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The polarizability of the deuteron is calculated for several assumed deuteron wave functions, and the
values obtained are compared with previous results. The best value is 0.63)&10 3' cm'. The method used gives
an approximate wave function of the deuteron in the nuclear electric Geld. The approximations of the
method are examined and are found to be best for low-energy deuterons incident on relatively light nuclei.

l. INTRODUCTION

' 'N some physical situations it is legitimate to a first
& - approximation to regard an electric field acting on
a deuteron as being constant. It is thus of interest to
find a modified ground-state wave function and the
modified energy of the deuteron in such a field. The
modified energy is specified by the polarizability of the
deuteron which has been calculated in various ways by
a number of authors. ' ' In Secs. 2 and 3 modified wave
functions and their corresponding polarizabilities are
calculated by a direct method for several assumed
deuteron wave functions, and the results are compared
with those previously obtained.

Since the deuteron has no bound excited states, a
wave function representing a bound deuteron in a
constant electric field can only be approximate. How-

ever, such an approximation may be partially valid for
a deuteron in the nuclear electric field. This situation
is discussed in Sec. 4. Finally, in Sec. 5 the validity of
the approximations used is discussed.

2. MODIFIED DEUTERON WAVE FUNCTIONS

The Hamiltonian for a deuteron in a constant electric
field E is

H= —(5'/2M) (sV'ii'+2T, ')+ V(r) —eE r~,

where V(r) is the two-nucleon potential, and the relative
and center-of-mass coordinates are taken as

r= r„—r„, R=-,'(r,+r„).
On separating in these coordinates the relative wave

equation becomes

$—(5'/2M) V,'+ V(r) ——',eE r]it (r)
= Le+a(E)]4 (r), (1)

where il(E) is the change in the binding energy e for
the ground state.

The unperturbed deuteron satisfies the equation

$—(fP/2M) V','+ V(r)]gp(r) = efp(r). (2)

Assuming that a form for p(r) is known, t) may be
found by multiplying (1) on the left by Pp*(r), inte-
grating over r and using (2).

~(E)= se -A(r)E'it (r)dsr & *( )e( )~

Gaussian Wave Function

it p(r) =exp( —p'r')

This wave function is unrealistic for a deuteron and
is introduced for comparison and because (1) may be
solved exactly. The normalized solution is

it (r) = (2p'/ir)'" exp ( 6E/v2p —p'r' 5E—r), —

where
6 = eM/8IssP'

ri(E) = —(e'M/64fPP4) E'

Wilson Wave Function

~i p(r) = (7/2~)'"Lexp( —vr)/r]

For this wave function an exact solution has not been
found, but we can find a solution valid for sufficiently
small E and r.

%e first write

4()=So()(1+it ()].
After the use of (1) and (2) the equation for Pt(r)
becomes

We attempt to solve Eq. (1) assuming a form for

A(r)

*This research was partly supported by the U. S. Atomic
Energy Commission. Most of the work forms part of a thesis
submitted to the University of Cambridge for a Ph. D. degree in
physics (1960).' N. F. Ramsey, B. J. Malenka, and U. E. Kruse, Phys. Rev.
91, 1162 (1953).

P J. Sawicki, Acta Phys. Polon. 13, 225 (1954).
3 B.W. Downs, Phys. Rev. 98, 194 (1955).

This equation may be satisfied to the first order in E
by choosing

P, (r) =brE r, 8=eM/85'y

The energy change t)(E) is obtained from (3) correct
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TABLE I. Polarizability of the deuteron. The values of a are in units of 10 3 cm'.

Reference

Ramsey et al. ~

Sawickib

Downs'

Method used

Green's function
Kirkwood's variational method

Variational method with odd-parity state interaction V

Present method

Deuteron wave
function

Hulthen
Hulthen
Wilson
Hulthen with V Serber force
V scalar square well
Gaussian
Wilson
Hulthen (as above)
Hulthhn (a)
Hulthen (b)

Polarizability

0.56
0.32
0.21
0.56
0.58
0.075
0.445
0.42
0.622
0.629

a See reference 1. b See reference 2. e See reference 3.

to order E'
q(E) = —(e'M/645'y4)E'

Since the polarizability is only well dehned to order
E', this method should give it its correct value subject
to the other approximations to be discussed. Neglecting
the normalization factor of order E', the normalized
solution of (1) to order E is

P(r) = (y/2~)'~'[exp( —yr)/r][1+8rE r].

Hulthen Wave Function

fe(r) =r '[exp( —yr) —exp( —Fr)]
A similar method to that employed in the previous

case results in the wave function

1 (1 1 2)'~'1
4(r)=

I

—+— I
-[(I+~,E r)

(4~)'»(2' 2r q+ri

and for practical purposes can be omitted. This corre-
sponds to the neglect of (6) and shows that the change
of energy and thus the polarizability are determined by
the asymptotic form of the unperturbed wave function.
However, the amount of wave function in the asymp-
totic part, corresponding to the normalization factor in

(5), is important in the determination of g(E) This
suggests the use of a wave function with the correct
asymptotic normalization S~.

