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Analysis of the Inelastic Scattering of Alpha Particles. I
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The inelastic scattering of medium-energy alpha particles is interpreted as a direct interaction, using the
distorted-waves theory. A deformed potential-well interaction based on the collective model of the nucleus is
found to give results in good agreement with experiment. The parameters of the potential well are determined
by fitting the elastic scattering, and the multipole deformations obtained from the magnitudes of the inelastic
cross sections agree reasonably well with those obtained by other techniques. The effects on the theoretical
predictions of variations in the parameters are described. Some preliminary study of the effects of including
Coulomb excitation is also included.

I. INTRODUCTION

HE inelastic scattering of medium-energy alpha
particles provides perhaps the simplest and best

understood examples of direct nuclear reactions. ' Their
analysis' has provided an insight into the behavior of
other direct reactions, especially those involving par-
ticles which are strongly absorbed. '

The excitation of collective states is particularly
amenable to study, firstly because these transitions are
strongly enhanced and hence easily observed. Further,
the over-all similarity of the initial and final nuclear
states (which differ only in the degree of shape oscilla-
tion or rotation) leads one to suspect that the inelastic
scattering to these states will bear a simple relationship
to the elastic scattering. These ideas have been previ-
ously exploited in the adiabatic limit, which assumes
the energy loss in the inelastic transition is negligible,
and treats the elastic and inelastic scattering on the
same footing. In its simplest form this gives the well-
known Fraunhofer diffraction model. Recently, more
sophisticated developments in terms of partial waves
have been given, which show even more clearly the re-
lation between elastic and inelastic transitions in the
adiabatic limit. '

The present paper is concerned with the distorted™
waves (DW) method, which does not require the adia-
batic assumption. ' ' The so-called distorted-wave Born-
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approximation amplitude LEq. (1) belowl contains the
interaction responsible for the inelastic transition just
once, so it describes a simple one-step process. The
relative motion of the colliding pair before and after the
inelastic event is described by distorted waves, which
include the elastic scattering and are usually calculated
using an optical-model potential. Then the transition
is one between elastic scattering states, so the DW ap-
proximation assumes that elastic scattering is the domi-
nant process and inelastic or reaction events can be
treated. as perturbations.

It has been shown' that the DW method is formally
identical to the adiabatic method in the limit of weak
coupling. It also has a number of advantages compared
to other methods. It unifies the treatment of the inelastic
scattering of strongly absorbed particles with that of
nucleons (for which the adiabatic models are not so
successful) and also with the treatment of other direct
reactions such as stripping. The DW theory can use
accurate elastic scattering wave functions (simply gener-
ated from appropriate optical potentials) whereas it is
not so easy to incorporate these in the adiabatic
methods. In particular, Coulomb e6ects are taken into
account exactly. A further advantage is that of flexi-
bility in allowing various parameters to be varied in-
dependently of any particular nuclear model, so that
more physical phenomena can be explored.

DW calculations are impractical without the aid of a
high-speed computer, although with access to such a
machine they are very fast and not at all difficult to
carry out. The simpler, approximate, models do not
require computers, and generally give rise to fairly
simple "universal" curves. While often giving a physical
insight into various phenomena, they fit the experi-
mental data in a qualitative way only (for example,
giving peaks in the differential cross section at the cor-
rect angles). The two techniques are thus complement-
ary to some extent.

The emphasis, in the present work, is on the use of the
collective model (through the introduction of a non-
spherical optical potential). Presumably the "correct"
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interaction is a much more complicated object, but it is
known that inelastic scattering (like electromagnetic
transitions) is very sensitive to any collective correla-
tions present in the nuclear wave functions. Even if the
initial and final states are well described (energetically)
by the independent-particle model, some collective
enhancement (such a,s due to coupling to core oscilla-
tions) is almost always present and often dominates over
the "single-particle" contribution. Thus, the collective
model picture is likely to have a wide range of validity.

Only the results of calculations for alpha particles
are presented here, but the theory is applicable to other
projectiles and the general results should be qualita-
tively true for other strongly absorbed particles, such
as He', with comparable energies.

II. THE DISTORTED-WAVE THEORY

Consider the scattering of a particle with incident
momentum Ak; and final momentum Aki, in which the
target nucleus is excited from a state v; to a final state
vp. The distorted-wave theory is based upon a transition
amplitude given by

The remaining factor in the amplitude (1) is the
matrix element of the interaction causing theinelastic
transition, taken between the Azternat states of the col-
liding pair. It plays the role of an effective interaction
for scattering from one elastic scattering state to another,
and contains all the information on nuclear structure,
angular momentum, selection rules, etc. However, we
do assume the interaction is static and nonexchange.
We also neglect contributions from exchange between
projecti e and target due to (anti) symmetrization.

