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used in deriving (13) all appear to depend on the same
criteria. Their validity is favored by a large distance
of the deuteron from the nucleus, a small nuclear charge
and a low incident deuteron energy. Under these con-
ditions, which imply a small electric field, the concept
of the polarizability of the deuteron and a wave function
of the form of (13) may be useful.
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The asymmetric action of the nuclear electric field on the deuteron is found to strongly acct the elastic
scattering cross section on medium and heavy nuclei. Expressions for the scattering amplitude are found
in the first and second Born approximations and in the adiabatic approximation. In the latter case the
expression is evaluated and compared with experiment, giving rough agreement in magnitude, but not in
shape, with deviations from Rutherford scattering found at low energies on medium and heavy nuclei.

The high-energy plane-wave limit of the second Born approximation amplitude is evaluated. It is peaked
jn the forward direction, is large in magnitude for heavy nuclei, and decreases with increase in energy.

Consequences for deuteron optical models are discussed.

1. INTRODUCTION

HE Cpulpmb field of the nucleus acts on the
protpn in the deuteron and not on its center of

mass. Thus the deuteron elastic scattering cross section
is expected to diRer from the Rutherford expression not
only because of nuclear interactions. The separation pf
electric from nuclear eRects can only be accomplished
where one or the other is small. In this paper only the
nuclear electric field is considered. The regions where

its eRect on elastic scattering might be expected to
dominate are at incident deuteron energies below the
Cpulpmb barrier, where nuclear effects are strongly
inhibited, and for heavy nuclei. The electric field

strength increases more rapidly with mass number than
the nuclear field strength. The reason that the Coulomb
perturbation is important for deuterons and npt, say,
for n particles is that the low binding energy of the
deuteron enables it to be easily stretched and broken

up by an asymmetrical force acting on it. There is
definite experimental evidence' for large differences
between the elastic scattering cross sections of deuterons
and 0. particles on heavy nuclei. In the literature there
have been two approaches to the problem and both are
used here.

*This research was partly supported by the U. S. Atomic
Energy Commission. Most of the work forms part of a thesis
submitted to the University of Cambridge for a Ph. D. degree in
physics (1960).

& J. R. Rees and M, 8, Sampson, Phys. Rev. 108, 1289 (1957).

The most straightforward approach is the use of the
first and second Born approximations. In this way
eRects arising from both real and virtual deuteron
breakup can be included. Previous work by Nishida'
has suggested that the large decrease from Rutherford
scattering, observed at backward angles on heavy
nuclei by Gove' and also by Rees and Sampson, ' arises
from the electric breakup of the deuteron. In his second
paper he gives a qualitative classical theory which
appears to show that dipole breakup alone is not
responsible for the deviation. The quantum mechanical
approach adopted here in Secs. 2 and 4 suGers from the
difficulty of evaluating numerically the resulting second
Born approximation amplitude. The evaluation of the
high-energy limit is performed in Sec. 4 and the
resulting amplitude is found to be large.

When proper spin wave functions of the deuteron
are used, the first Born approximation also gives a
contribution tp the amplitude arising from the quadru-
pole moment of the deuteron. A tensor polarization of
the deuteron is produced but the eRect is very small.

The second approach arises from the use of the
adiabatic approximation and corresponds to the
physical picture that the modification in the elastic
scattering arises mainly from the virtual breakup of
the deuteron. This approach was adopted by Malenka

' Y. Nishida, Progr. Theoret. Phys. (Kyoto) 17, 5p6 (1957);
19, 389 (1958).' H. E. Gove, Phys. Rev. 99, 1353 (1955).
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et al.4 and Sawicki. ' Malenka et al. gave a classical
description of the process and Sawicki an approximate
quantum mechanical description, both showing that
the deviation from Rutherford scattering was of the
order of a few percent in the backward direction.
However, they did not choose the incident deuteron
energy and target elements where the effect is most
likely to be observed. These turn out to be energies
not too far below the Coulomb barrier. In Sec. 3 an
expression similar to that of Sawicki' is evaluated and
compared to experiment. The comparison gives rough
agreement in magnitude for incident deuteron energies
below the Coulomb barrier on medium-A nuclei.

The relation between the adiabatic and second Born
approximations is briefly discussed in Sec. 2. The
results obtained appear to show that the Coulomb
perturbation plays an important part in the elastic
scattering of deuterons on heavy nuclei and on medium
nuclei at low energies. Any deuteron optical model
ought, therefore, to include its contribution. This
subject is discussed in Sec. 5.

a= ——V,'— ~~'+ l (r)+
4M R

—P(r, R) =Hp —P(r, R),
where

R=(r„+r~) /2, r=r~ —r„.
The nucleon-nucleon potential is V(r) and

perturbing term which produces deviations from
Rutherford scattering is

P(r, R) =Ze'[1/E —1/I R+-,'rI].
Ke require the wave function of the deuteron to

satisfy the equation

(Hp —E)%'(r,R)=P(r, R)@(r,R), (2)
where

E=Ed+ pp.

The incident kinetic energy and binding energy of
the deuteron are E~, eo, respectively.

