resulting from the bound
state plus one meson is included in the dispersion rela-
tions. For simplicity we hope to find examples where
no strongly bound state occurs.

This 7AZ example is not an ideal example of the no-
subtraction procedure in a scalar meson theory, be-
cause the 2-A mass difference is essential to the model,
and the calculated F? depends on- this mass difference.
It would be much more interesting if 72 could be calcu-
lated in some model not involving a baryon mass
difference. Another difficulty is that the no-subtraction
procedure cannot be applied to the 7-2 scattering ampli-
tude, and so cannot be a universal prescription in the
model.® It is not obvious how one should attempt to
generalize from the wAZ model to other static S-wave
models. The special value of F? for the wAY model
corresponds to the physical assumption that the = is a

5N. Levinson, Kgl. Danske Videnskab. Selskab, Mat.-fys.
Medd. 25, No. 9 (1949).

6 In the idealized 7AZ model where the 7, A, and Z are all taken
as isotopic singlets, the equation for =-Z scattering may be ob-
tained by changing the sign of A in the equations for =-A scatter-
ing given in reference 3. If inelastic processes are neglected, the
special value of F? obtained from an unsubtracted dispersion rela-
tion leads to a m-2 bound state at zero energy. Application of the
no-subtraction criterion to - scattering would lead to a negative
F? and so is not allowed.
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m-A bound state. There are several other, essentially
equivalent prescriptions for calculating this coupling
constant, but for more general models these prescrip-
tions are not all equivalent, and may not all be appli-
cable.”8 We shall apply the no-subtraction procedure
to a more general, static S-wave meson theory in the
next section.

III. THE_COUPLED TWO-CHANNEL
_ S-WAVE MODEL

We assume two coupled S-wave meson-baryon scat-
tering amplitudes in the static model, satisfying the
crossing relation

Ti(—w)=4:T1(w)+(1—A41)Ts(w), (2a)

where A4 is a positive number less than one. This cross-
ing relation is equivalent to the following crossing
relation for the amplitude 7's:

Tz(-—w)=—Ang(w)+(1+A1)T1(w). (Zb)

The forces are represented by poles at zero energy, i.e.,
limy,wT;=\;. The crossing condition implies that the
two residues are in the ratio,

Ao/M=—(1+41)/(1—41). 3)

A physical model described by these equations is the
scattering by an isotopic-spin % nucleon N of a “pion”
of isotopic spin I,#0, where the forces result from a
scalar coupling of the type #NN’, N’ being a baryon of
the same mass as the nucleon with isotopic spin Iy
equal to either 1,43 or I,—3%. In this example, if T,
and T, represent wV scattering in states of isotopic
spin I,+% and I,—3%, respectively, then A4:=1/
(2I,+1). The residue A, is positive if Iy»=1,—% and
negative if Iy =1I,+% The most interesting special
case is symmetric, scalar meson theory, where 7,=1
and the intermediate baryon N’ is the nucleon itself.
In this case 41=1% and \;=F2. Another model described
by Egs. (2) and (3) is charged, scalar meson theory. In
this case 4;=0 and, if the amplitude 77 describes
7+t—p (or 7~—mn) scattering, \;=F2

We write the amplitude in the form T;=¢%/ sing,/k,
where k= (w?—1)1/2is the meson momentum. The elastic
unitarity condition on the right-hand cut is

Ti Y wtie)— T (w—1ie)= —2ik.

Since the crossing condition relates two amplitudes of
the same type, it is convenient to use the inverse method
rather than the conventional N/D method. We assume
that T'; is nowhere equal to zero. An unsubtracted dis-
persion relation for (w7'1)™ may be obtained by inte-
grating the function

— (6/2m) T (o) /[0 (&' —w)]
7Y.Nambu and J. J. Sakurai, Phys. Rev. Letters 6, 377 (1961);
J. Bernstein and R. Oehme, zbid. 6, 639 (1961); Lu Sun Liu,
Phys. Rev. 125, 761 (1962).
(1; 6C2) H. Albright and W. D. McGlinn, Nuovo cimento 25, 193
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around the contour of Fig. 1 in the o’ plane, and taking
the limit as the radius R goes to infinity. If use is made
of the crossing relation and the elastic unitarity condi-
tion, the equation becomes