Here we are interested in alpha particles, which have
no spin, so a general (static) interaction can be written
V(r, g), where f represents the internal coordinates of
the target. Expanded into multipoles this becomes

V(r, g) =P V „(r,&)Li'Vi" (O,e)]*, (6)

where (O',C) are the polar angles of r. Since V is scalar,
the V~„must behave under rotations of coordinates
like the spherical harmonics F~, and have parity
(—)'. The factor i' is included to ensure the reality of
nuclear reduced ma, trix elements. ' Inverted, Eq. (6)
gives

TI, dr xri ——'*(kr, r)&n~l Vln, )x,i+'(k;, r), (1)

Vi (r,()=ii V(r, &) Vi" (O,C) sinodOdC.

where the differential cross section is

(d~/df)) = (p/2irA')'(kr/k, )Z,v I Ti, I
'. (2)

The X(k,r) are the distorted waves which describe the
elastic scattering of the particle by the nucleus before
and after the inelastic transition. In the absence of a
Coulomb field they have the asymptotic forms

pi+'(k, r)=exp(ik r)+f(0) exp(ikr)/r,
(3)

xi i(k, r) =exp(ik r)+f"(ir —0) exp( ikr)/r—
Without the scattered waves, f=0, the expression (1)
reduces to the plane-wave Born-approximation ampli-
tude. In practice the distorted waves are generated from
an optical-model potential U(r) which reproduces the
observed elastic scattering from the same nucleus at
the same energy, and thus satisfy the Schrodinger
equation

LV'+ k' —(2p/A') U (r) —(2ii/A') U, (r) jy (k,r) =0, (4)

where U, is the Coulomb potential. For a uniformly
charged sphere of radius R„

(2p/A') U, =2kn/r if r)R„
= (ke/R. )L3—(r'/R ')j if r(R, .

The reduced mass of the colliding pair is p, and e is
the Coulomb parameter ZZ'ice'/A'k if Z and Z' are the
charge numbers of target and projectile, respectively.

6 A. Bohr, Physica 22, 963 (i956);B.L. Cohen and A. G. Rnbin,
Phys. Rev. 111, 1568 (1958};W. T. Pinkston and G. R. Satchler,
Nuclear Phys. 27, 270 (1961).

Applying the signer-Ewart theorem' to the matrix
elements of the interaction (6), we get for the effective
interaction in. Eq. (1),

&Jf~f I
V

I
~'~ &

=2 i &Jr~r I
~'m '~&

X&jrllVill~'&I:~'vi" (o c)1*, (~)

where J;, J~ are the initial and 6nal nuclear spins, and
M;, 3f~ are their s components. Ke then see the /th
multipole in the expansion (6) corresponds to transfer
of angular momentum / to the target nucleus. The
Clebsch-Gordan coefficient ensures conservation of
angular momentum,

I~'—Ji
I

«&J.+Jr,
while the spherical harmonic determines the change in
parity to be (—)'. The reduced ma, trix element is now a
function of radius only, and it is convenient to write
it as the product of a "strength" times a "form factor, "

&J. lv IIJ.&=~ F () (9)

This separation is one of convenience, so that, for ex-
ample, universal form factors with simple normalization
may be used in computation. Those suggested by the col-
lective model are discussed in the next section. However,
we may say quite generally that Fi(r) goes to zero as r
becomes large, and is also zero at the origin for nonzero l.

To evaluate the amplitude (1), we need the partial-
wave expansion of the distorted waves

xi+i(k, r) = (47r/kr)QI. Pxr. (kr)
XP V,~(O,C) V,~*(g,y), (10)

7 D. M. Brink and G. R. Satchler, Aegnla~ 3EIomentum (Oxford
University Press, Net York, 1962).
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together with the time-reversal relation'

(d~'/d~I) = If (8)+f-(8) I',

where the Coulomb scattering amplitude is

(14)

f, (8) = —(n/2k) csc'(8/2) expI —2in (ln sin ,'8 oo)—],—
(15)

and the additional amplitude induced by the optical
potential U(r) is

f„(8)= —(2ik) '
Qz (2L+ 1) (1—qz)

XexpI 2ioz]Pz(8). (16)

When the expansions (6) and (10) are inserted into
the amplitude (1), the integrations over 0' and C may
be carried out. With the s axis along the incident direc-
tion k; and the y axis along k, Xkz the result may be
written

Tz;——L(4~)'~'/kz'j P) Ag(JzMzI J,lM, rn)

X (2&+1)"'P' (8), (1&)

where the amplitude for transfer of angular momentum
/ with s component m is

p&m ()mp& —n —pzz, —rz, «mpz, m(8) fz, zt yg) 0 (16)

The radial integrals are given by

kf
fz'z xz'~ '(kzr)F&(r)xz~' (k,r)dr, (17)

8 M. Hull and G. Breit, Encyclopedia of Physics, edited by S.
Flugge (Springer-Verlag, Berlin, 1959), Vol. 41.

9 J. M. Blatt and V. F. Weisskopf, Theoretical JtIuclear Physics
(John Wiley R Sons, Inc. , New York, 1952), Chap. VIII.

In Eq. (10) the polar angles of k are denoted by (8,@).
The distorted partial wave Xl. then satisfies the radial
equation

Pd'/dr'+ k' L(L/—1)/r' (2p/fz—') U (r)
—(2p/PP) U, (r)]xz(kr) =0, (12)

with the boundary condition xz(0)=0. Beyond the
range of the potential U(r) it has the form

Xz, ——(i/2) (Hz, * zzHz) —exp(ioz), . (13)

where Hz=Gz+, iFz, is the outgoing-wave Coulomb
function, ' and ql, is the reflection coefficient as defined
by Blatt and Weisskopf. ' Then asymptotically

xz ~ (i/2) I exp( —i8z) —zlz exp(i8z)) exp(ioz),

where
8z= kr n ln (2kr) ——(hr/2)+ O.z,

o z.=argI'(L+1+in)

The differential cross section for elastic scattering cor-
responding to these distorted waves is then'

and the gamma coefficients result from integrating over
the three spherical harmonics,

I'z, z&m —iz z' &(—2L—'+1)I (L' zn) I/(L'+rn) llz&2

X (L'100
I
LO)(L'lrn nzI L—O); nz) 0. (18)

In this form the differential cross section for scattering
through the angle 8 becomes, after summing over iVf
and averaging over 3f;,

d /dfI=L(2jz+1)/(2~'+1)1E~IA~I' ~(8), (19a)

where the "reduced" cross section is given by

0., (8) = (zz'/k 'k wk')Qm IP'™(8)
I

' (19b)

Some previous calculations' ' have used simplifying
assumptions in the evaluation of the integrals (17),
in particular the surface approximation which replaces
the integral by the value of the integrand at the nuclear
surface. When this is done, some other procedure has to
be used to obtain the correct normalization of the re-
sults. Comparison between the results of this surface
approximation and the full calculation will be made in
the following paper.

