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The analysis of the inelastic scattering of medium-energy alpha particles is continued using the distorted-
waves theory. Attention is given to the qualitative features of these reactions; in particular, the character-
istic oscillations in the angular distributions and the associated phase rule. The weak-coupling approxima-
tion is studied and is shown to be valid for most medium-energy (u,o. ) reactions. The distorted-wave theory
is compared with alternative theories of inelastic scattering and also with a preliminary sample of experi-
mental data.

I. INTRODUCTION

'N a previous paper, ' to be referred to as I, the
- ~ distorted-wave (DW) theory was developed and
specialized to the collective excitation of nuclei by the
inelastic scattering of alpha particles. Some aspects of
the theory were studied by numerical computation in
order to test the sensitivity and reliability of the theory.

In this paper, some of the characteristic results of I
will be investigated in more detail and interpreted in
simple physical terms. Other theories of the (n,n')
reaction will be compared to the DUV theory and a
preliminary sample of experimental data will be
analyzed. A more complete analysis of experimental
data will be published later.

II. QUALITATIVE FEATURES OF (n, n')
ANGULAR DISTRIBUTIONS

A. L-Space Localization

One of the most striking features of (n,n') reactions
is the persistence of sharp, regularly-spaced oscillations
in the angular distributions. Such oscillations are a
characteristic feature of so-called surface reactions,
that is, those involving strongly absorbed particles. In
this section, the distorted-waves description of these
surface reactions will be analyzed, and illustrated by
numerical studies of the Ni" (n,n')Ni"* reactions.

Previous studies~' of alpha-particle scattering have
employed the surface approximation for the radial
integrals. This approximation assumes a high degree of
radial localization in the surface region and may be
investigated by introducing an artificial cutoff in the
radial integrals which appear in the distorted-waves
theory of I,

In Fig. 1 we plot the total cross section for the
collective excitation of the first excited state of Ni" by
the inelastic scattering of 43-MeV alpha particles as a
function of the lower cutoff radius E . The optical and
form-factor parameters are those of the standard set
in I. It is clear from the figure that the reaction occurs
in the surface region, i.e., between 5.5 and 7.5 F.
However, this range is quite large compared to the
wavelength of a free alpha particle (%=0.37 F) and one
observes a net destructive interference from the smaller
values of r. Thus, the replacement of the radial integrals
by the integrands at a "surface" radius would appear
to depend quite critically on the value of this radius.

An alternative approach to the understanding of
surface reactions makes explicit use of the partial wave
expansion and considers a localization of the reaction
in angular-momentum space' (to be called I space).
The extent of this localization is shown in Fig. 2 where
the square of the coe%cients ~g of the spherical
harmonics (see below) are plotted. The standard D~

Ni5'+a
.F=43 MeV
e=z
g =- I.45 MeV

I

/
TOTAL INELASTIC
CROSS —SECTION

FORM FACTOR+1

0 I 2 3 4 5 6 7 8 9

8&, LOWER CUT-OFF RADIUS (fermis)

FIG. 1.Total cross section for the inelastic scattering of 43-MeV
alpha particles from Ni" as a function of the lower cutoff radius
R I see Eq. (1)g. The collective-model radial form factor is given
by the dashed curve and is the derivative of the optical potential.
The optical potential uses a%oods-Saxon shape with parametersr;=1.585 F, a=0.549 F, U=47.6 MeV, and 8'=13.8 MeV.

f This work was supported by the National Science Foundation,
the U. S. Atomic Energy Commission, and the Higgins Scientific
Trust Fund. This article is based upon the doctoral dissertation
of the author at the University of Pittsburgh, 1961.

'R. H. Bassel, G. R. Satchler, R. M. Drisko, and E. Rost,
preceding paper I Phys. Rev. 128, 2693 (1962)j.

~ N. K. Glendenning, Phys. Rev. 114, 1297 (1959).'E. Rost and N. Austern, Phys. Rev. 120, 1375 (1960). The
limitations of the surface approximation are discussed in detail
here.