1o do'k 1 de BX ()
p T gL
1

w)1 o (0 —w) r o (' +w) ’

where the second term results from the left-hand branch
cut, and the function X is given by

X(w)=A4:1|T1(w)/T1(—w)|?
+(1=A4)|Ts(w)/Ti(—w) |2 (4

The first (right-hand cut) integral does not converge,
but if the integral 7'/ dw’ k'/[w (0w'+w)] is added to
the first integral and subtracted from the second, the
first integral converges and the convergence of the
second depends on the high-energy behavior of the
quantity X—1. If use is made of the crossing relation,
this quantity may be written in the form X(w)—1
=A4:(1—A41)|1—R:i(—w)|?, where R; is the complex
ratio of the amplitudes, i.e., T2(w)=Ri(w)T1(w). The
dispersion relation for 717!(w) then becomes

do’ k'

20 [
(le)_-l = —_——

w1 o (w?2—w?)
><Al(1—1‘11)/'0o do'’ k/ll—Rl(—w,)lz
1 o (' +w) .

We define the constant 4, and the function R, by the
equations 4.=—4;, and R,=Ry™!. The corresponding
relation for 75! may then be obtained from Eq. (5)
by making the simultaneous substitutions

Tl——) Tz, A1'—")A2, R1—>R2. (6)

The value of the second integral at w=0 in Eq. (5)
and the corresponding equation for 7's~* determines the
residues Aj, and hence the coupling constant. In the
charged scalar theory A;=A4,=0, implying infinite
values of A;; hence the unsubtracted relations cannot be
valid in this theory. Since (when A4:0), 0<4:<1
and A,=—A4,, the fact that the second integral in
Eq. (5) is positive definite implies that A;>0 and A <0.
Therefore, in the 7VN’ model discussed at the beginning
of this section it is possible that the unsubtracted dis-
persion relations are valid in both channels if the inter-
mediate baryon N’ is of isospin Iy=1I,—%. On the
other hand, if In=1I,+3%, neither amplitude can satisfy
an unsubtracted relation.

We consider the possibility that both amplitudes
satisfy the unsubtracted relations. The second integral
in Eq. (5) converges only if 1—R;(—w) vanishes as
w—w, If we assume that for high w, 1—Ri(—w) is
bounded by «~ (where #>%), then it follows from Eq.
(5) that (wT)™! becomes imaginary in the limit of high
positive energies, i.e., T-1(®-4ie)=—iw. The phase

©®)

™
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Fic. 1. Contour used in deriving static-model dispersion relation.

shifts approach the limits, §;— 37 and &,— —3m.
Unitarity is saturated in both channels.

It is clear from the condition 77!(« )= —iw that the
contribution from the upper semicircle in the integra-
tion around the path of Fig. (1) does not vanish in the
limit R —c, but contributes a term —3%4. This con-
tribution is exactly cancelled by the contribution of the
lower semicircle, however, so the omission of this effect
in Eq. (5) is valid.

However, we have not shown that amplitudes exist
which satisfy the two unsubtracted relations and the
crossing condition. As in the wAZ problem, we must in-
vestigate the possibility that the special value of the
coupling constant implied by the no-subtraction pro-
cedure is sufficiently great that a bound state is pre-
dicted in the channel with the positive residue (channel
one). We shall investigate the bound-state problem by
finding an approximate solution. The common approxi-
mation procedure of evaluating the left-hand cut in
Born approximation would lead to a divergent integral
in Eq. (5), so we modify this procedure slightly by
setting R(—w) equal to the Born-approximation value
for values of |w| less than a cutoff energy wy and equal
to one for larger values of |w|. The cutoff energy wo
may then be adjusted for consistency, i.e., the integrals

/ 4t B|1= R(—o') |22
1

obtained from the R; functions calculated from the
solutions to Egs. (5) and (6) should be about the same
as the corresponding integrals calculated from the
originally assumed R; functions. The values of the
residues of T; and T at w=0 obtained by this pro-
cedure automatically satisfy Eq. (3). This follows from
Egs. (5) and (6) and the fact that in Born approximation