By standard methods the elastic scattering amplitude
may be written as

F(8)=f.(8)+f (8) (3)

The Rutherford scattering amplitude, f.(8), and the
correction to it, f(8), are

4 B. J. Malenka, U. E. Kruse, and N. I'. Ramsey, Phys. Rev.
91, 1165 (1953).' J. Sawicki, Acta Phys. Polon. 13, 225 (1954).

2. EXPRESSIONS FOR THE SCATTERING
AMPLITUDE

In terms of relative and center-of-mass coordinates
the Hamiltonian for a deuteron in the electric field of
a nucleus of charge Z is

f, (8) = [q~/2k~ sino(o8)] exp[ —isa ln sino(~~8)+ior+2itrog,

1 4M
f(8)=

4x A'
d'rd'R y;*(gg,kf, R)

X4 o*(r)P(r,R)+(r,R). (4)

The initial wave number and Coulomb constant for
the deuteron are kd, gg. The ground-state deuteron
wave function is gp(r) and the center-of-mass wave
function for the 6nal state with ingoing spherical waves
at in6nity is

P, (gq, k~,R) = exp( —porgy)F(1 —isa) exp(ikf R)
XF[igg, 1; i(k—gR+kf R)$.

Finally the elastic scattering cross section and its
ratio to the Rutherford cross section are

d (8)= If (8)+f(8)l',
d~(8)/d~. (8)= I1+~I',

where

~=f(8)/f. (8) (5)

~e will now discuss three possible forms for 4'(r, R)
for substitution into (4) to determine f(8).

I. The First Born Ayyroxima. tion

The erst Born approximation arises from the re-
placement of +(r,R) in (4) by its unperturbed form
ihip(gg, kg, R)yp(r).

(„p„,k„,R)=exp(,'~~,)r (1+i~,) exp(ok& R)
&&F[ igg, 1; i(kgR—kg R)j. (6—)

For r (2R, the perturbing term (1) may be expanded

Ze' (r~"
P(r, R)= g I I P„(r,R).

E =~ I 2E&

The Legendre polynomial is a function of the angle
between r, R. Thus the Born approximation contains
integrals of the form

d'r Po*(r)r"P„(r,R)yp(r).

If the deuteron wave function is taken to be purely
S state, these integrals all vanish. However, for a
realistic deuteron wave function containing a D-state
component there is a contribution from m=2 which is
directly related to the deuteron's quadrupole moment.
This term was investigated completely in the authpr's
thesis. ' It was found to have a negligible effect pn the
elastic scattering of deuterons at all values of gd, g.
A tensor polarization of the deuteron is alsp produced
The terms expressing this polarization were fpund tp
be of the order of a few percent of the unpplarized

6 C. F. Clement, Ph.D. thesis, University of Cambridge, 1960
(unpublished).
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term even in the most favorable cases, which are at
low energies on light nuclei. There is thus no likelihood
of their being detected experimentally.

The vanishing of the integral for r&2R led French
and Goldberger' to evaluate the integral for r)2R.
Extremely small deviations from Rutherford scattering
were obtained for large gd. This integration is over a
region where nuclear forces are strong and any contri-
bution to the amplitude would be masked by nuclear
e6ects. Since the first Born approximation gives such
small deviations, we must use a higher order approxi-
mation for %(r,R).

II. The Second Born Approximation

Logically the next step is to consider the second
Born approximation which requires a erst-order solution
of (2). A complete set of states for the internal motion
of the deuteron are delned by

L
—V /W~'+I ()».()="~.(),

where X/0 correspond to two-nucleon scattering states

'Then a complete set of states for the operator Ho —8
are Qq(r)ltp(r)g kg R) where the ltp are defined by (6).
The outgoing-wave Green's function for the operator
is then

Go(r, R; r', R') =Q d'kq' Pi,*(r')go*(r)q', kq', R')

Xrti, (r)gp(rig', kg', R)/(E ei, Ep'+—se), —

where the energy of the center-of-mass scattering state
1s

Eg' ——A'kp/43'. (~)

Then using the first-order solution of (2) the second
Born approximation scattering amplitude is

M
f(())= — — d'rd'Rd'r'd'R'P, *(gq,kf, R)pp*(r)P (r, R)

3-52

Go(r, R; r', R')E(r', R')pp(r')ltp(r)q, k~, R').

An attempt, which is described in Sec. 4, has been
made to evaluate this integral. In order to reduce it
to a manageable form several approximations must be
made. The D-state component of the deuteron wave
function is neglected and its spin dependence can then
be omitted. The contribution of go in the Green's
function is then negligible and the summation over A is

replaced by integration over the relative momentum k.
Since the exact form of the gz(r) is not known, they
are replaced by plane waves. That this approximation
may be quite good is indicated by Ramsey et al. , who

used a fr ee-particle two-body Green's function to
evaluate the polarizability of the deuteron. Finally,

' J.B.French and M. L. Goldberger, Phys. Rev. 87, 899 (1952).'¹F. Ramsey, B. J. Malenka, and U. E. Kruse, Phys. Rev.
91, 1162 (1953).

the approximation is made of taking only the dipole
term in the expansion of E(r,R). That higher terms
may be important is suggested by Nishida2 but their
inclusion would greatly increase the numerical work,
and at low energies, where the Coulomb wave functions
are small near the nucleus, the expansion is expected
to converge rapidly.