III. COLLECTIVE MODEL FORM FACTORS

The collective model of the nucleus attributes many
low-lying excited states to oscillations in shape about a
spherical mean (vibrations), or to the rotations of a
statically deformed shape. "This leads naturally to an
extension of the optical model to include nonspherical
potentials, in the same way that deformed shell-model
potentials are used to generate the bound states of
nucleons in these nuclei. The nonspherical parts of the
potential are then able to induce inelastic scattering to
these collective vibrational or rotational states. This
model has the advantage that the parameters for the
radial form factor are determined by the optical model
for the elastic scattering; all that remains is a strength
(or deformation) to be extracted by comparison with the
experimentally observed inelastic cross section. The
success of this model has to be judged in two ways.
First, does it reproduce the shape of the angular dis-
tribution correctly? In general, this tests the correctness
of the radial form factor chosen, although we shall see
that for alpha particles, because of their strong absorp-
tion, the angular distribution is insensitive to the form
factor shape. When absorption is strong, the significant
contributions to the reaction tend to arise only from the
region just outside the nucleus where the tails of ac-
ceptable form factors tend to be rather similar. Secondly,
is the interaction strength or deformation required to
6t the measured cross section consistent with those
found by other techniques such as measurement of the
electric quadrupole moment and Coulomb excitation?
These questions will be studied below and in the follow-
ing paper.

' A. Bohr and B. Mottelson, Kgl. Danske. Videnskab. Selskab,
Mat. -fys. Medd. 27, No. 16 (1953).
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potential). We note that on this model a, given multipole
deformation k of the surface R(o',C) in first order gives
the interaction term U~ with 1=k, but in second and
higher orders it contributes to other multipole terms
in the interaction (6). In second order, for example, it
contributes to all even values of l in the range 0& l & 2k.
However, it would be inconsistent to use the interaction
(23) expanded to second order in the deformation while
only calculating the transition amplitude to erst order
in the interaction, unless one could show the second-order
contributions of the first-order interaction were negli-
gible. On the contrary, however, it appears that these
terms are at least comparable to the first-order contribu-
tions of the second-order interaction potential. "

The expression (20) for the deviation from spherical
shape is still referred to body-fixed. axes; we must rotate
into a space-fixed coordinate system, using

r ( ferrnls)

Fn. 1. Collective-model radial form factors for inelastic scatter-
ing. The function f(x) is the usual Woods-Saxon optical-potential
form factor, and the derivatives are those appearing in the
expansions (23) and (30).

A. Rotational Excitation

%e derive the interaction from a deformed, or non-
spherical potential well. It is reasonable to assume the
potential strength depends only on the distance (r—R)
from the surface, and then allow this surface to be
nonspherical,

R(o',c')=R,{1—P„I „I'/4~
+Z ~ p ~~,Yp'(o', c")]. (2o)

The volume enclosed by this surface is constant to
second order in the deformation. The polar angles
(0~',C') are referred to the body-6xed principal axes of
the nucleus. For a quadrupole deformation, 4=2, and
in terms of the familiar" deformation parameter P
and asymmetry parameter p we have

nsp=P cosy, o.s~i ——0; ns+Q —P sin7/K2. (21)

Axial symmetry wouM require p=o.
We then take the potential U—= U{ r —R(o~',4') j.The

much used Woods-Saxon potential shape is of this type

Ys'(O', C")=2, Ya" (O,C)D, ,"(R '), (25)

where R is the rotation taking the body-6xed axes into
coincidence with the space-fixed axes. ~ Comparison of
Eq. (23) with Eq. (6) then gives the first-order interac-
tion term

Vi = i'RpfdU—(r Rp)/dy j—P, ni, *D, '(R). (26)

For an axially-symmetric deformation this may be
written

Vi —— j%pPi(4+/—2l+1)'~'(dU/dr) Yi (P n), (27)

where (P,ct) are the polar angles of the nuclear symmetry
axis.

If we take the Woods-Saxon form (22) for the central
optical potential U(r —Rp), then with x= (r Rp)/a, —

d U/dr = (d U/dx)/a= (Up/a) e*/(e'y 1)', (2g)-

which peaks at r =Eo and has a width at half-maximum
of 3.5a (see Fig. 1).

An alternative way to define the potential U(ro~'C')
is in terms of equipotential surfaces which conserve
volume (to second order),

y'=y{.1+2~, I~., I'/2~ —P., ~&,Y,P(o'c')], (29)

so that the Taylor series becomes

U(P) Up/(e*+ 1)& a (r R)/a (22) U (y )—U (y)+ gydU(y)/dy+ t (gy)sdsU(y)/dys. . . (30)
A Taylor-series expansion about E=EO yields

U(r —R) = U(r Rp) bR(d/dr) U—(r R—p)—
+—'(hR)'(d'/drs) U(r —Rp), (23)

where

The scalar first term we identify with the spherical
optical potential used to describe the elastic scattering
(and generate the distorted waves). The other terms
we may identify with the inelastic interaction (6)
(except for some second-order corrections to the elastic

where

Thus, the only effect is to replace the Rp of Eqs. (26)
and (27) by r, which gives the interactions a slightly
longer tail (Fig. 1).