MA1(1—41) [1—Ri(—w)|?
=)\2A2(1—A2) l 1-—R2(—w)[2=4)\1A1/(1-—A1)

The residues of the poles in this approximation are
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given by
A1 A2
1—4, 1—4,
™
———(Infwot (wi— D12 ]— (wi— 1)V /o).
44,

We now limit consideration to values of 4; that are
less than %, since only these Values correspond to in-
teresting physical models. If 4; <%, it may be shown
that in our approximation a bound-state zero occurs in
71! in the region 0 <w <1 unless wg>4. Such a large
value of wy does not satisfy the above-mentioned con-
sistency requirement, however, because the ratio R(—w)
computed from the approximate solutions for 7% and
T> becomes approximately equal to one at energies
much lower than w,. Hence it appears that the no-
subtraction criterion leads to bound states in this model.

Because of the omission of bound-state effects in
Egs. (5) and (6), the predictions resulting from these
equations are not expected to be accurate quanti-
tatively. However, these equations do illustrate the fact
that in certain models the no-subtraction criterion may
be applicable to several amplitudes simultaneously.
Furthermore, the relation between this criterion and the
possible existence of strongly enhanced amplitudes may
be seen by comparing the two integrals in Eq. (5). At
w=1 the integrals are of the same order of magnitude,
and if the force is attractive (A\;>0) they are of opposite
sign. Hence 77! is reduced significantly from its value
in Born approximation. Whether or not this enhance-
ment of 7 is sufficient to cause a bound state depends
critically on the relative coefficients of these two terms.
If a generalization of this technique is applicable to
some real physical system (such as the coupled K-N
and 7Y systems, where the S-wave amplitudes are
known to be large but the nature of the principal forces
is not known), one might expect the occurrence of
strongly enhanced amplitudes, but could not predict
whether or not bound states should occur without
knowing the strength of the left-hand cut fairly
accurately.

Tt is instructive to write down the form of (w7)™!
resulting if a subtraction is made at w=0. The equation

do' k'

enrima Y
/(wlz_w‘l)
A;(1= A0 [ do’ B'|1—R;(—') |2
_ / ! S
1 % +w)

™

The coupling constant is no longer restricted to a spe-
cial value. If R(—®)#1, (wT)™! is proportional to
Inw at high energies; Eq. (7) plus the crossing relation
lead to the behavior

RICHARD H.
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lim (wT,)7= (4/m)[4;/ (1= 4;)] Inw.

If \; is positive and sufficiently small so that no zero
occurs in the 77, the behavior of the phase shifts at
infinity is 61(0)=m; §2(0 )= —m.

IV. THE PION-NUCLEON INTERACTION

Because of the pseudoscalar nature of the pion-
nucleon interaction, the =~V scattering partial waves
most directly connected to the nucleon pole are the
P waves. In order that the P-wave amplitudes do not
contain kinematic singularities at the 7NV threshold, it
is necessary that these amplitudes be defined in terms
of the phase shifts by the formula

=p(W)e? sind;/ K, (8)

where % is the particle momentum in the center-of-mass
system, and where p(WW) is some function of the total
center-of-mass system energy W that is not singular at
k=0. The unitarity condition is Im(7;71)-. -=—F
Xp Y(W)n(W), where 1 is the ratio of the total cross sec-
tion to the elastic cross section. The P-wave problem is
essentially relativistic since, in the static approximation
(in which p7! is replaced by a constant) the integral
over the right-hand cut in the dispersion relation for the
inverse amplitude diverges even if one subtraction is
made.