After making the above approximations the correctly
normalized scattering amplitude is

1 ZMe')'
f(0)= ——

2h' I (2n-)s
d'rd'Rd'R'd'r'd'kd'k~'

3f Z2e2n 1
f (tl) = — d'R 4'*(n~, kr, R) 4o(ga, 4,R). —(9)

m. fi2 2 R R4

This expression was previously derived by Sawicki'
using a different method. The integration over R must
be cut oft' at the nuclear surface, and, for uniqueness,
the expression should not be sensitive to Ro.

We may regard the adiabatic expression for f(g) as
being an approximation to the second Horn approxi-
mation expression (8) in the following way. If the
integration over kz' in (8) is sharply peaked at a value
equal to kd, such that the variation in the denominator
can be neglected, we use

d'kg' l4*(rig', kd', R') lt p (rig', kg', R)= (2~)'3 (R—R').

' C. F. Clement, preceding paper L'Phys. Rev. 128, 2/24 (1962)g

Xgo*(r)P, (rl~, kr, R) (r/R') exp(ik (r—r')]P, (r, R)

Xgo(ri ',4', R)go*(tip', 4', R')(r'/R")y (r')E (r', R')

XGo(~.,kd, R')/(-'u. '—~ —4~,' —u+', ), (g)

where, in addition to (7), the energies are defined by

eo= 52~2/M e@=A2$2/~

%e finally turn to an approximation which leads to
an expression needing considerably less numerical
work.

III. The Adiabatic Ayyroximation

The adiabatic approximation consists physically in
regarding the period of the deuteron's internal motion
as being fast compared to its motion through the
Coulomb field. Thus the internal energy at a radius R
is modified by an amount rl(E) which is related to the
polarizability of the deuteron. In a previous paper' the
latter quantity was calculated for a number of assumed
deuteron wave functions, and a modified wave function,
+(r,R), was suggested for a deuteron in the electric
field of a nucleus. After substitution of such a wave
function into (4) the modified scattering amplitude,
in terms of the polarizability 0., becomes
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It follows that

Z'e' M -Me'
f8)-

2 prk2 252 (22r)2
dprdpr'd'kgp*(r) r

The spherical harmonics are referred to kd as axis
and I&'l is the radial wave function which is regular at
the origin.

The angular integrals in (9) immediately give m'=0,
l'=/. Ke then define dimensionless radial integrals by

Xexp(ik r—ik r')r'I'~(r, R)P, (r', R')Pp(r')/(k2+p2)

1
d R y,*(2t„,k~, R)—P, (ge,ke, R).

E.4

The bracketed expression gives the polarizability of
the deuteron in the method of Ramsey et al. ,

' and thus
the whole expression reduces to (9).

Alternatively the validity of a polarized wave func-
tion necessary to produce (9) was examined in a
previous paper. ' It was found that such a wave function
was best at low energies, for large value of R, and for
relatively small values of Z. In Sec. 3 the expression is
evaluated for medium and heavy nuclei. Even in the
latter case (9) may be a good approximation at low
energies, since the smallness of the center-of-mass
wave functions for small R makes the greatest contri-
bution arise from large values of R.

Finally we note that the adiabatic approximation
neglects contributions to the amplitude arising from
the real breakup of the deuterons. These appear in (8)
from the pole in the denominator and their smallness
is a necessary condition for the validity of the adiabatic
approximation.

3. CROSS SECTION IN THE ADIABATIC
APPROXIMATION

I. The Cross Section

In this section the expression (9) is evaluated
numerically and the results are compared with experi-
ment. A previous evaluation was made by Sawicki, '
who replaced R P by (R+Rp) ', when the integral
could be represented by a hypergeometric function.
This treatment is, however, unsatisfactory for the
following reason. For cases of interest when the incident
energy is below the Coulomb barrier, the main contri-
bution to the integral arises from values of R near E,
where

E,=Ze'/R, .
For a typical case, 8&=3.32 MeV on Co", E, 2Rp.
Thus the replacement results in the reduction of f(8)
by a factor of about (2/3)'.

The method of evaluation used here is to expand the
Coulomb wave functions in partial waves.

With o. in units of 10 "cm',

C=5.977 (A/A+ 2)'nZ(Ee) 2"X 10—'

To find pp the minimum radius Ep was taken as

Rp ——1 3A'~2+1. 1 F.

(14)

For values of Eq below the Coulomb barrier, the
dependence on pp was found to be slight. Since apart
from C, 6 given by (13) is then a function of 2tp only,
the dependence of the deviation from Rutherford
scattering for fixed p& may be discussed. For small 6

o./o-, 1+2RA.

Firstly, the deviation is linearly dependent on n.
Secondly, for fixed gd the ratio of the deviations on two
elements 1 and 2 is roughly

A, A,+2)2 Z,'

A2+2 Ag ) Z2'

The incident energies on the two elements will, of
course, be different. These variations provide a method
of estimating the results to be expected from this
theory for values of n, E&, and Z other than those
used here.