Po(r) =[Srr/(4m)'"](1lr) [exp(—yr) —exp( —Fr)].
A wave function of this form is quoted by Hulthen

and Sugawara4 for the S-state part of the deuteron
wave function with the important parameters y, X~
determined from two-nucleon data. The best forms for
~(E) and P(r) are then obtained by the replacement of
[1/2+1/2I' —2/(I'+y)] ' by XH2 in (5) and (7).

3. POLARIZABILITY

For an adiabatically applied uniform field E the
polarizability is defined as

(5)

Xexp( —yr) —(1+bsE r) exp( Fr)], —

5t=eM/85'y, bs ——eM/85'I'.
n= —2g(E)/E'

However, in the derivation of (5) in addition to
neglecting second order terms in E a term where g is of the order of E'.

From the forms for q(E) found in Sec. 2, the results
are

(bt —bs)rE r[—(fP/2M) 7+V—e] —exp( —yr) (6)
(i) Gaussian n=Me'/32fPP4

has been omitted. This term is small for large r since
r 'exp( —yr) is a good approximation to the unper-
turbed wave function. The energy change derived from
(5) is

Me'(1 1 2 ) '-1 1.(E)=-
I

—+—
45'~2y 2I' y+I'& y (2y)4

(ii) Wilson n=Me'/32h'y4,

Me' -1 1 1 1
(iii) Hulthen n= X~' — +—

45' y (2y)4 I'(2F)4

11) 1—-+-I, (9)r ~i(r~~)4

1 1 1 1 1 Numerical values obtained from these expressions are
compared with those of other authors in Table I. For
the purposes of comparison results are first given using

Since I' 7y, the parts of ~(E) arising from the terms
containing 82 are very small compared to the first term by S. Flugge (Springer-Verlag, Berlin, 1959), Vol. 39, p. 1.
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Wilson n =3A'/725'y4,

2 Me' 1 4 1 ' y'I'(y+I')'
Hulthen n=—» 4~ (~+I)' «'- (I —~)'

The difference with (8) and (9) suggests that
Sawicki's method gives too small a value for g(A').

Ramsey et al.' also found the polarizability arising
from the coupling of the 5 and D states in the deuteron.
Since it is a factor of 10 smaller than the pure 5-state
value, it could be neglected in any application. We have
also neglected the fact that V(r) is state dependent.
The results of Downs, ' who considered this dependence
while using the same formula for n as Ramsey et at. ,

'
appear to show that it has little effect on n.

It is evident from the dependence of n on y, E~ that
its value is sensitive to the form of the tail of the
deuteron wave function. No practical method exists
at present for the measurement of n except possibly
the elastic scattering of deuterons at low energies. This
method is discussed in a subsequent paper.

4. DEUTERON IN THE NUCLEAR ELECTRIC FIELD

The deuteron may be polarized while being scattered
by a nucleus, a situation which led Oppenheimer and
Phillips' to explain the preponderance of d-p over de-
reactions at low incident deuteron energies on heavy
elements. We shall briefly discuss to what extent the
approximations used in this paper give a polarized
deuteron wave function.

In terms of relative and center-of-mass coordinates
and neglecting nuclear interactions the wave function

the same parameters.

Wilson y
—'= 4.5F.

Hulthen y =0.17RII ', F= 1.19RII ', RJI——0.675F.

For the Gaussian wave function P was chosen so that
(r) is the same as that for the Hulthen wave function.

Values of n are also given for the parameters of
Hulthen and Sugawara. 4 Since these parameters deter-
mine mainly the asymptotic form of the deuteron wave
function, they are probably the best quoted. The
changes with different deuteron D-state probabilities
are negligible and only the case of Pn=4%%uo is used.
The terms containing I' in (9) are of the order of 10 4

times the first term. There remain two cases (a) and

(b) corresponding to different effective ranges for the
triplet even central force. In both y '=4.316F.

Case (a) p = 1.704F, Xri' ——3.305',
Case (b) p = 1.734F, Piro =3.343'.

In addition we can compare the analytic expressions
for n with those of Sawicki. '

of the deuteron must satisfy the equation

A/2A2 A2

v, '—v„'—+— +V(r) P(R,r)
4&V u

~

R+-;r
~

= (p+E)P(R, r), (10)

Except for the region where r„r„&0, which is
expected to be unimportant at low energies as the
deuteron is stretched across the nucleus, the per-
turbation may be written.

1 1 1 tt' r
P„(r,R).