One tries to choose p(W) in such a way as to avoid
kinematic singularities at energies below the =N
threshold. In the case of the j=3%, I=% amplitude T1;
an appropriate choice is p(W)= (W+M)?*—1, where M
is the nucleon mass and the meson mass is taken as
unity. The contribution of the real nucleon state is
then a simple pole in the W plane. Frautschi and
Walecka have discussed possible choices of p(W) for
the various P-wave amplitudes.® The significant fact
for the present discussion is that an appropriate choice
of p(W) behaves as W? at high energies. With such a
choice the high energy behavior of Im(7;') implied by
the elastic unitarity condition is linear, and one may
use a technique similar to that used in the S-wave
model of Sec. ITI. We again assume that there are no
zeros in the 7; and use the inverse method. If
no subtraction is made in a dispersion relation for
[(W—M)T1 ], the integral over the right-hand cut is
logarithmically divergent; the integral is

/ AW 5= (W (W)L (W= M) (W' —T)]. (9)
M+1

We make this term convergent by subtracting the
integral

/ AW’ B3 (W) (W)L (W' — M) (W'+T7) ],
M+4-1

?S. C. Frautschi and J. D. Walecka, Phys. Rev. 120, 1486

(1960)
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and then adding this term to the contribution from the
left-hand cut. The assumption that no subtractions are
necessary again becomes a condition on the behavior
of the left-hand cut at high negative energies.

The P-wave case differs from the S-wave case in that
contributions to the integrals are important at dis-
tances of order M from the #-IV threshold. One cannot
argue that the effect of neglecting inelastic effects is
small. Furthermore, there are many contributions to
the left-hand cut which cannot be evaluated accurately
at the present time; there is the w7 cut, and contribu-
tions to both the m-7 and -V cuts from many partial
waves. The convergence of the left-hand cut integral
involves a sum over infinitely many amplitudes rather
than the ratios of a few amplitudes. For these reasons an
accurate calculation of f% cannot be made at present.
However, one can at least make a very simple calcula-
tion of f? which does not involve the introduction of
arbitrary parameters by making the static approxima-
tion,10 abruptly cutting off all integrals at the energy
of the nucleon mass and following a procedure similar
to that of Sec. ITI. The answer will be reasonable only
if the actual total contributions of the left-hand cuts
to the various P-wave amplitudes are of the same order
of magnitude as the contributions of only the P waves.
Since the #-IV, P-wave amplitudes are known to be
large, this condition may be true, although we are
unable to present any convincing arguments for its
validity. We regard it only as a possibility that is
sufficiently interesting so that its consequences should
be investigated. Of course, one could calculate the P-
wave contributions to the left-hand cut more accurately
by treating these amplitudes relativistically. This com-
plicates the calculation greatly without making it
accurate, however, so we stick to the simple static
model.

Salzman and Salzman, using the measured value of
f% have calculated the approximate position of the
(3,3) P-wave resonance in a static cutoff model.! (This
work is discussed more fully in Sec. V.) Frautschi and
Walecka improved this calculation by including a con-
tribution from -7 forces and treating the nucleon
relativistically, thereby avoiding the necessity of a
cutoff.® They also predicted a resonance, though not
at the right energy. The present calculation differs
from those of these two references in that we do not
assume a value of f2 but attempt to calculate it as well
as the resonance position. (Of course our handling of
the high-energy region is less accurate than that of
reference 9.) Important short-range forces are omitted
in all these calculations, so that an accurate calculation
of the resonance position is not expected. The well-
known relation between the width of the resonance, its
position, and the coupling constant may be shown from

10 G, F. Chew and F. E. Low, Phys. Rev. 101, 1570 (1956).
11 G, Salzman and F. Salzman, Phys. Rev. 108, 1619 (1957);
This paper will be referred to by the symbol SS.
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the effective range approximation to any one of these
models, so we will not discuss it further.

The cutoff function in our model serves a dual pur-
pose. First, it allows us to replace the function p~(W)
by a constant. Secondly, it leads to the convergence of
the left-hand cut integral and thus implies a conver-
gence assumption similar to that made in Sec. III; i.e.,
the various contributions to the left-hand cut are as-
sumed to cancel sufficiently at high energy so that the
no-subtraction procedure is valid. Because of the first
role of the cutoff function and the fact that in a rela-
tivistic theory the energy at which p'(IW) decreases
significantly from its threshold value is of order M, the
cutoff energy must be taken of order M. We take the
cutoff at w= M, where w is the meson energy.