4 N. Austern, Ann. Phys. (New York) 15, 299 (1961).See also,
N. Austern, in Proceedings of the International Conference on
Nuclear Structure, Ezngston, Canada, 1960, edited by D.A. Bromley
and E. Vogt (University of Toronto Press, Toronto, 1960).
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case is seen to be dominated by a few partial waves in
the vicinity of L= 18. Considerably less localization is
found when plane waves are used or when the surface
approximation for the radial integrals is employed.
The description of the scattering in terms of L-space
quantities is very convenient and will be used repeatedly.

The most important L-space quantity is the diagonal
S-matrix element, qi, , which determines the elastic
scattering, and which is plotted in Fig. 3. One finds
very low magnitudes for pL, with L&15 and a rather
sharp transition to gJ.=1 over the interval of a few L.'
Figure 4 shows this behavior of gl, as a function of
energy, and also contrasts it with 40-MeV protons.
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Fzo. 3. Diagonal S-matrix elements gJ. for the scattering
of 43-MeV alpha particles from Ni' .

C

O

O

DISTORTED WAVES

DELTA FUNCTION

I I I

PLANE WAVES

dU/dr /
r

l
/

I

I

/
0

I

I lI

r,l

/I I

/

p' J
~W ' v

I V II a IP'

0.6 '

0.4

0.2

10 20 25

0 2 4 6 8 10 12 14 16 18 20 22 24
L

1.2

Fzo. 2. Study of the relative importance of the spherical
harmonics in the inelastic scattering of 43-MeV alpha particles
from Nis . The distorted-waves theory of this work is compared
to a DW calculation using the surface approximation and to a
plane-wave calculation. The nl, coe%cients are defined in Eq.
(5}of the text.

The latter undergo the transition to gL, =1 at a much
smaller value of L (because of their smaller momentum
k), and also exhibit much larger fluctuations for small
L. An explanation of the behavior of gl. has been given
by Austern4 in terms of a WEB analysis. In particular,
small values of gL, demand a suitable shape of the
surface region of the optical potential in order to
inhibit reflections. Therefore, it is not surprising to find
that the surface thickness, a, is the most sensitive
parameter (see I, Fig. 13).
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5 It is also interesting to note that in the transition region the
phase of pl, is roughly constant. This feature lends support to a
simple parametrization of the dependence of pl, on L as is required
in a smooth cutoff model.

Fro. 4. (a) Study of the variation with bombarding energy of
for the scattering of alpha particles from Ni~s. (h} Comparison

of qz, I
for 40-MeV alpha particles and 40-MeV protons. All

curves were computed using the optical parameters given in the
caption to &ig. 1
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The "blackness" to the low partial waves contributes
to the localization of the inelastic scattering in c.. To
see this, we set pL, =O and employ the lowest order
WEB approximation which yields4 for the ra ial
integrals for low L, I."
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FIG. 5. Radial integrals fL, I,&') for the inelastic scattering of
43-MeV alpha particles from Ni'8 as a function of the lower
cutoff radius R, . A typical integral with low values of L, L' is
contrasted with an integral with L, L' values corresponding to
grazing collisions (gL, = ~~) in order to illustrate the phase averaging

/of the radial integrates for ].ow values of L, L,

where ~1, is the local momentum of the particle as it
moves through the combined optical, Coulomb, and
centrifugal potential. Since the range where F~(r) is
appreciable is large compared to ~1, ', these integrals
will tend to average to zero. For those L, L' corre-
sponding to grazing collisions (rir. =—',), there is appreci-
able reAection and the averaging to zero does not occur.
This eBect is illustrated in Fig. 5 for two typical radial
integrals, one with low values of L, L' and the other
with higher values of L, L'. In this figure we see both
the oscillations of the radial integrand Lthe derivative
of f4 4(R,) with respect to R,] and the low value of the
resulting integral, f4,4(R,=O) The v.ery high partial
waves do not contribute because of centrifugal repul-
sion, i.e., the radial wave functions, XI. are small when

F~(r) is appreciable and again the integrals tend to
zero. The localization is seen to follow from the black-
ness to the low partial waves and the "size" of the
nucleus and has little to do with the detailed nature
of the form factor as long as it vanishes rapidly outside
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Fro. 6. Effects on lgr, l
of varying the parameters U, W, ft,

and a in the DW theory. The e6ects of these variations on the
angular distributions are shown in Figs. 10—13 of I.

the nucleus. Thus, we expect the inelastic angular
distribution to be rather insensitive to the form factor
and this was amply demonstrated in I.