(R+-,'r( Z Z - &2Z

The Legendre polynomial is a function of the angle
between r and R.

In the adiabatic approximation and taking only the
dipole term in the expansion the next order solution of
(10) is obtained by solving the equations

f22 R r-
——V' '+ V(r) ——',eZe

3f
y, (r,R)

R'

=Lp+g(R)]pi(r, R), (11)

L
—(p/~) q~p+ (zep/z) jy, (R) =(z—q(z)7y, (R),

O (,R)=~ (R, )~ (R) (»)

Equation (11) corresponds to (1) if the constant
electric field is identified as

K =ZeR/R'.

Approximate solutions of (11) may then be found

by the procedure adopted in Sec. 2.
To the lowest order the solution of Eq. (12) is still

Qp(R) since q(R) is of order R 4. The solution of (12)
to the next order gives the change in the elastic scat-
tering of deuterons in the adiabatic approximation.
This has been considered by Sawicki' and Malenka
et al. , and a more complete discussion will be given in
a future paper. If we take the unperturbed deuteron

where E is the incident deuteron kinetic energy.
The unperturbed solution is found by letting the

Coulomb field act on the center of mass of the deuteron,

Po(R,r) =4o(R)A(r),

where pp(R) is the appropriate Coulomb wave function

yp(R) = exp (—pim gd) I'(1+iqg)
&&exp(ik R)F(—iraq, 1; i(kR k—R)].

The deuteron wave number is k and

qg=ZeM d/Sk.

6 B. J. Malenka, U. E. KI'use, and N. F. Ramsey, Phys. Rev.
5 J.R. Oppenheimer and M. Phillips, Phys. Rev. 48, 500 (1935). 91, 1165 (1953).
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wave function as having the Wilson form, an approxi-
mate solution of (10) is

Ter.x II. Breakdown of the perturbation approximation. The
value of r for which d 1 is r„which is given in fermis.

exp (—yr) ZeR. r
pi(r, R) = XII 1+fir yp (R), (13)

r R'

where 5 is given by (4).
The probability of the deuteron being polarized is

obtained by integrating P&(r,R) over r.

Element

Up to Mg
Mn
Sn
Pb

55
116
208

12
25
50
82

none
24
11.8
10

P = (1/128) (Me'/&')'Z'/yPR4

We take 7=0.231SF ' and with R in fermis.

P= (0.0612/R4) Z'

Evidently this result has some validity only when R
is outside the nuclear surface and Z is sufficiently small
so that J'&(1.

The validity of the approximations used and of a
wave function such as (13) will now be discussed.

5. VALIDITY OF THE APPROXIMATIONS

Strictly for a deuteron the polarizability is not a
well-defined concept, This is because it is not suffi-

ciently strongly bound, and the potential —&eK r in

(1) becomes numerically greater than p for large enough
r, implying the possibility of a free neutron and proton
outside some radius. Thus a static deuteron would
decay with time and in solving (1) we would be faced
with the problem of satisfactory boundary conditions
at infinity. We consider the physical situation for a
deuteron in the nuclear electric field. For an incident
energy less than the binding energy of the deuteron
there can be no outgoing waves in the deuteron's
internal motion. Thus a wave function of the form (13)
does satisfy the appropriate boundary conditions as r
tends to infinity. For greater incident energies the
component of the wave function corresponding to real
deuteron breakup is omitted. However, (13) may still
represent a fair approximation to the component corre-
sponding to virtual breakup.

Apart from examining whether the wave function
satisfies the appropriate boundary conditions we also
substitute it in the differential equation (10) and
examine the terms neglected. After the basic approxi-
mation is made of taking only the dipole term in the
expansion for r (2R, the equation becomes

(H e—Z)gi (r,R) = —E—~t exp( —yr)/r$

X( (6Z'e'r (r R)'/2R')Pp(R)+ (Ze55'/23M')

X(r—3R(r R)/R'j %gap(R)}. (14)

The 6rst term is the one neglected in the approximate
method of solving Eq. (1). Its ratio to the term neg-
lected by taking the unperturbed solution of Eq. (10) is

a=Sr(ZeR r/R') =br(E r).

When 6 is of the order of unity the approximation is
certainly unsatisfactory. In the worst case when the
neutron is on the nuclear surface and the deuteron is
in a straight line position with the center of the nucleus,
we obtain

R=Rp+-', r,

6~0 019Zr'/(r A"'+ 'r)'-

where rp, r are in fermis.
When rp=1.3 the values of r for which 6 1 are

shown for some typical elements in Table II. It can be
seen that the approximation is good enough to describe
almost all of the tail of the wave function for light
elements, whereas for heavy elements it breaks down
outside a certain radius r, . For larger values of R when
the deuteron is further from the nucleus the approxi-
mation is better. Thus for incident deuteron energies
below the Coulomb barrier, where the center-of-mass
wave function Pp(R) falls off exponentially near the
nucleus, the first term in (14) is small over the im-
portant regions of configuration space.