It now remains to calculate the nuclear matrix ele-
ments of the interaction (26). We shall only consider
scattering from even nuclei in detail; the extension to
odd nuclei is straightforward. The wave functions for

"B.Buck, Ph. ys. Rev. f27, 940 (1.9/2).
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2J+1
fKJM

16m'(1+ kg, p)

—1/2

&&LD '(R)+(-)'D-

an asymmetric rotator may be written"

Pu Jsr Q K A KVJc J sr)
where

(31)

expression just as before, to first order we have

V&„i'R—o—PU(» —Ro)/«]~i * (39)

Ke only discuss excitation of even target nuclei, but
the extension to odd nuclei is straightforward. The
target then has zero spin, with no phonons present.
The interaction (39) is able to excite a single 2-pole
phonon with a matrix element

The (real) mixing coeKcients A have been given in
reference 12; for axially symmetric nuclei only E=O
and even J enter, and Ao ——1. The interaction (26) can
be written

i'R,—gd U(r R,)/—dr)(Acus/2Cg)'". (40)

This may be written in a form analogous to Eqs. (36)
and (37) with

V =Q„V „D„„'(R). (32)
A q i '(——Ro Up/a) (bco(/2C()'l (41)

Pu, l)V, ))ZJ,)= V«(J,Z t J,i@0)( ) ~. (3S)— —

These matrix elements may be put in the separated
form of Eq. (9). For example, for axially symmetric
even nuclei, and using the Woods-Saxon potential
(28), we may write

A g
——i'(21+1) '"(P(RpUo/a), (36)

(37)

B. Vibrational Excitations

The interaction model adopted here is the same as
for rotations, namely, a nonspherical potential well,
except the shape is no longer static but oscillates about a
spherical mean. This is simply achieved by treating the
deformation parameters ns„ in Eq. (20) as dynamical
variables '0

~so= (&~o/2Cs)'"Lbs +( )obs o*j= (—)o~—.—o*, (3g)

where the bq~ and b~,* are the usual boson annihilation
and creation operators for a 2~-pole oscillation with
angular momentum k and s component g. The energy
of each phonon is A+A, , and C~ is the restoring-force
parameter. Since the deformation is no longer static,
the expressions (20), (24), and (26) may now be regarded
as referring to space-fixed coordinates. Using the Taylor

"A. S. Davydov and G. F. Filippov, Nuclear Phys. 8, 237
(1958); A. S. Davydov and V. S. Rostovsky, ibid. 12, 58 (1959).

For even target nuclei we have J,=E;=0, and there-
fore Jf=l only, with the matrix elements

2 -'~' A~ ft/" ~
&Jf= ill V~II J'=0)= Z (33)

2i+1- &r (1+&z,,
o)'"

In the axially symmetric case, with E~=O only, this is

just
(34)

Similarly, excitation of levels in the ground-state rota-
tional band of axially-symmetric odd nuclei has matrix
elements

Clearly then the phonon transition strength is the same
as for rotational excitation with an equivalent deforma-
tion P~. This is just the root mean square deformation
in the ground state due to zero-point oscillations,

«'= (2-I«- I'),
= (2l+1) (ha))/2C().

(42)

» R. M. Drisko and R. H. Bassel (unpublished)."E.Rost, following paper LPhys. Rev. 128, 2708 (1962)j."R.H. Bassel, R. M. Drisko, and G. R. Satchler, Oak Ridge
National Laboratory Report No. 3240 (unpublished).

IV. NUMERICAL CALCULATIONS

In principle, the analysis of experimental data using
the model described here first attempts to find an optical
potential which describes the observed elastic scattering.
This is conveniently done by the use of an automatic
search routine which adjusts the potential parameters
until the mean square deviation of the predictions from
the observed cross sections is a minimum. " These
parameters are then used in the distorted-wave calcula-
tion to predict the shapes of the inelastic angular dis-
tributions. The magnitude of the experimental cross
section for a given transition then determines the square
of the corresponding nuclear deformation.

In the present paper only an example of this pro-
cedure is given; our main purpose is to study the be-
havior of typical cases and the effects of varying the
parameters. The interpretation of some of these results
is discussed in the following paper, '4 while a detailed
analysis of available experimental data will be published
later.

Previous distorted-wave calculations of alpha-particle
scattering have employed the surface approximation
for the radial integrals. ' However, even these are im-
practical without the aid of high-speed computers if
more than a few are to be done, and currently available
computing facilities are fast enough to make the com-
plete calculation feasible. The calculations reported here
were carried out using the Oak Ridge distorted-wave
code."A typical case of the inelastic scattering of 40-
MeV alpha particles, using 30 partial waves, takes about
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based on the Woods-Saxon shape,

U(r)= —V(e'+1) ' —iW(e"+1) '
(43)

x= (r rod"—')/a x'= (r r—o'3"')/u'

The full-line curves in Fig. 2 were calculated with
rp=rp =1 585 F, a=a =0 549 F t/ =47 6 Me&, and
W=13.8 MeV. The broken curves used a potential for
which the absorptive part has a different shape from
the real part, rp=1.5 F, rp'=1.02 F, a=0.517 F,
a'=0.809 F, V= 96.7 MeV, and W= 38.2 MeV.