B. Effects of Parameter Variations

Xsin (L+-,')8+(2&+i)—,L» l (3)

It is interesting to note that the envelope of the oscil-
lations is given by (sin8) "' which has a minimum at
0=90'. Such a minimum has been observed in every
distorted wave calculation, although the minimum
angle is not always 90 .Another result of the description
in terms of Legendre polynomials is that the maxima
and minima of the angular distributions should be
equally spaced in angle. This feature has been noted
in some experiments. '

The ideas of L-space localization are also useful in

I,. Seidlitz, E. Bleuler, and D. J. Tendam, Phys. Rev. 110,
682 (1959).

The localization in L space suggests that we focus
attention on the behavior of a few spherical harmonics.
Figure 2 also shows that the terms in the partial wave
expansion with

~

m
~

=t are more important than the
others. This feature will be studied in detail in the
following section. For the present, we assume that the
oscillations are characterized by an averaging over a
few associated Legendre polynomials. The averaging
will be denoted by (Pz, '(8))z,„where Lo is an integer
near kR, and R, is some sort of effective nuclear radius.
This rough description explains the rapid falloff of the

ss section with angle in the forward direction
'l r forsince values of Pr, '(8) for neighboring L are simt ar or

ll l es of 0 but tend to diverge and thus cance
0 1500for larger 8. For intermediate angles (30 (8( ),

one has the asymptotic formula for large L,

S/2

P '( Los8c)=(—L)'
Lz sin8
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interpreting the eRects of the variation of the param-
eters in the distorted-wave theory. Figure 6 shows the
effect of parameter variations on

~

rig
~

corresponding to
the elastic and inelastic angular distributions given in
Figs. 10—13 of I. It is readily seen that a 10% change in
radius causes a 10% change in Ls which yields the
shifted pattern in Fig. 12 of I. A similar effect occurs
when the real optical well depth V is varied, although
the effect is much smaller than when R is changed.
An even more insensitive parameter is the depth of the
imaginary potential 8', which seems to have no effect
on the spacing of the maxima and minima. The surface
parameter a, however, is a highly sensitive parameter
as ca,n be seen in Fig. 13 of I where a modest 20%
change in u causes violent changes in the inela, stic (and
elastic) scattering. Some of this change is a simple
increase in effective radius when a is increased as
shown in Fig. 6. Most of the effect, however, must be
attributed to the importance of surface reAections
which are highly sensitive to a. Figure i3 of I drama-
tizes the importance of the surface shape of the optical
potential, the shape being well tested by the elastic
and inelastic scattering of medium-energy alpha
particles.

Figure 7 illustrates the effects of distortion on the
Niss(a, n') cross section. All the curves in the figure
were computed using the form factor which gives
excellent agreement with experiment (see Figs. 1 and
2 of I). Both the plane-wave case and that computed
with Coulomb waves are seen to be in severe disagree-
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FIG. 7. Effects of distortion on the inelastic scattering of
43-MeV alpha particles from Nis . The collective-model form
factor is used with P =0.18.
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7 J. S. Blair, Phys. Rev. 108, 827 (1957).
8 D. M. Chase, Phys. Rev. 104, 838 (1956).
S. I. Drozdov, Soviet Phys. —JETP 1, 591 and 588 (1955)."J. S. Blair, Phys. Rev. 115, 928 (1959).

ment with experiment, especially in their prediction of
absolute magnitudes. The nuclear distortion is seen to
reduce the cross section to the appropriate magnitude.
The primary effect of the Coulomb field is to make the
effective nuclear radius R„smaller. A classical formula
suggested by Blair' interprets E, as the impact pa-
rameter which leads to grazing collision when the
deflection in the Coulomb Q.eld is included,

R,=Rs(1—(ZZ'e'/ERs)]'t', (4)

which yields a 16% decrease in radius for 43-Mev
alpha particles on Ni". Figure 8 shows a 12% decrease
which is reasonably close to the classical value. It is
also interesting to note that the Coulomb held causes a
less-damped diffraction pattern which implies a greater
degree of localization. This is reasonable, since the
slowly varying Coulomb field will reduce surface
rejections and thus increase the blackness to the lower
partial waves.