The Coulomb phases in (13) were calculated using
the recurrence relations for expL2i(o ~

—op)j which are

expL2i(o t
—op) j=A (+iBg,

00

I&(ppirlp) = F&(p) P&(p)d&i
4

P
where pp= ~p+p ~

On substitution of (9) into (5) the devia. tion from
Rutherford scattering is specified by

6 (0)= —C sin'( —',8) expt i2td ln sin2(228) jg &(23+1)
Xexp(2i(o. (—op)]I((pp, 2td)Pg(cos8), (13)

where
C=4Z2e2Mnk p2/522tg.

For a deuteron with laboratory energy E& scattering
on a nucleus mass number A the quantities in (13)
were calculated from

kg ——A0.3104(Ep)'"/(A+2) F '

M =A M~/(A+2), 2td
——0.2239Z/(Ed)'".

pp(2td, kd, R) =+~$42r(2k+1) Jlpi' exp(io ~)

X F'P(R) Fi(kgR)/k pR. (10)

P,~(2tq, k~, R) =+2 42r( —1) '(—i)' exp(io ~ )
X Y) "'*(R)&& -"'*(kf)

XF( (kpR)/k„R. (11)

P "' 2'
~l ~l—1 ~l—1)

)2+~2 P+~2

2ln
8( A(,+ B.——..

$2+2t2 f2+~2

Ap ——1,

Bp——0.
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1 - sinP sin3P

12 360''

sin5p
~ ~ ~

1260y4

They were checked by using the asymptotic expan-
sion for o.i(g) for large l.

where
Fi(n, p) =Ci(n) p"'ei(n, p),

estimating deviations for large qg from the deviations
given subsequently.

For low values of l the integrals I~ were evaluated
by using an auxiliary function p&(gz, p) Lsee, for ex-
ample, Froberg"]

~=(&+(l+1)] i, P=tan-L&/(l+1)].
Ci'(n) =

2s.g 1&((1+)) ' (P+g )2 '

The calculation of the radial integrals (12) remains
to be considered.

II. Evaluation of the Radial Integrals

exp (2s rl) —1

Then the integrals are

L(2l+1) ]'

In the theory of Coulomb excitation' it is known
that similar integrals to (12) are given accurately for
large 1 or large p by the WKB approximation. We,
therefore, use the approximation for large l and neglect
the region inside the turning point.

dp
I,( „.)= —(f()]-"" ' -+ Lf()]'"d, (»)

4Irp .r
where

1 2(e'+2) (es 1)i/s

Ii(rIg) = arctan
2gg' (e'—1)'i' e+1+(2e+2e')'I'

f(p)= 1-(2n. /p)-(l(l+ 1)/p'),

and pr is the value of p for which f(p) =0.
The oscillating term in the integrand is neglected,

a justi6able procedure for large p& or /. Then the
result of evaluating (15) is

Ii(po, ~~) =Ci'(n) p" 'AP(n~, p)dp
&0

(18)

The differential equation satisfied by p& is

p(d'«/ p')+ (2l+2) (d«/dp)+ ( —2n)4 i= o (19)

Since the P& are normalized to unity at the origin,
Ie(ps, rid) is unbounded and behaves as po

' as ps-+ 0.
The variation of the results with po was investigated
and the sensitivity was found to be small for incident
energies below the Coulomb barrier. For example, the
result of increasing Ro by 1 F for Cu" at E&=4.07 was
to reduce 6 by about 7% in the backward direction
and by less at other angles. For all results quoted, the
uncertainty in Eo should not have produced an uncer-
tainty in 6 of more than 10%.

For numerical purposes the integral (18) was evalu-
ated up to a cutoff p . Initial values of pi were taken,
by interpolation if necessary, from the NBS tables"
and starting values of Pi(g, ps) were found from the
relations

where

(16)
2 (es —1)s

p
4 i'= gi — 1+

l+ 1 2l+3 (l+ 1)'
e= b~'+l(l+ 1)]"/n'

The singularity in (16) at e= 1 is only apparent and
the integral reduces to its correct value at this point.
For large l())qq)Ii behaves as l ' and the series (13)
for 6 converges rapidly. The variation of d for large
p& may be discussed on the basis of the WKB approxi-
mation. In this case 3 ~

—A ~ i, Bg —B~. & and, in
the backward direction, I'i(cosa) (—1)' so that the
phases for different l values in (13)are roughly coherent.
Also e in (16) is slowly varying as a function of gz.
Thus from (14) and (16) the variation of 6 with Es, Z is

~-(Z(Z.)»s/~. ')-(~"/Z')-(Z'/n") (»).
The deviation from Rutherford scattering becomes

smaller for large g~ because of the smaller penetration
of the deuteron into the region inside the turning point.
The expressions (17) afford an additional method of

' K. Alder, A. Bohr, T. Huus, B. Mottelson, and A. Winther,
Revs. Modern Phys. 28, 432 (1936).