We write T'; = ¢ sind;/k3. If no subtractions are made
and the elastic unitarity condition is assumed, the dis-
persion relations for (w7)™! in the cutoff static model
may be written in the form

. —2w M do' k3
Wr= T /1 o (@?—w?)
11 de KX () —1]
_/1 o' (' +w)

, (10

™

where the term linear in X; represents the contribution
from the left-hand cut. One can express the quantities
X;—1 in terms of the various amplitude ratios by using
the well-known static model crossing relations,

T,-(-——w)= Zi Ajz'Ti(w))

33 1) (13 (1,1)
( 1 2 2 4
_ 4 -1 8 =2
A‘(1/9)L 48 -1 —2
16 —4 —4 1
If R;; is defined by Tj(w)=R;i(w)Tr(w), and the

symbol ®; x is used to denote R;z(—w), the equations
for X are

ng(w)—-l
= (2/9)2| 14 Ru1,33— Rz 23— (331,33\2

(11)

where

4 (2/9){|1— Rus 33| 2+ | 1— Ra1,55]2), (12a)
Xai(w)—1
=—(8/81)] 14 Rus,51— Ru1 51— Rz 312
— (4/9) 1= ®az,[*+(2/9) | 1— Ruz,a % (12b)
Xn(w)—1
= (4/9)?| 14 Rss,11— Raz, 11— Rar,11 |2
— (4/9){|1— Ruz,u| >+ [1— Ra1,11]%}.  (120)

The equation for X13—1 may be obtained by reversing
the subscripts 31 and 13 in Eq. (12b). Because of the
factor k£ in the integrand, the first term in Eq. (10)
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reaches its maximum magnitude, not at w=1 (as in the
S-wave case) but at a higher energy. Therefore, if the
enhancement of the attractive (3,3) amplitude is not
quite sufficient for binding, a low-energy resonance
will occur.

The coupling constant is to be determined from the
well-known equations for the residues of the four P-
wave amplitudes,

limwTj= ijz,
w—>0

63334/3, 611=—8/3, 631=C13="—2/3.

It is seen from Egs. (10) and (12a) that X33—1is of a
definite sign which, fortunately, is positive. We find
approximate solutions to the dispersion equations by
using a technique similar to that used in Sec. IIT; we
replace the various ratios R; ;(—w) at all energies by
their Born approximation values. Since we have used
an abrupt cutoff rather than an w2 cutoff, there is no
need to introduce a further cutoff in this approximation.
This procedure satisfies the following two requirements:

Consistency. The m-N coupling constants computed
from the dispersion relations for the four P-wave
amplitudes are all the same. This follows from Egs.
(10), and (13) and the fact that in Born approximation,

=—3(Xpn—1)=—3Xp—-1)=1

(13)

(14)

Approximate crossing. This approximation to the
second integral in Eq. (10) is not expected to be ac-
curate for appreciably negative values of w. Hence one
can expect crossing symmetry to be satisfied by the
approximate solutions only for small values of |w|. In
the neighborhood of zero energy, we expand the ampli-
tudes in powers of w, ie., Ty=c;f?w 4B+ --. We
assume that 73 and T3 are identical, since their equa-
tions are the same. Equation (13) implies that crossing
is satisfied to order w. The four crossing relations of
Eq. (11) are identical when applied to the constant
terms of T';, and lead to the condition 2833=0831+p11.
It may be shown that in our approximation procedure
B31=0 and B11=2833, so crossing is satisfied to zero order
in w.

The values of 7';7 resulting from this approximation
can be written in the form

(0T = _1[B1+ (4/3¢;)B-],

where the ¢; are given in Eq. (13), and the functions B;
and B, are given by the equations

(15)

1 kB Ptk
Bi= —ZwI:P—— tan"'P——In :I—-irk3/w, (16a)
w? 20 P—Fk
By=iMP+ (w?*—32) In(M+4P)—wP
1 R
+-tan'P——In——— (16b)
w w Mw—Pk+1
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where P= (M2—1)"2and k= («®—1)V2 In the unphysi-
cal region on the real axis |w| <1 these functions are
most easily represented if one defines the quantity « by
the relation k=1ik=1(1—w?)"/2 and writes

kB P+k 23 P
—In: —ik=—— tan‘l(—>, (17a)
T~ P—k T K
M+
Bln————— =43 tan‘1< ) (17h)
Mw—Pk+1 Mo+1