C. The Phase Rule

The adiabatic approximation as formulated by
Blair" predicts a very simple rule relating the angular
distributions, resulting from the collective excitation
of different levels of a nucleus by inelastic scattering.
This rule states that the angular distribution for
transitions involving even units of angular momentum
transfer are in-phase with each other and out-of-phase
with transitions involving odd angular momentum
transfer and also the elastic angular distribution. This
phase rule has proven to be of considerable value in
nuclear spectroscopy.

Since the distorted-wave Born approximation is
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equivalent to the adiabatic approximation in the limit
when both approximations are valid, ' a phase-rule
relationship should also exist here. Furthermore, since
the DW treatment is more accurate than the Fraun-
hofer evaluation of the adiabatic theory, one is able to
examine the range of validity of the phase rule.

The formula for the inelastic cross section has been
derived in I and may be rewritten as

OI
fs

L

where

—1/2(L,+m)!
Z I'r.~' f~~', m&0 (3)

(2L+1)(L—m)!

( 1)m&
—m

-(L—m)! '"
Lm t'L A t (2I+—1—)

(L,+m)!

&&(L/00
~
AO)(Llm —m

~

A.O), m& 0. (6)

The ~L, coefficient provides a reasonable measure of
the importance of the (L,m) component in the angular
distribution.

Table I presents values of the modulus of nl, for
the Ni"(n, n')Ni"* reaction for /=2 and /=3. The
table also includes values of 1—rll, ~, which gives an
indication of the relative importance of the 3th partial
wave in the elastic scattering. Two features are to be
noted in Table I: (1) A few high values of L are much
more important than the others; and (2) the largest
contributions occur from

~

m
~

=/. The first point has
been discussed above and is a result of absorption plus
phase averaging of the radial integrals. The second
result is new and will be seen to lead to the phase rule.

TABLE II. Phase of nl, ' for different l for the 43-MeV,
Ni" (n,n') reaction.

5
10
15
16
17
18
19
20
21

I=2

31.0'
—54.9'

717
79.8'

. 95.5'
73.4'
61.2'
59.7'
63.7'

18.4—120.5'
79.5'
98.2'
88.7'
77.1
73.0'
75.5'
83,0'

18.7'
—109.8'

70.6'
82.2'

104.1'
72.0'
64.4'
64.8'
69.5'

The importatice of the ~m~ =/ quantities is also true
for /=4, but is not presented.

We gain some insight into the reason for the im-

portance of the ~m~ =/ contribution by examining Eq.
(6) in detail. Using algebraic formulas for the Clebsch-
Gordan coefficients, " it is easy to show that the I'L,&'~

coefficients ffuctuate in sign, except for the ~m~ =/
coeKcients which are always positive. Thus, if the
phases of the radial integrals, fL&', are reasonably
constant in the interval A /(L—(A+/, the terms in
nl. with tm~ 4/ will tend to average out while those
with

~
m

~

=/ will add. Indeed, examination of the phase
of the frq' integrals for the Ni58(u, n') indicates that
the phase is quite constant for 15((L,A)(20, the
important region for the inelastic scattering, and
explains the dominance of the

~
m~ =/ terms.

The phase of the nl, ' quantities is also of interest and
is given in Table II for /=2, 3, and 4. One observes
that the phase in the "important" region of j is nearly
constant, " so that one need only compare the moduli
of o.l.' for different l. Inspection of Table I shows that
these coefficients are large for a few values near I.= 18

5
10
15
16
17
18
19
20
21

5
10
15
16
17
18
19
20
21

(a)

0.0088
0,0177
0.0438
0.1048
0.1317
0.0717
0.0719
0.0565
0.0308

l=2, Q= —1.45 MeV

0.0006
0.0025
0.0717
0.0822
0.0436
0.0243
0.0395
0.0351
0.0200

0.0013
0.0020
0.0934
0.1259
0.1807
0.2050
0.1261
0.0715
0.0371

0.989
1.008
0.925
0.803
0.694
0.499
0.264
0.132
0.067

(b)