The three inelastic angular distributions shown in
Fig. 2 were calculated using the derivative of the real
part of the optical potential in the interaction (26)
or (39). (The effects of including the imaginary part
are discussed later. ) The agreement with experiment is
seen to be acceptable, and the magnitudes of the meas-
ured cross sections correspond to deformations P~ of
0.18 ((=2), 0.14 (1=3), and 0.06 (1=4). The value of
P~ is in good agreement with the quadrupole deforma-
tion deduced from Coulomb excitation measurements.
For the 3=2 transition, results are presented for both
optical potentials, and are very similar at angles for
which experimental data are available. Although not
shown, the same result is found for the 1=3 and t=4
transitions. In particular, both optical potentials lead
to the same values of the deformations, which suggests
that optical potentials which are equivalent with respect

FIG. 2. Angular distributions for the scattering of 43-MeV
alphas from Xi' . The parameters used are described in the text;
a reaction cross section of 1.51 b is predicted by the optical po-
tential corresponding to the full curve, and 1.50 b for the dashed
curve. The experimental points are taken from reference 16.

4 min on the IBM-704, or about 40 sec on the IBM-7090,
to compute a complete angular distribution.
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A. Typical Results

Figure 2 shows the results for 43-MeV alphas on
Ni"; the theoretical curves were calculated a,t intervals
of 1', and the experimental values were obtained at
Argonne National Laboratory. " At the time these
calculations were made, elastic scattering data were only
available for angles less than 45'. More than one set of
optical potential parameters were found to give a good
fit to these data, the theoretical curves for two of these
are shown in Fig. 2. It will be seen that the two sets
make significantly different predictions for wide-angle
scattering, for which no experimental data are available.
Fitting to the more complete elastic data which now

extends to 60' leads to slight changes in the optical-
model parameters, but these have very little effect on
the inelastic predictions, and for the calculations re-
ported here the original potentials were used. These were

"H. W. Broek, T. H. Braid, J. L. Yntema, and B. Zeidman,
Phys. Rev. 127, 1514 (1962).We are indebted to these authors for
making their data available before publication.
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FIG. 3. Representative angular distributions for 43-MeV alphas
on Mg'4. The same optical-potential parameters were used as for
the solid curves in Fig. 2; they predict a reaction cross section of
1.07 b. The observed scattering from Mg requires a slightly larger
radius of approximately so= 1.65.
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to the elastic scattering also predict the same inelastic
scattering.

To give a feeling for the variation v ith nuclear size,
the curves in Fig. 3 for Mg'4 and Fig. 4 for Zr" were
computed using the same optical potential parameters
as were used for the solid curves in Fig. 2. Some general
features are evident in these figures which are charac-
teristic of the scattering of medium-energy alpha
particles. For example, the parity phase rule for the
strongly oscillatory parts of the angular distributions, "

the transitions with the change of parity (/ odd) show
oscillations in phase with the elastic, while those with
no change of parity (/ even) are out of phase with the
elastic. The cross section at small angles also shows a
parity dependence; the even-parity transitions tend to
show a rise in intensity near 0', while the odd-parity
cross sections tend to zero. This behavior may be under-
stood in terms of a symmetry property of the distorted-
wave transition amplitude"; for zero energy loss (adia-
batic limit), the odd-parity cross section should be
identically zero at O'. Another general feature is that
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FrG. 4. Representative angular distributions for 43-MeV alphas
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the solid curves in Fig. 2; they predict a reaction cross section of
1.77 b.

A. J. Kromminga and I. K. McCarthy, Phys. Rev. Letters
6, 62 (1961),
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FIG. 5. Variations with Q value in the angular distributions of
43-MeV alphas on Ni". The same optical-potential parameters
were used as for the solid curves in Fig. 2.

the oscillations are very evenly spaced in angle. ' "The
angle between successive peaks decreases with increas-
ing nuclear radius and is close to (m/kRo). This is about
11' for 43-MeV alphas on Ni". The amplitude of the
oscillations becomes less marked for the large / values,
and also falls off with increasing angle.

These features are somewhat dependent upon the
energy loss during the scattering. This is illustrated for
Ni" in Fig. 5, where the predictions for Q =0 and Q = —6
MeV are compared. There is an over-all reduction in
intensity for the nonadiabatic transitions, corresponding
to the less perfect overlap between the initial and final
distorted waves having different energies. For the same
reason there is also a tendency for the minima in the
angular distribution to be filled in for the nonadiabatic
cases. However, the most significant difference probably

' L. Seidlitz, E. Bleuler, and D. J. Yendam, Phys. Rev. 110,
682 (1958).
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FIG, 6. Variation with bombarding energy of the angular dis-
tribution for the quadrupole transition in Ni". Other multipoles
behave in a very similar way.

is the smooth shift of the diffraction structure to larger
angles when there is energy loss. Ke have already
mentioned the rule that the peaks are regularly spaced
in angle by approximately (m./kRo). The shift with Q
is consistent with this rule if we use for k the average of
the initial and final wave numbers, k=2 (k,+kq). For
Q=O, k=k, , while for Q= —6 MeV at 43 MeV, k=0.96
k, , thus leading to a 4% shift in a,ngle. This is already
2—,
"a,t a scattering angle of 60', so it is an appreciable

fraction of the average spacing of 11' between
peaks.