There are no bound states in this approximation, as
none of the inverse amplitudes have any zeros any-
where. It is easily verified from Egs. (16) and (17)
that the 777! have no zeros along the real axis in the
region —1<0<1. The behavior of the T';! off the real
axis may be investigated from Eq. (10) and the approxi-
mations for X; [Eq.(14)]. The quantities Im[ (w7 11)~]
and Im[ (wT'33)~'] have no zeros off the real axis. On the
other hand, Im[(w75:1)~] is zero along the imaginary
axis (but nowhere else off the real axis) in our approxi-
mation, but Re[ (w7'51)~] is positive everywhere along
the imaginary axis.

The value of f2 computed by evaluating w7’; at w=0
from Egs. (13), (15), (16b), and (17b) is

=M P—§ In(M+P)+P/MT*.  (18)

For M=6.7 this leads to f2=0.12, about 1.5 times the
measured value. There is a resonance in the (3,3) state
at the energy w=1.3. The phase shift &3, increases to
~142° at w~1.7, levels off, then decreases slowly
toward 90°. If the cutoff were increased, so that f2
would correspond with the measured value, the reso-
ance energy would be higher, but still below the experi-
mental position. It is interesting to note that if one
varies the nucleon mass M (i.e., the cutoff), it is the
coupling constant G*= f2M?/4 (rather than f2 or f2M)
that is nearly constant in Eq. (18).

This static model calculation of f2? is not realistic,
since many important effects are omitted. However,
the general consistency of the calculation (the facts
that the residues are of the right signs and approxi-
mately correct magnitudes) leads us to hope that in a
more sophisticated treatment the no-subtraction cri-
terion will still be applicable and will still predict the
existence of the (3,3) resonance.

If additional forces were considered, or if a more
accurate solution to Eq. (10) were obtained, it is un-
likely that the different P-waves would still saturate
at the same value of the coupling constant f2. However,
if the conjecture of Sec. I is correct, i.e., that the
saturation of one partial wave leads to the saturation
of other partial waves because of the presence of many
particle intermediate states, then it is not necessary for
our viewpoint that several partial waves saturate
simultaneously in a calculation in which inelastic effects
are neglected. Presumably, the best value of the cou-
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pling constant calculable in such an “elastic’” model is
the lowest value that leads to saturation in any partial-
wave state.

The expressions for 7,7 in Egs. (16) are not meaning-
ful at energies approximately equal to or greater than
M. The singularities at w=M are artificial, resulting
from the use of the abrupt cutoff. In fact, use of the
abrupt cutoff in the first integral of Eq. (10) actually
destroys the condition §(e )= 43, but this condition
would be fulfilled if a cutoff were used which behaved
as w2 at high energies.

V. RELATION TO CONVENTIONAL
STATIC MODELS

In the conventional static model of =-NV scattering,
one assumes a fixed value of the coupling constant, and
solves subtracted dispersion relations for (w7;)~% These
equations may be written in the form

20 [ dow’ B3 ()

T)t=N\1——
(uT3) rJ1 o (W2—w?)
w °do k(o) X;(w)—1]
=/ . (19)
w1 "2 (0w’ +w)

where the p~1(w) is the cutoff function and the X (w)
are given in Egs. (12). Although it is not necessary to
include a contribution from the left-hand cut in the
first integral, we have done so in order to make the
energy dependence more transparent. The large varia-
tions in w7'; that can occur at low energies result from
the first integral.

It is difficult to improve the mathematical accuracy
of the solutions to the unsubtracted relations by iterat-
ing, since the values of f? obtained from the three
different relations are not likely to be equal in each
iteration. On the other hand, one could assume a fixed
value of f2, iterate the subtracted relations in order to
find an accurate solution, and then increase f? and re-
peat the procedure, hoping to find a critical f? that
leads to the condition [ (wT)~()]=0 for one or more
of the amplitudes. Such an iteration procedure has been
performed by Salzman and Salzman, using a Gaussian
cutoff function.* The fact that they did not discover a
critical value of f2 may bhe due to the fact that they
had no reason to look for it, and thus examined care-
fully only the physical value f2=0.08 and values of the
cutoff parameter P less than or equal to 7. For f2=0.08
and P=7, the asymptotic limits of (w7'33)~ and (w711)™*
are ~0.27\357 and ~0.32\ 117}, respectively.! In view
of the results of Sec. IV it appears likely that one or
both of these amplitudes would approach zero at a
somewhat larger value of the coupling constant (or
cutoff).