0.0071
0.0082
0.0882
0.0740
0.0043
0.0197
0.0071
0.0070
0.0082

)=3, Q= —4 5

0.0021
0.0053
0.0643
0.0667
0.0539
0.0367
0.0237
0.0181
0.0130

MeV

0.0021
0.0033
0.0862
0.0741
0.0576
0.0094
0.0136
0.0122
0.0092

0.0004
0.0016
0.0810
0.1065
0.1472
0.1097
0.0693
0.0376
0.0201

TABLE I. Values of thenL, coeKcients (Eq. 5) for
the Ni" (n,n') reaction at 43 MeV.

and unimportant for other L. For forward angles,
adjacent Legendre polynomials are very alike. Thus,
we would expect similar diffraction patterns from the
different cases, if the o.z,

' numbers were coefficients of
the same set of Legendre polynomials. However, they
are coefficients of associated Legendre polynomials
whose m values dier by otic. The angular distributions
will therefore obey the phase rule at intermediate
angles because of the phase factor (2/+1)~/4 appearing
in Eq. (3). The ~m~ =/ requirement may be relaxed a
little, the criterion for the DW explanation of the
phase rule being that even (odd) m terms dominate
for even (odd) / and only a small number of partial
waves are important. Table I shows that this criterion
is well satisfied for the Ni" (n, n') reaction.

Another part of the phase rule compares the elastic
and inelastic angular distributions. For elastic scatter-
ing, one must also consider the low partial waves, since

"M. E. Rose, E/ernentary Theory of Angular Momentum (John
Wiley 8z Sons, Inc. , New York, 1957), pp. 46, 47."It is also interesting to note that the phase is largely imaginary
as is required for "black" nuclei (see reference 3).
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scattering always occurs with absorption. Table I(a)
shows that the sharp-cutoff assumption is fairly
accurate for the scattering of 43-MeV alphas by Ni"
with the cutoff at Lo 18.Thus the scattering amplitude
may be approximated by

Lp

f(8) ~ P (21.+1)PL,(cos8)

[Pl„'(cos8)+P~,+~'(cos8)], (7)
sin9
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which yields the features of /=1 inelastic-scattering
angular distributions. If the inelastic scattering is
dominated by L=LO, then the elastic cross section will
be out-of-phase with all even-/ transitions. Although
the exact value of Lo is somewhat fuzzy, the phase
rule is not much affected, because at forward angles

is a slowly varying function of L but a rapidly
varying function of m.
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IIL ALTERNATIVE THEORIES OF (n, a, ')
REACTIONS

A. The Adiabatic Theory

An alternative treatment of the inelastic scattering
of alpha particles is provided by the adiabatic approxi-
mation which has been shown to be equivalent to the
distorted-waves method for small collective deforma-
tions. ' The adiabatic method is especially useful for
describing the small-angle scattering of particles of
small wavelength in which case simple, closed-form
expressions are available. " For )=2 excitation, for
example, one has the equation,

r

dg/dQ= [(kRpo) /16']Po [Jo (kRo8)+3AP(kRo8) jq (8)

where Ro is the surface radius and k is an average
propagation constant k'k'/2M= 2 (E,+Ef). Equation
(8) is equivalent to assuming a sharp-cutoff model in
partial waves, i.e., the values of pL are approximated by
zero for L&LO and by unity for L)LO. It should be
emphasized that Eq. (8) predicts absolute cross sections
and has been used to extract values for the deformation
parameter P&. An extension of Eq. (8) to allow for a
rounded cutoff in L has recently been formulated by
Blair, Sharp, and Wilets" (BSW) who hand that the
inelastic scattering by quadrupole excitation may be
described by a one-parameter family of curves when
plotted against kRp8. The single parameter is (thickness
of transition region in L space —'. critical angular
momentum) .

Figure 9 shows a graph of the adiabatic and distorted
wave theories for the 43-MeV, Ni" (n,n')Nioo* reaction.
All curves use the same deformation parameter, P=0.18.
The adiabatic curves assume a surface radius of 6.82 F
and the smoothed cutoff curve also uses a smoothing

"J.S. Blair, D. Sharp, and L. Wilets, Phys. Rev. 125, 1625
{1962).