The effects of varying the bombarding energy (Fig. 6)
are also well described by the (7r/kRO) rule for the spac-
ing between peaks. Indeed, as has been noted before, ' '
there is a strong tendency for the oscillatory parts of
the angular distributions to have the form of universal
curves when plotted against (kROO) rather than 0.
)One choice of shadow line in the Fraunhofer diffraction
model4 gives angular distributions which are oscillatory
functions of 2kRO sin( —', lI); however, for the forward
angles for which this model is valid, there is little dif-
ference between 2 sin(20) and tI.j

An example for a very light nucleus Be' is shown in
Fig. 7. The comparison with experiment" is somewhat
preliminary since no great effort was made to find the
optimum fit to the elastic data, however, the agreement
already obtained is surprisingly good for such a light
nucleus. If we assume that the 2.43-MeV level of Be' is
the J= 5/2 member of the E=3/2 ground-state rota-
tional band, the measured cross section corresponds to a
deformation Pq

——0.8. Figure 8 shows the result of a pre-

"R.G. Summers-Gill, Phys. Rev. 109, 1591 (1958).

B. Variation of Optical-Model Parameters

In this section we discuss the effects on the predictions
for the inelastic scattering of changes in the parameters
characterizing the optical potential. At the same time
we vary the inelastic interaction parameters in the same
way, so maintaining the correspondence with the optical
potential given by Eqs. (26) and (39).

The reaction which has been studied most intensely
is the scattering of 43-MeV alphas on Ni". However, the
predictions of this model vary in a very smooth and
simple way when we go to other nuclei and other ener-
gies, so that these results are typical of a wide range of
reactions. The emphasis has also been on scattering
angles in the forward hemisphere, since this is the region
where most experimental data are available.

The "sta,ndard" set of parameters was taken to be
those used in calculating the solid curves in Fig. 2.
Then Figs. 10 through 13 show the results of changes of
~15% in the real potential depth V, &30% in the
absorptive potential W, &10% in the radius ro, and
&20% in the surface thickness a, respectively. Only
the results for the I= 2 transition are shown. The effects
on the l=3 and 4 transitions have also been calculated
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Fzo. 7. Angular distributions for 48-MeV alphas on Be'. The
optical potential used was of Woods-Saxon form with U =69 MeV,
W=24 MeV, r0=1.57 F, a=0.7 F, which predicts a reaction
cross section of 0.94 b. The experimental points are taken from
reference 19.

liminary analysis for 18-MeV alphas on Ar . The in-
elastic cross section corresponds to a deformation
P2

——0.2; however, it is clear the fi to the measured elastic
angular distribution" is only qualitative. These curves
for Ar" are reproduced in Pig. 9 together with some for
18-MeV alphas on Ne" and Ni". Although the main fea-
tures of the angular distributions still remain, the dif-
fraction structure is much less marked. In addition, for
the heavier nuclei at this energy, Coulomb excitation is
becoming important; indeed for Ni the Coulomb excita-
tion cross section for the 3=2 transition is comparable
to that for excitation by the specifically nuclear inter-
action. %e return to a discussion of Coulomb excitation
in Section V.
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C. Variation of Form Factor10

We now investigate the behavior of the angular dis-
tributions when the inelastic interaction form factor
F(r) is changed while the optical potential is kept fixed.
In this way we can see how the predictions would be
affected by a failure of the simple deformed-potential
model which relates the form factor to the optical
potential.

The results are shown in Fig. 14 of using the expres-
sion (37) for the form factor, but using values of RII

and ao different from those of the optical potential.
Since the interaction strength need no longer be given
by Eq. (36), the "reduced" cross sections o.(8) of Eq.
(19b) are plotted. The transitions with /=3 and 1=4
exhibit very similar behavior to those with l=2, so
only the latter are illustrated. The main effect of giving
the form factor a greater width (aII larger) is to increase
the magnitude of the cross section, although there is a
slight shift in the positions of the peaks, and the peak
magnitudes fall off somewhat faster with 0 for the larger
ao. Changing Ro again produces very little change in the
peak positions, but the amplitude of the oscillations is
reduced for the smaller Eo. However, there is a striking
change in magnitude predicted; for example, the values
of o. (8) at 21' are 0.33, 11.6, and 170 mb/sr when Ro is
5.14, 6.14, and 7.14 F, respectively; that is, a 500-fold
increase in cross section for a 40% increase in RII. This
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FIG. 8. Preliminary analysis for 18-MeV alphas on Ar". The
optical potential is Woods-Saxon with V=45 MeV, W=10 MeV,
r0=1.7 F, a=0.52 F (these parameters were kindly supplied by
F. G. J. Percy in private communication). The reaction cross
section predicted is 1.14 barns. The experimental points are taken.
from reference 18.

and are very similar to those for l=2. In all cases, the
phase relations with the elastic angular distributions are
preserved.

The change when the radius is altered is closely what
one would expect from keeping (kRIIe) constant, as has
been observed in the previous section. The magnitude
of the envelope to the oscillations of the cross section
at forward angles increases roughly like Eo', as one
would expect, but because the pattern is compressed
for larger Eo, it also falls off with angle faster. Variation
of V leads to little change except a slight shift of the
pattern to larger angles for the weaker V and a corre-
sponding slightly slower falloff with angle. Similarly,
the large change in S" has very little effect on the in-

elastic angular distributions. Reducing W 6lls in the
diffraction minima somewhat and raises the cross section
a little. The latter effect wouM be partly compensated
for if the imaginary part of the optical potential had been
included in the inelastic interaction, for the cross section
would then be proportional to (V'+W').