SS do find that for a value of the cutoff between 4 and
5, the amplitude 713=7"3: changes its asymptotic be-
havior. The quantity (wZ31/As1)~! does not approach
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zero at high energies, however, but rather approaches a
value greater than one for cutoffs higher than this
singular cutoff.”? Nothing strange happens to 71; and
T33 at this point; SS point out that 743 and T's are
coupled rather weakly to the amplitudes T1; and T'ss.

The use of a cutoff behaving as =2 at high energies
leads to a high-energy behavior quite different from
that obtained with a more rapid cutoff, although in
both cases the first integral term in Eq. (19) vanishes
at infinity. If the cutoff is rapid, a noncritical value of
f2 leads to (wT)™' approaching a nonzero constant at
high energy. The first integral term in Eq. (19) is
artificially large at energies slightly above the cutoff
energy. If this term is important at low energies, it will
still be large at energies comparable to the cutoff energy
squared, so that the amplitudes approach their asymp-
totic limits very slowly. On the other hand, an w™
cutoff leads to a logarithmic asymptotic behavior of
(wT)! for noncritical values of f2. The amplitude
approaches its asymptotic behavior more rapidly, be-
cause the principal-part integral f'do' g(w')/(w?—w?)
is small if g is a nearly constant function. At the critical
coupling constant, (if one exists), X (w) approaches one
and the second integral term in Eq. (19) approaches
—N1lasw—o,

Wanders has considered in detail the simpler, ficti-
tious example of neutral pseudoscalar meson theory, in
which there are only two P-wave amplitudes, char-
acterized by angular momentum % and $.1* He assumes
the elastic unitarity condition and a cutoff of the form
(C?4-1)/(C?+w?), and exhibits a representation for the
S-matrix elements having the proper analytic proper-
ties and satisfying the crossing relations exactly.
Wanders discusses in particular detail a simple family
of solutions corresponding to a range of values of the
coupling constant f2} There is a largest value f. of
the coupling constant in this family. If f2<f? the
limiting values of the phase shifts are §3(«)== and
81(0)=0, and it is easily shown that when f?=f.2
83(0)=421r and 8;(w)=—3%r. [We have defined §(1)
to be 0.]

It may be shown that for f2<f2 Wanders’ solution
involves at least one 7-matrix zero, and thus is not
equivalent to the solution that may be obtained from
subtracted dispersion relations for 7. For the critical
value of f? it is not clear whether or not Wanders’
solution is free of T-matrix zeros. There is no closed
expression for the critical coupling constant in this
model, but for extremely large values of the cutoff C,
/.2 is proportional to C=2InC. A pair of S-matrix zeros
occur in the first and fourth quadrant for the j=3%

12Tt may be seen from Eqgs. (19) and (12) that this kind of be-
havior is impossible for the amplitude 7’33 and extremely unlikely
for T11, since X33—1 is positive definite and the two terms of
X1:—1 with largest coefficients are negative definite.

13 G. Wanders, Nuovo cimento 23, 817 (1962).

14 This is the family characterized by the choice of a constant

value for the function 8 defined in Eq. (3.3) of reference 13.
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amplitude; it is tempting to interpret these as repre-
senting a resonance. However, for the value of the
cutoff C=6.7(2/x) (which is roughly equivalent to an
abrupt cutoff of 6.7) we have shown that if f2=f.2 the
phase shift 6; does not pass through 90°; if f2<f2,
&3 passes through 90° only at an energy above the cutoff.
A resonance occurs below the cutoff energy only if the
cutoff is much larger than 6.7(2/7), and this resonance
is not at low energy. It is interesting to note that if the
approximation procedure of Sec. IV is applied to this
two-channel case, the amplitudes may be represented
by Eq. (10), but the value of X3;—1 in Born approxi-
mation is 2, so that the enhancement of the j=%
amplitude is only about half as great as the enhance-
ment of the (3,3) amplitude in the four-channel case.