FIG. 9. Comparison of the DW theory with two versions of the
adiabatic theory for the inelastic scattering of 43-MeV alpha
particles from Ni". The parameters used are described in the text.

parameter th, /l. =0.060. (The latter choice was dictated
by the availability of the BSW curves and may be a
slight overestimate. ) The agreement with experiment'4
is quite impressive, and the location of the maxima
and minima are predicted for several orders in the
diffraction pattern. The slow falloff for the simple
Fraunhofer curve is removed when a rounded cutoff is
used. The rounded cutoff model has the advantage of
simplicity while the DW method is more general and
requires fewer approximations. Both formulations use
information from the elastic scattering in order to
determine the cutoff or optical parameters and require
only a single parameter for normalization of the inelastic
scattering.

The curves in Fig. 9 have been normalized with the
same deformation parameter p~. Blair has advocated
the employment of the deformation distance, p&Rp, as
the parameter with which to compare different theories. '
If the midpoint radius of the optical well is assumed
to be the appropriate radius, one should multiply the
adiabatic curves in Fig. 9 by (6.2/6. 8)'=0.83 for
comparison purposes. This modification would improve
the agreement between the two theories at forward
angles although the discrepancy is within the uncer-
tainties of both theories.

B. Simplifie Distorted-Wave Treatments

The complete distorted-wave calculation which was
presented in I is easily performed with a high-speed
computer program. However, it is of interest to compare

"H. W. Broek, T. H. Braid, J. L. Vntema, and B. Zeidman,
Phys. Rev. 126, 1514 (1962)."J.S. Blair (private communication).
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inelastic scattering of 43-MeV alpha particles from Xi". The
two curves are normalized at 0'.

r)z ——{1+expL(M.—L)/bL5) ' (9)

these results with those obtained using simplifying
calculational assumptions, as in previous DW calcu-
lations. ' ' These simplified treatments may be useful in
obtaining a better understanding of the DW theory.
It is also possible that an approximate DW calculation
will reduce the number of adjustable parameters to the
point where universal curves may be generated as in
the BSW version of the adiabatic theory. "

The primary effort in the complete calculation is the
computation of the radial integrals. These integrals
have often been obtained by using the surface approxi-
mation as discussed in Sec. II(a). In Fig. 10 we compare
the angular distributions resulting from this approxi-
mation with the complete calculation. The approxi-
mation is equivalent to using a delta-function form
factor at a radius of 7.5 F; this radius gives the best
fit to the angular distribution (the Blair radius in Fig.
9 is 6.8 F). The normalization has been chosen so that
the cross section at 0' agrees with the 0' value of the
full DW calculation. Qualitative agreement between
the curves in Fig. 10 is seen especially in the forward
hemisphere for angles greater than about 20'. Since
many of the experimental data lie in this region of
agreement, the simpler calculation may be of sufficient
accuracy, although the normalization procedure is
somewhat uncertain. It is interesting to note that an
over localization in r leads to an under localization in I.
due to the absence of phase averaging (see Fig. 2)
which is seen to cause more damping for the sharp-
surface angular distributions.

The sharp-surface approximation still requires optical-
model parameters in order to generate the distorted
waves. A further approximation replaces the exact
radial wave functions by their asymptotic form Xl.
=sic"zpHz, *

rip, Hz, 5, and employs a—parametric ex-
pression for gg. For example, the two-parameter
expression,

has been found to be useful in the calculation of elastic"
and inelastic' alpha-particle scattering and can be seen
from Fig. 3 to be a reasonable approximation for
43-MeV alpha particles on Ni". The use of the asymp-
totic form for Xl is justified since the radius required in
the surface approximation (7.5 F for Ni") is suKciently
large to be outside most of the optical potential well

(see Fig. 1). However, the theory by itself yields only
relative (n,n') cross sections and still requires automatic
computing facilities.

A sophisticated theory of inelastic scattering which

yields absolute cross sections has recently been proposed
by Austern and Blair. ' The essential feature of their
theory is the identification of the DW radial integrals
with terms proportional to Brli/r)L (cf. Figs. 2 and 3).
The energy difference between initial and final states is
ignored. By using simple parametric forms such as in
Eq. (9), the computation of the cross section is readily
performed. This method may well yield universal
curves for medium-energy (n,n') reactions of suKcient
accuracy for the extraction of normalization constants
from experimental data. However, the theory of
Austern and Blair is restricted to rather high energies
(because of the adiabatic approximation and the
necessity for analytic formulas for rlz, ) and, of course,
is inapplicable for reactions other than inelastic
scattering.