Perhaps the most striking changes occur with varia-
tions in the surface thickness u. The peaks of the angular
distribution shift with a change in u in a way similar to
that for a fractional change in radius of roughly one
quarter as much, while the magnitudes of the peak
cross-sections increase with a about half as fast as with
R. However, increasing a also tends to fill in the minima
of the oscillations.

The interpretation of these results in terms of the
angular momenta involved is discussed in the following

paper.
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is to be contrasted to the behavior shown in Fig. 12
when the optical-potential radius is changed by the same
amounts simultaneously. Then the average magnitude
of o. (e) does not change (although do./dQ increases
roughly as Res), but there are large shifts in the positions
of the peaks. This suggests that the shapes of the in-
elastic angular distributions are determined primarily
by the optical potential, while the details of the in-
elastic form factor mainly affect the magnitude of the
cross section. This can be understood in terms of the
localization of the reaction to a narrow region in the
nuclear surface and the participation of a relatively
small number of high partial waves, and will be discussed
in the following paper.

Also, using the collective model (which determines
the form factor parameters Ro and ao to coincide with
those of the optical potential) one obtains deformations
from inelastic scattering which agree with those ob-
tained by other means. The sensitivity of the nsagei tude
of the cross section to changes in the form factor param-
eters implies this agreement would not occur unless
the model were essentially correct.

The importance of the surface region is further empha-
sized by Fig. 15, in which volume and surface form
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FIG. 10. ERects of varying the reaI potential well depth hy
&15 f&. Other parameters as for solid curves of Fig. 2. The cor-
responding reaction cross sections are 1.48 b for V —ISQI) and
1.54 b for V+15'Pq.

FIG. 11. ERects of varying the imaginary potential well depth
by ~30/0. Other parameters as for solid curves of Fig. 2. The cor-
responding reaction cross sections are 1.49 b for W —30% and
1.54 b for W+30/&.

factors are used. The volume interaction uses for F(r)
the Woods-Saxon shape (22); the surface interaction
is the standard one, Eq. (37), namely, the derivative
of the volume interaction. Both use the values Eo——6.14,
ao ——0.55 which are used for the optical potential. At
forward angles the reduced cross sections predicted have
very similar magnitudes, and are not too different in
shape. Yet another example is afforded by Fig. 18, in
which first- and second-derivative form factors (see
Fig. 1) are compared; this example is discussed further
in Sec. VI (b).

These results already suggest that there will be little
change if we use the alternative way of defining the
deformed potential well expressed by Eq. (29). Calcula-
tion has shown that this is so. The additional factor of
r does increase F(r) slightly in the important region
just outside the nuclear radius (see Fig. 1), and so en-
hances the cross section by roughly twice as much. If
contributions to the scattering arose only from a de6ni-
nite radius E,gg, the cross section wouM be enhanced
by (R.«(Es)'. If R.«were the radius required by the dif-
fraction model, this factor is about 1.25 for Niss (with
R ff —6.83). The calculated cross section is enhanced
by about &.6 at 10, falling to 1.2 at backward angles.
The shapes of the angular distributions are so similar
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here how this Coulomb excitation may be included in
distorted-wave approximation by modifying the inter-
action form factors, and present the results of some pre-
liminary studies of its effects.

Since the calculation is carried out by partial-wave
expansion, its accuracy is limited by the maximum
value I.„„ofangular momentum included. An associ-
ated restriction is imposed by the upper limit E, at
which the radial integrals a,re cut off. This corresponds
classically to omitting impa, ct distances greater than

or neglecting angular momenta greater than
p, =kR,„. (More precisely, because of deflection of
the trajectories by the Coulomb field, it corresponds to
neglect of angular momenta greater than I p~,~(p~,x—2II)]'".) The classical deflection angle for angular
momentum L,„,„is 8.=2II/L, if I(&L,„, so for scat-
tering angles less than 0, the Coulomb excitation will
be underestimated. At angles much greater than 0,
the calculation should be accurate. For orientation we
note that I=2.7 for 43-MeV alphas on Ni", while
m=4. 2 at 18 MeV. The present calculations were unable
to use more than 50 partial waves', with these, 8, is about
6' at 43 MeV, and about 10' at 18 MeV. (For the purely
nuclear interaction, no more than 30 partial waves are
needed at 43 MeV, or about 20 at 18 MeV. )

0 10 20 30 40 50 60 70
eC~ SCATTERING ANGLE (deg)

FIG. 12. Effects of varying the radius of the potential well by
&10j&. Other parameters as for the solid curves of Fig. 2. The
corresponding reaction cross sections are 1.24 b for R—10% and
1.81 b for R+10%.

V. COULOMB EXCITATION

to those of Fig. 2 that it is not worth displaying them
here, ' the main effect of using this form factor would be
to reduce slightly the value of the deformation needed.