2l+1-
4- —(1+ )4,

The differential equation (19) was then integrated
out to p on a Mercury computing machine Steps of
0.2 in p were found to give an accuracy of 1 part. in 104
or better over an interval of 5 in p. Finally the inte-
gration in (18) was performed numerically by the
method of Simpson's rule.

The remainder after integration to p may be written

P'i(p)]'p 'dp
Pm

"C.E. Froberg, Revs. Modern Phys. 27, 399 (1955)."Tables of Coulomb 8'ave Functions, National Bureau of
Standard Applied Mathematics Series No. 17 (U. S. Government
Printing Office, Washington, D. C., 1953), Vol. 1.

This integral was estimated using the asymptotic
power series for F&(p) given by Froberg. " After neg-
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TABLE I. Comparison of the values of I&(po,ez) calculated by
direct integration, Iz, and by the WKB approximation, Iz.

Element
Ed

(MeV) po vJ 100(IB IA)/Ig

C
Al
Co
Co
Pb

1.8
2

2.28
15.2

1.6
2
3.6
2.8

10

1
2
3

4.7

—1.9—1.8—0.7—0.8
5.5

bib"

0.95-

lecting the rapidly oscillating terms in the integrand
an asymptotically convergent expression for Iz was
found.

In= 1/6p„'+rig/16p '+
The cutoff was chosen at p =20 when, by taking

the first term in I~, the error is less than the second
term, which is 4g~10 '.

In practice the direct integration method was used
in evaluating Iq(pe, rlq) for l&5, and the WEB method
for l&5. A comparison of the results for 1=5 provides
a check on both methods and is shown in Table I.
It can be seen that the methods give consistent results
and the WEB method should be accurate enough for
l&5.

III. Comparison with Experiment

The calculation of 6 was programmed for a Mercury
computer. The Legendre polynomials were calculated
using recurrence relations, checked by direct compu-
tation, and the series (13) in / was summed to 1=40.
At this value convergence was assured for all cases
considered. The value of the polarizability e was taken
as 0.63 in units of 10 " cm'. This value was derived
in a previous paper' from a Hulthen wave function of
Hulthen and Sugawara" and is expected to be a good
value for the deuteron.

l.05

cu (d-d)65
Ed a 4,07 MeV

095-

b~bv

0.9-

0.85-

0.8 '

0

PH C.M.

Wl
1 I

ISO 150

FIG. 1. Ratio of deuteron elastic scattering cross section to the
Rutherford value for Cu ' with 4.07-MeV deuterons. The dashed
curve represents the experiment of Slaus and Alford (see reference
14}and the solid curve is the theoretical prediction of the adiabatic
approximation.

~8L. Hulthen and M. Sugawara, in Bundbgch der Physik,
edited by S. Fliigge (Springer-Verlag, Berlin, 1959), Vol. 39, p. 1.

0,9
0

I

30
I

60 90

pH c.M.

I

I20
I

I50

FIG. 2. Ratio of deuteron elastic scattering cross section to the
Rutherford value for Co" with 3.32-MeV deuterons. The dashed
curve represents the experiment of Slaus and Alford (see reference
14) and the solid curve is the theoretical prediction of the adia-
batic approximation.

'4 I. Slaus and W. Parker Alford, Phys. Rev. 114, 1054 (1959).
"N. Cindro and N. S. Wall, Phys. Rev. 119, 1340 (1960).

Slaus and Alford" have reported a number of experi-
ments on deuteron elastic scattering on elements
ranging from Mg'4 to Cu" at laboratory energies of
3.32 and 4.07 MeV. On the lighter elements the energies
are near that of the Coulomb barrier and the theory
presented here is certainly inadequate because of
nuclear effects. The latter should, however, be con-
siderably reduced on the heavier elements where the
incident energy is from 2 to 4 MeV below the Coulomb
barrier. A comparison with theory is shown in two
typical cases in Figs. 1 and 2. The experimental curves
are somewhat rough but are adequate enough to give a
comparison. The general features of the latter are
that any agreement in magnitude of deviation is better
at the lower energy and on the heavier elements.
However, the shapes of the curves are different. The
angles where the ratio o/o. falls away from unity are
comparable but the experimental curve exhibits a
sharp drop whereas the theoretical curve is more
slowly decreasing.

The adiabatic approximation is expected to be better
for medium nuclei at low energies than for heavy
nuclei. ' Nevertheless, a comparison has also been made
with experimental results on the latter. These have
been reported by Gove' with Ed=15.2 MeV on Pb,
Cindro and Wall" at 13.5 and 15 MeV on several nuclei,
and Rees and Sampson' at 11 MeV on Ta, Au, Bi,
and U. The latter show a considerable difference
between d-d and comparable Q.-a deviations strongly
suggesting an additional scattering mechanism in the
deuteron case. In Figs. 3 and 4 are shown comparisons
at the lower and higher energies. The rise in the back-
ward direction of the theoretical curve in Fig. 4 arises
from the large size of the adiabatic amplitude. Again
agreement is considerably better at the lower energy.
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0.8-

bib

0,2 l

30

Bi {d-d)

Ed = ll MeV

1

60
I

90
r

i20
I

I50

4. CROSS SECTION IN THE SECOND
BORN APPROXIMATION

I. Evaluation at Low Energies

In this section the evaluation of the second Born
approximation expression (8) for the scattering ampli-
tude is discussed. The full expression with Coulomb
wave functions is reduced to a form for which numerical
computation is feasible. An attempt at the latter is
described in the author's thesis. ' This was unsuccessful
because of numerical difhculties, but the computation
shouM be practical with a larger computing machine.
The high-energy limit which is much easier to evaluate
is discussed subsequently.