IV. PRELIMINARY RESULTS

A. Validity of the Distorted-Wave Born
Approximation

The total cross section for a given inelastic-scattering
reaction which transfers l units of angular momentum
is readily obtained. For an even-even target nucleus,
we have

dot, k, (2t+1)
A 2 P ~ P iz' z &(2L—'+—1)'& f, s

dQ k~ E E~

X(L'foo~ LO)(L'f~ —~
~
LO)I,-(e,o)

~

s. (1O)

By integrating over angles and using the orthogonality
properties of the Clebsch-Gordan coeKcients, one
arrives at the expression,

k, (23+1)
0 g

——A—P P (2L'+1) I (L'lOO I LO)fz, z,
'

~I'. (11)
kg E Ey

The complete many-channel theory of scattering is
expressed in terms of elements of the 5-matrix (or
collision matrix) which have as indices the channel,
channel spin, and orbital angular momentum. The
present problem is simpler, because only two channels
are explicitly treated. We will denote an off-diagonal

' J. A. McIntyre, K. H. Wang, and L. C. Reeker, Phys, Rev.
117, 1337 (1960).

"N. Austern and J. S. Blair (to be published).
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5-matrix element by nl, z, (l) (the analog in the usual
notation" is S Q'$, Qr, ). The integrated cross section
for inelastic scattering is written in terms of the
5-matrix elements as

o &= (irlhP) 2 (2L y1) lnl, r, (l) I'.
L', L

(12)

"J.M. Blatt and L. C. Biedenharn, Revs. Modern Phys. 24,
258 (1952)."D. M. Chase, L. Wilets, and A, R, Edmonds, Phys, Rev.
110, 1080 (1958).

By equating (11) and (12), one obta, ins

IIn'. (l) l'= (h,'/~h&) I (2l+I)/&, ~&3

XA tsar (Ll00i L'0)fz, z, 'i' (13)

The unitarity of the 5 matrix demands that

ln~ i'+E~ « ~(i) I'&1 (»~ L')

since many other possible channels have been counter-
feited by the use of a complex optical potential.

Equation (14) will be investigated for 18- and
43-MeV alpha particles on Ni ' using a deformation of
/=0. 2 and the standard set of optical parameters.
Table III gives values for the absolute squares of the
diagonal and off-diagonal 5-matrix elements. As can
be seen from the table, the unitarity condition of Eq.
(14) is easily satisfied for each partial wave If P .were
to become unreasonably large (say, 1 or 2), the state-
ment would no longer be true but this is not important
for application to actual nuclei. A similar result was
found in the study of other (n,n') reactions a,t medium
energies. The small values for the off-diagonal 5-matrix
elements tend to justify the use of "elastic scattering"
optical potentials for the DW treatment of inelastic
scattering, since these terms reQect the importance of
the coupling between the incident and final channel.

We have seen from Table III that the unitarity of
the S matrix is no problem at medium energies. At
lower energies this is not necessarily true. The primary
reason for the difficulty at low energies is the possible
existence of partial wave resonances (rtl. =—1). These
resonances are often called "shape resonances" and
occur when the phase shift passes through v-/2. At low

energies the projectile wavelength becomes comparable
with, or greater than, the (large) surface thickness, and

strong surface rejections can occur. These rejections
are inhibited at higher energies; in addition, the
increased absorption at higher energy yields a much
smaller value of ~rtr,

~

for low L. The occurrence of
shape resonances at low energies enhances the coupling
between the elastic and inelastic channels and makes
the distorted-wave Born approximation invalid. The
effect of strong coupling may also be important at
medium energies for some very light nuclei (e.g., C")
and DW calculations for such cases are unreliable.

The distorted-wave Born approximation was criti-
cized by Chase, Wilets, and Edmonds" who considered

TAnLE III. S-matrix elements for the Ni" (n,n') reaction.