Wilson, using techniques similar to those of Wanders,
has studied the static model for symmetric, scalar
meson theory, with neglect of inelastic effects.!® (This
corresponds to the choice 4A1=% in Sec. II1.) Wilson
exhibits a family of amplitudes satisfying the elastic
unitarity condition and the crossing and analyticity
requirements exactly. However, his solutions differ from
the solutions to Eq. (7) in that they involve at least
one T-matrix zero. There is a maximum value of f?
(corresponding to a residue of 7" of ~% in the isotopic
spin § channel) in the simple family of solutions given
by Wilson, but this value does not correspond either to
a singular behavior at infinity or to the emergence of a
bound-state pole on the physical sheet.

VI. DISCUSSION AND CONCLUSIONS

The prescription given in this paper for calculating
coupling constants is a double prescription. In general,
there are an infinite number of sets of amplitudes that
satisfy the analyticity, unitarity, and crossing require-
ments representing some idealized physical situation.
One generally assumes a particular method of solution,
such as the inverse method or N/D method, which re-
stricts the solutions to a one-parameter set, this param-
eter being interpretable as a coupling constant. In this
paper we use the inverse method. The condition
Re[w7T1(%)]=0 then is used to limit the solution to
one, corresponding to a particular coupling constant. A
similar situation occurs in the model of Wanders dis-
cussed in Sec. V, where a one-parameter family of solu-
tions is presented, and the critical coupling constant
corresponds to one member of this family.!

Recently, Albright and McGlinn have proposed that

15 K. Wilson, thesis, California Institute of Technology (un-
published). The author wishes to thank Professor C. Goebel for
notes concerning this work.
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coupling constants may be determined from the pre-
scription that partial-wave S-matrix elements have a
minimum number of zeros.® This prescription is related
to that of the author for the #AZ problem in Sec. IT and
in reference 3. It may be shown from the equations of
reference (3) that S, the S-matrix element for =-A
scattering, is negative for values of w? just less than A?
(the energy of the Z pole). If the coupling constant f2
is less than the critical value f.2, then S(w?— — )
=S(w?—w)=1, and S has a zero in the region
— o <w?<A%L As f% approaches f; this zero moves
toward w?=— . At f2=f2 the zero vanishes; S(w?—
—o)=5(—o)=—1, and §(w—w)=—1r If f2
> 12, then S(w?— — 0 )=S(w?—»)=1 and a ghost
pole occurs in the region — o <w?<A?% The prescrip-
tion of Albright and McGlinn is also related to ours in
the static model of neutral pseudoscalar meson theory,
for in Wanders” model the critical value of f? corre-
sponds to the vanishing of S-matrix zeros for the two
P-wave amplitudes at w?= — 0 13

One cannot hope to test the validity of the no-sub-
traction conjecture by examining experimental data for
evidence of a m-N P-wave phase shift approaching 90°.
Unfortunately, the general shape of a P-wave amplitude
satisfying a subtracted dispersion relation may not be
significantly different from that predicted by an unsub-
tracted relation at energies below the nucleon mass. On
the other hand, if one considers systems that interact
strongly in .S waves, such as the coupled K-N and -V
systems, high kinetic energies are presumably not
important in the dispersion relations. When something
is known about the origin of the forces in these systems,
it may be that experimental observations concerning
the persistence of the amplitudes as the energy is in-
creased will provide evidence for or against the no-
subtraction conjecture.

If the #-Y interactions are related to the -V inter-
action by some type of global symmetry, it is not known
in what manner “renormalization effects” caused by
coupling of the - and K-N channels lead to a break-
ing of the symmetry with respect to the physical inter-
action constants. If the conjecture of Sec. I is correct,
this coupling leads to such adjustments in the 7V
interaction constants as are necessary for the 7-¥ cross
sections to approach nonzero high-energy limits.
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