I.O

pro. 3. Ratio of the deuteron elastic scattering cross section
to the Rutherford value for Bi" with 11-MeV deuterons. The
dashed curve represents the experiment of Rees and Sampson
(see reference 1) and the solid curve is the theoretical prediction
of the adiabatic approximation.

The predicted variation of the deviation with E~' for
a given element was tested and was found to be ap-
proximately correct in the backward direction, as
shown in Fig. 5.

In conclusion we may state that the comparison
serves to show the large effect the electric Geld has on
deuteron elastic scattering at low energies. At low

enough energies the adiabatic approximation amplitude,
which contains no arbitrary parameters, explains a
large part of deviations from Rutherford scattering
which have been observed. The second Born approxi-
mation, which is discussed next, can also include
effects arising from the real breakup of the deuteron
and should be a better approximation. A possible
method of combining nuclear effects with the adiabatic
approximation is discussed in Sec. 5.

bib
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I

Ed {Lob ) MeV

Fro. 5. Variation with energy of the deviation from Rutherford
scattering of deuterons on Co".The solid curves are the calculated
deviations at the angles shown and the dashed curve represents
a deviation proportional to Eq' which is normalized at 3 MeV.

From (8) and (5) the evaluation is required of the
quantity

kg ZcVe')' 1
6 (0)= ——

~
sin'(0/2)

PP J (2or)r

XexpLsr)e ln sin'(0/2) —2so'o] d'rd'r'd'Rd'R'lPk

04—

Pb {d-d)
208

Ed l5.2 MeV

l I
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OH C.M.

l

l20

Pro. 4. Ratio of deuteron elastic scattering cross section to the
Rutherford value for Pb"8 with 15.2-MeV deuterons. The dashed
curve represents the experiment of Gove (see reference 3) and
the solid curve is the theoretical prediction of the adiabatic
approximation.

Xd'4'go*(r)if', *(ris,kf, R) (r/R') exp(sk, r)P, (r, R)

Xgo(ri~', k~', R) exp( —fk r')lt o*(rip', kz', R') (r'/R")

Xpo(r')Pl(r', R')lt o(rfp, kp, R')/(k" —k'+ je), (2())

where

(21)

The latter quantity is positive for a range of k&'

running from 0 to
+—(k 2 472) 1/2

The procedure adopted consists in expanding the
Coulomb wave functions, the exponentials, and, the
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I.egendre polynomials in partial waves with all spherical
harmonics referred to kq as axis. The expansions for
the Coulomb wave functions are given by (10) and
(11), and the other cases are standard results. The
deuteron wave function is taken as having a simple
S-state form:

@0(r) = LSq/(2m )' ']Lexp (—yr)/r].

Integration over all the angular variables is then
performed, and the resulting sum of Clebsch-Gordan
coefficients over a third component of angular momen-
tum leaves only radial integrals connecting partial
waves with adjacent / values. These are the dipole
integrals which appear in the theory of Coulomb
excitation":

00

dR Fi(kgR)—FE~g(kg'R). (21)
R2

M(g~g '(kg, kg') =
kgb'' p

The integration over R, R' is extended over all space,
certainly a valid approximation for large I and for low
energies.

The integrals over r, r', k may be performed explicitly.
They are of the form

I= drdr'dk r'r"k' exp( —yr —yr')

Xji(kr) j&(kr')/(k" —k'+is).

We must consider two cases corresponding to k'

given by (21) being real or imaginary. In both cases
the integrals over r, r' are obtained from

When the incident energy, E~, is less than the
deuteron binding energy there are no intermediate real
states allowed and the range of the second integral is
from 0 to ~.

After the substitutions for the expansions in (20)
have been made, the expression for 6 in terms of the
integrals becomes

6 (8) =C sin2(8/2) exp{ igd ln sin'(8/2)]

Xg~((l+1)I~++lIt, ]expg2i(o ~
0—0]Pq(cos8), (24)

where |."= (2/3m ) (kdZ'/gg) (Mt."/A')'Xg'

The principal difficulty in the evaluation of the
integrals I& lies in the calculation of a sufficiently large
number of dipole matrix elements given by (21). For
large p& or l they can be calculated fairly accurately
by the WEB approximation. " However, unless the
integrals I& are found accurately the resulting value of
6(8) is unreliable because of the cancellations which
occur because of the phase changes in the sum over l.
From an attempted calculation of (24) the following
qualitative conclusions have been drawn. There is a
sharp peaking in contributions to I~ from intermediate
states with k&' kd, a necessary condition for the
validity of the adiabatic approximation. The imaginary
part of I& is considerably smaller than the real part.
This result implies that any observed deviations from
Rutherford scattering do not mainly arise from the
real electric breakup of the deuteron, contrary to the
suggestion of Nishida. '

8 (k"+y')4
—16ik"

1
+—(k"+9k'4y' —9k"y' —y') . (22)

7'

The imaginary term corresponds to the residue at
the pole. For the case with k' imaginary the result
may be obtained by direct integration or by the
replacement of k' by iq in (22).