If the adiabatic approximation is valid, the neglect
of the second term in (14) is justified and conversely.
The derivative of the Coulomb wave function is

V'~pp(R) = exp( pi~gq)F —(1+irtq) exp(ik R)

X(ikF(—igg, 1; i(kR —k R)7

+kg(R/R k/k)F[ igd+—1, 2; i(M——k R)$}. (15)

From an examination of the second term in com-
parison to the original perturbation we may draw the
following conclusions. Firstly, the term neglected is of
order R ' so that the approximation is valid for suffi-

ciently large R. Secondly, as a function of E, Z the
second term becomes relatively smaller with decrease
in magnitude. The second term in (15) has an extra
factor Z so that for large Z the adiabatic approximation
may break down in a region near the nucleus. Also, the
6rst term in (15) contains gZ so that the adiabatic
approximation breaks down for high energies.

We finally consider whether a wave function f&(r,R)
such as (13) should be normalized for integration over
r. The normalization factor would be proportional to
R 4 and its neglect is consistent with the other approxi-
mations made.

In conclusion we may state that the approximations
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used in deriving (13) all appear to depend on the same
criteria. Their validity is favored by a large distance
of the deuteron from the nucleus, a small nuclear charge
and a low incident deuteron energy. Under these con-
ditions, which imply a small electric field, the concept
of the polarizability of the deuteron and a wave function
of the form of (13) may be useful.
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The asymmetric action of the nuclear electric field on the deuteron is found to strongly acct the elastic
scattering cross section on medium and heavy nuclei. Expressions for the scattering amplitude are found
in the first and second Born approximations and in the adiabatic approximation. In the latter case the
expression is evaluated and compared with experiment, giving rough agreement in magnitude, but not in
shape, with deviations from Rutherford scattering found at low energies on medium and heavy nuclei.

The high-energy plane-wave limit of the second Born approximation amplitude is evaluated. It is peaked
jn the forward direction, is large in magnitude for heavy nuclei, and decreases with increase in energy.

Consequences for deuteron optical models are discussed.

1. INTRODUCTION

HE Cpulpmb field of the nucleus acts on the
protpn in the deuteron and not on its center of

mass. Thus the deuteron elastic scattering cross section
is expected to diRer from the Rutherford expression not
only because of nuclear interactions. The separation pf
electric from nuclear eRects can only be accomplished
where one or the other is small. In this paper only the
nuclear electric field is considered. The regions where

its eRect on elastic scattering might be expected to
dominate are at incident deuteron energies below the
Cpulpmb barrier, where nuclear effects are strongly
inhibited, and for heavy nuclei. The electric field

strength increases more rapidly with mass number than
the nuclear field strength. The reason that the Coulomb
perturbation is important for deuterons and npt, say,
for n particles is that the low binding energy of the
deuteron enables it to be easily stretched and broken

up by an asymmetrical force acting on it. There is
definite experimental evidence' for large differences
between the elastic scattering cross sections of deuterons
and 0. particles on heavy nuclei. In the literature there
have been two approaches to the problem and both are
used here.

*This research was partly supported by the U. S. Atomic
Energy Commission. Most of the work forms part of a thesis
submitted to the University of Cambridge for a Ph. D. degree in
physics (1960).

& J. R. Rees and M, 8, Sampson, Phys. Rev. 108, 1289 (1957).

The most straightforward approach is the use of the
first and second Born approximations. In this way
eRects arising from both real and virtual deuteron
breakup can be included. Previous work by Nishida'
has suggested that the large decrease from Rutherford
scattering, observed at backward angles on heavy
nuclei by Gove' and also by Rees and Sampson, ' arises
from the electric breakup of the deuteron. In his second
paper he gives a qualitative classical theory which
appears to show that dipole breakup alone is not
responsible for the deviation. The quantum mechanical
approach adopted here in Secs. 2 and 4 suGers from the
difficulty of evaluating numerically the resulting second
Born approximation amplitude. The evaluation of the
high-energy limit is performed in Sec. 4 and the
resulting amplitude is found to be large.

When proper spin wave functions of the deuteron
are used, the first Born approximation also gives a
contribution tp the amplitude arising from the quadru-
pole moment of the deuteron. A tensor polarization of
the deuteron is produced but the eRect is very small.

The second approach arises from the use of the
adiabatic approximation and corresponds to the
physical picture that the modification in the elastic
scattering arises mainly from the virtual breakup of
the deuteron. This approach was adopted by Malenka

' Y. Nishida, Progr. Theoret. Phys. (Kyoto) 17, 5p6 (1957);
19, 389 (1958).' H. E. Gove, Phys. Rev. 99, 1353 (1955).