8
10
12
14
16
18
20
22

Intel'

0.019
0.025
0.016
0.049
0.232
0.709
0.956
0.990

(a) 43 Mev
Iw. , L, ~l' fnr. , r. l'

1.1 X10 4

5.2 X10 '
2.4 X10 4

1.06X10 '
2.12X10 '
1.41X10 '
5.27X10 '
3.69X10 4

6.2 X10 '
9.6 X1o-5
5.8 X10 4

9.3 X10 4

5.91X10 '
2.13X10 '
1.36X10 3

8.2 X10 '

I ns, ~+2I'

8.6 X10 '
1.1 X10 4

3.1 X10 4

3.1 X10 '
2.02X10 '
6.94X10 '
4.2 X10 4

2.7 X10 4

6
8

10

(b) 18
Intel'

0.047
0.157
0.392
0.821

MeV (includes Coulomb excitation)

In~, s 21' -lni, cl' Inis+~l',

1.23X10 4

2.66X1O-
5.47X10 4

3.00X10 4

9.25X10 '
2.55X10 4

5.18X10 4

7.16X10 '

1.82X10 4

5.37X10 4

4.31X10 4

5.5 X10 '

the scattering of low-energy neutrons ( 1 MeV) by
deformed nuclei. Their calculations did not employ the
Born approximation and treated the coupling between
channels exactly. A marked difference between the
DW calculation and the coupled-channels approach
was found, especially in the magnitude of the cross
section, where the former method was often several
times too large. This feature is not surprising at the
low energy considered. One, indeed, expects that the
effect of the coupling will tend to dampen the inelastic
scattering. The amount of damping certainly depends
on the strength of the coupling, which may be estimated
from the values of the off-diagonal elements obtained
by the DW method. The results presented in Table III
indicate that the eGect is not too important at medium
energies. Recent calculations" using the coupled
channels approach indicate that the DW method is a
reasonable approximation for most medium-energy
inelastic scattering reactions.

TABLE IV. Summary of (o.',n') data.

E'
Nucleus (MeV)

Mg" 43
Ar4' 18
Ni" 43
Ni'8 43
Ni" 43
Be' 48

Q
(MeV)

—1.37—1.46—1.33—4.50—5.50—2.43

0.28
0.20
0.18
0.14
0.06

0 5 0.8e

Pi(EM)'

0.50—0.66
0.16b

0.18—0.21
0.19
0.14

a Computed assuming a uniform charge distribution of rpA'/3 with rp
given by electron-scattering experiments. A nonuniform distribution
would tend to reduce pl(EM), especially for the l =3 and l =4 cases.
See A. M. Lane and E. D. Pendelbury, Nuclear Phys. 15, 39 (1960).

b Extracted for the 2.4-Mev (2+) state.
& Somewhat poorer fits to the Beg data have yielded Pi values of 0.5 and

0.6. The application of the simple collective model to such a light nucleus
is perhaps questionable.

&' B.&uck (private communication),

B. Extraction of g& Values

A comparison of the DW theory to experiment yields
a normalization constant which may be identified with
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the deformation parameter for collective excitation,
Pt, as discussed in I. The same parameter appears in
the theory of the excitation of collective levels by
electromagnetic means, viz. , by (e,e') reactions, Cou-
lomb excitation, or direct measurements of excited
state lif etimes.

A preliminary comparison of the distorted wave and
electromagnetic values of P~ is presented in Table IV.
The fits for the Ni", Be', and Ar" cases have been
presented in Figs. 2, 7, and 8 of I. A linear plot of the
differential cross section for the t = 2 and l= 3 transitions
in Ni" is presented in Fig. 11 and emphasizes the
excellent agreement between theory and experiment
for this nucleus. Figure 12 shows the agreement between
theory and experiment" for Mg" where the optical well
has been taken to be the same as that for Ni", except
for a small increase in radius. The agreement is seen to
be quite satisfactory.

The agreement between the DW theory and electro-
magnetic values of P~ in Table IV is fair. Blair has
suggested" that the deformation distance, P~RO, is a
more appropriate parameter with which to compare
normalization constants from different theories. Since
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FIG. 12. Preliminary analysis for 42-MeV alpha particles on
Mg". The optical parameters are the same as those given in the
caption to Fig. 1 except for an increase in radius to r0=1.65.
The experimental points are taken froin reference 21.
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the electromagnetic radius is less than the nuclear
radius, the adoption of P~RO would increase the nuclear
normalization relative to the other and definitely
improve the agreement for Mg'4. However, the theo-
retical and experimental uncertainties are still larger
than the disagreement between the P~ values. A detailed
analysis of available experimental data is under
preparation and should resolve such questions.
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