I= s~L(C'+4&v+v')lv'(C+v)']. —

Thus the final integrals over kg' have the form

1
dig' kd" L

—16ik"
(+2+~2)4

+ (1/y') (k"+9k'4y' —9k"p' —y']LM ((~g '(kg, kg')]'

, (g'+4qv+v')
dkg' kg" LM((~g '(kg kg')]' (23)

rc V'(q+V)'

r' exp( —yr) j&(kr)dr=
(k2+~2)2

In the real case the resulting integral over k is
obtained using contour integration. The result is

II. The High-Energy Limit

At high incident energies a substantial part of the
elastic deuteron cross section may arise from the
Coulomb field asymmetry. The dipole approximation
is not expected to be as good as at low energies, but
should give some idea of the amplitude.

The high-energy limit of the previous theory is
obtained by taking the limit as E~ becomes large,
keeping Z fixed. Then the Coulomb wave functions
become plane waves and

rl~ —& 0, qd' —+ 0, 0 ~(g~) ~ 0.

A region of finite g~ should be retained in intermedi-
ate states, but will give a small contribution in the
integration over kq in (23). The only major change in
the previous formula is the replacement of the Coulomb
dipole integrals by integrals of the form

M&&~, (kp, kp') = jp(k&R) j,~, (kp'R)dR.

Using the formulas of Watson'6 the integrals appear

G. N. Watson, Theory of Bessel Functions (Cambridge
University Press, New York, 1944).



2736 C. F. CI. F. M F. NT

as simple series which are, for kq&kq',

1 kd' g+' ~ (kd')'"
M«+g=-

kd kd n o =kkd1 4 75—
ggg

where
kd kdJ ~=0 kkd)

1 (gg+1) (gg+1)
~ni=—

4 (gg+l+-', ) (gg+ —,')
g
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I
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I
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b )= ———
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For /=0 we may also write

l&2,

FIG. 7. Contribution of the electric Geld perturbation to the
elastic deuteron cross section in the high-energy limit of the
second Born approximation. The curves are for Z=25 at the
energies indicated.

M ygl g L1/kd(2l+1)](2lkd Mgg gkd M +g1—g)

Mg+gg~, ——L1/2(1+2)kd']L(2l+3)kdMgg+g kd Mgd. ,g].

By using the above relations and series the matrix
elements were calculated up to /=45.

We no longer wish to find the ratio to the Coulomb
amplitude so that from (24) and (5) the partial scat-
tering amplitude is

1 kd' —kd" (kd kd')—
Mog= ---+

2kd 4kdkd" kkd+kd'I

Z= 25

L
1200-

Xl
E

eoo-
b Ed=50 MeV

Ed = 25 MeV

Ed
= 100 MeV

I

0 30
I

60

OH

120

10~0

150 ISO

FIG. 6. Contribution of the electric Geld perturbation to the
elastic deuteron cross section in the high-energy limit of the
second Born approximation. The curves are for Z=25 at the
energies indicated.

For kd'&kg the integrals are obtainable from the
above expressions by interchanging k& and k&' and
using the series with the appropriate / values. In the
limit of k& equal to k&' we finally have

Mg g~g= Mg~g g
——1/2kd(l+1).

The recurrence relations satisfied by the integrals are

C= (1/3gr) (Me'/ggg2)'atd'Z'X10 —~

=4.23Z'X1o '4 cm.
(25)

The value for S~' is the same as that used in Sec. 3.
The total partial cross section arising from f(e) is

0.=4%re' /gL1/(21+1)]( (l+1)Ig++ lIg ~'.

To calculate the amplitude and partial cross section
a program was written for a Mercury computer. For
integration over kd' the lower limit was somewhat
arbitrarily taken as 10 (in units of 10" cm '). This
corresponds to ggd' 0.07Z in intermediate states,
certainly too small a cutoff for large Z. The upper
limit was taken at a value of kd' for which kd'/kd

equaled 10 '. The integration was performed numeri-
cally by Simpson's rule, the number of points being
increased until no further change was observed in the
results. The other quantities mere calculated as in
Sec. 3, the summation over l being taken up to i=36,
certainly a su%ciently large value.

Since, according to (25), the cross section is propor-
tional to Z4 it was calculated for Z=25 only and for
various values of the incident energy. The angular
distributions for Ed=25, 50, 100 MeV are shown in
Fig. 6 and those for E~=200, 300 MeV in Fig. 7. In
addition the scattering amplitudes at 25, 50 MeV are
given in Fig. 8. All the curves were calculated down to

j(0)= C g gDl+1)I g++lIg ]P g (co-s8)

The integrals Ig+ are given by (23). When all the
wave numbers appearing in the I~+ are taken in units
of 10" cm ' the value of the constant is
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0 = 15'. Below this value Coulomb scattering will

generally predominate. For the limits of k&' taken the
imaginary part of the amplitude retained the behavior
shown in Fig. 8 at all energies. On the other hand,
the real part was strongly peaked forward only at the
lowest energies. As a function of energy the partial
total cross section is shown in Fig. 9.

The results are not realistic for several reasons.
Firstly, no nuclear effects are included. Secondly, the
Z' dependence of the cross section is incorrect. Even
for g&, q&' small the matrix elements are considerably
overestimated by the approximation. The cutoffs for
integration over kz' are arbitrary and the contribution
of the region of finite qd,

' is too large. Altogether the
cross sections given might be taken as upper limits.
Nevertheless we may draw the following conclusions.
It is clear that the electric field perturbation produces
a considerable effect on the elastic scattering of deu-
terons on medium and heavy nuclei. The effect seems
to lie mainly in the forward direction, particularly
with the imaginary part of the amplitude which arises
from the real breakup of deuterons. At low energies
the contribution will increase with energy so that in

Fig. 9 the curve should be peaked at some value. On

heavy nuclei the calculated effect is so large that the
use of the second Born approximation is suspect,
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FIG. 8. Contribution of the electric 6eld perturbation to the
deuteron elastic scattering amplitudes in the high-energy limit of
the second Born approximation. The real parts are given by the
solid curves and the imaginary parts by the dashed curves. To
obtain the amplitudes in units of 10 '3 cm, the values indicated
must be multiplied by 4.23X10 'Z'.

5. DEUTERON OPTICAL MODELS

For the elastic scattering of nucleons optical models
have proved a success in that they account for certain
gross features of the scattering process, in particular
variation of the cross section with mass number A and

e
I0

CD

b

0 I

20
I

l00

Ed Mev

200

FIG. 9. Contribution of the electric field perturbation to the
total elastic deuteron cross section in the high-energy limit of
the second Born approximation, showing the variation of cross
section with energy for Z=25.
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's W. Tobocman, Phys. Rev. 11S, 98 (1959)."J.R. Oppenheimer and M. Phillips, Phys. Rev. 48, 500 (1935}.
described by a center of mass potential V(R). The

with energy. Optical models have also been applied to
the elastic scattering of deuterons by authors including
Slaus and Alford" and Hodgson et at."They have also
been used in the study of stripping reactions by the dis-
torted-wave method. "We wish to point out here that
the use of nuclear optical models for deuterons is a sus-

pect and in many cases not a useful procedure. If the
electric field perturbation on the deuteron is as large
for medium and heavy nuclei, as has been suggested
in the rest of the paper, the use of a nuclear optical
model obscures the fact that a large part of deuteron
elastic scattering takes place outside the nuclear
surface. The parameters obtained from fitting angular
distributions are then somewhat meaningless.

The procedure of using such an optical model to
describe the deuteron wave function in a distorted
wave calculation is even more suspect. Oppenheimer
and Phillips" found originally that a strong deuteron
polarization was necessary to explain the differences
in magnitude between d-p and d nreactions on heavy-
nuclei. A center-of-mass optical model is incapable of
providing this polarization. From the results of Sec. 4
we believe that, even at energies above the Coulomb
barrier, electric effects on the deuteron are comparable
to nuclear effects on heavy nuclei. Thus, only on light
nuclei or on medium A nuclei at high energies would
deuteron elastic scattering arise only from nuclear
forces.

On light or medium nuclei at low energies one might
be able to regard the asymmetric electric potential
P(r, R) as a perturbation on the motion of a deuteron
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adiabatic approximation ought still to be approxi-
mately valid at sufficiently low energies and would
give for the scattering amplitude, corresponding to (3),
the expression

M Z'e'n
f(8) =fo(8)+ O'Rp& —&*(R)(1/R4g &+&(R)~

%A 2 gp

The wave functions f'+&, f& i have boundary condi-
tions of outgoing and incoming waves, respectively, at
infinity and satisfy the equation

Z8
~~'+ +V(&) 4(~)=&A'P)

4M

The scattering amplitude arising from Pi+&(E) is

fo(8) which includes the Rutherford scattering contri-
bution.

One would be able to evaluate the integral as in
Sec. 4, the only difference being that the radial integrals
would have the form

00 $ dp
Ii(Po,n~) = ——{Fi(P)+~Gi(P)

OP' 4

+ p(2'~ )L~ ( )—'G ( )j}'

Here 8i is the complex phase shift arising from V(E).
For high partial waves the 8~ would be negligible and
the WEB approximation could be used for the integrals.
The electric forces will always dominate in the high
partial waves because of their effectively larger radius
of interaction.

The meaning of a potential V(R) obtained by fitting
experimental angular distributions with an expression
of the form would still be obscure. The modihcation of
the deuteron wave function outside the nucleus by
electric forces would affect the deuteron's interaction
with the nucleus. However, V(R) could at least be
parametrized within the nuclear volume.

To conclude, we have shown that the asymmetry of
the Coulomb 6eld's action on the deuteron gives a
considerable contribution to the elastic scattering of
deuterons on medium and heavy nuclei.
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