In conclusion, we see the general features of the angu-
lar distributions are rather insensitive to the shape of the
form factor. However, their detailed behavior is affected
somewhat by changes in the form factor, and it is pos-
sible that detailed analysis of precise experimental data
will indicate whether the simple derivative form factor
of Eq. (28) is adequate. In this connection it would be
of interest to have experimental data for transitions in
odd nuclei between different "single-particle" or in-
trinsic states, for which the interaction form factor is
most likely to deviate from that of the simple deformed
potential well.
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The inelastic scattering of charged particles is also
accompanied by Coulomb excitation; indeed under some
circumstances this is the main mode of excitation. '-'

When both nuclear and Coulomb forces contribute,
their amplitudes are coherent and interfere. We indicate

"K.Alder, A. Bohr, T. Huus, B. Mottelson, and P, inther,
Revs. Modern Phys. 28, 432 (1956).
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Pro. 13.Effects of varying the surface thickness of the potenial
well by &20~/&. Other parameters as for the solid curves of I'"ig. 2.
The corresponding reaction cross sections are 1.39 b for a—20opo
and 1,64 b for a+20~a&,
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The Coulomb interaction between target and pro-
jectile is

p(r')dr'
V(c) ZZ~e

l
r—r'l

Ni58+ a

43 MeY
2=2
g=-I,45 MeY

4mZZ'e'
U m+(Q~ (y)

&m 2/+1
r(

U "(o"P')p(r')«', (44)
r&'+'

where p(r) is the charge density normalized so that

p(r)dr= 1,
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FIG. 15. Comparison of "volume" and "surface" interaction
form factors. The volume form factor is of Woods-Saxon shape,
and the surface form factor is the derivative of this. The param-
eters have the same values as for the solid curves of Fig. 2. While
the volume interaction is unphysical, it serves to emphasize the
relative unimportance of contributions from the nuclear interior.

has the form of the expansion (6) with
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For values of r outside the nucleus (that is, where the
charge density p is negligible), V~,„&'& is proportional to
r ' ', and Eq. (45) may be written

U(~&'& (r) =
l 47rZ'e/(2/+1)]l i'/r'+'13II (/ M), (46)

where M, (/, M) is the multipole operator for electric
radiative transitions. ' "The well-known reduced tran-
sition probability is then just

2/'-f(R/) = I(/llM. (/)llf)l' (4/)

We can obtain expressions for the moments pE in the
same way that we treated the deformed optical poten-
tial in Eq. (23). A simple example is a uniform charge
distribution of radius E,. To first order in the deforma-
tion we find

FIG, 14. Effects of varying the inelastic interaction form factor
independently of the optical potential. Optical-potential param-
eters as for the solid curves of Fig. 2; these give Rp ——6.136 F,
up=0. 55 F.

Vi-"(r) =
3ZZ'e's'

2/+1

R, '/r'+' if r &R„
(48)

r'/R, '+' if r (R,.
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(A diffuse-edge charge distribution would round off
the cusp in VI '& at r=R, .) The Coulomb excitation
may then easily be included in Eqs. (26) or (39) by
modifying the radial form factor. If we neglect the
interaction (45) inside R„and assume the charge den-

sity and optical potential have the same deformation,
Eq. (37) becomes
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FIG. 16. EGects of including Coulomb excitation in the quardu-
pole transition in Ni". The parameter C& of Eq. (49) is taken as
2.13. The various broken curves correspond to using different
numbers of partial waves.

CI=3(2l+1) 'ZZ'esR, '(a/ROUO) if r) R„
=0 if r(R„,.

This form was used for the calculations reported here.
The neglect of Coulomb excitation contributions from
r&R, has been justified by explicit calculation with
different values of E„but keeping C~ fixed.

Figure 16 shows that Coulomb excitation has little
eRect at 43 MeV when the target is Ni, except at very
small angles. The effect on higher multipoles is even less.
This is true generally because of the longer "tail" of the
interaction for lower multipoles. At the lower energy of
18 MeV, however, the Coulomb excita, tion and its inter-
ference with the nuclear excitation has become import-
ant. Indeed Fig. 17 shows that the Coulomb excitation
amplitude is already comparable to that from the purely
nuclear interaction. Figure 16 also illustrates the im-
portance of including sufFicient partial waves in the
calculation. At 18 MeV, 0,=8.4/I. , ,„, so that -Fig. 16
shows the Coulomb excitation contribution is calculated
with reasonable accuracy for scattering angles greater
than about 30,.

Figure 17 shows the results of excitation at 18 MeV
due to the Coulomb interaction (45) alone. The curves
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Fto. 17. Purely Coulomb excitation of Ni by 18-MeV alphas.
The curve labeled "Coulomb only" use waves distorted only by
the Coulomb potential from a uniform charge distribution of
radius 6.14 F; those labeled "optical model" use waves distorted
by an optical potential in addition. The optical-potential param-
eters are as for the solid curves of Fig. 2. The parameter C2 ——2.13.

VI. HIGHER ORDER EFFECTS

Two types of approximation have been made in our
present treatment. First, we have solved the inelastic
scattering problem to first order in the interaction, as-

in Fig. 17 labeled "Coulomb only" were calculated with
Coulomb distorted waves, but no optical potential, so
may be directly compared with previous Coulomb exci-
tation calculations. Fifty partial waves were used, so the
results are probably accurate for 0+25'. We note that
the finite-sized charge distribution used leads to very
little departure of the elastic cross section from Ruther-
ford scattering. The curves labeled "optical model"
were calculated with waves distorted by the nuclear
optical potential as well as the Coulomb field, and show
marked changes. There is a considerable reduction in
both elastic and inelastic cross sections at wide angles
due to the reflection and absorption by the optical
potential. The inelastic cross section is comparable to
that induced by the purely nuclear interaction (26),
as shown in Fig. 16. The Coulomb potential at the
nuclear radius Eo is about 13 MeV, comparable to the
alpha kinetic energies. At much lower energies the Cou-
lomb repulsion effectively shields the nuclear interac-
tion and the transition is predominantly electromag-
netic. As the energy is raised, the nuclear contributions
increase in importance. Of course. this transition from
one mode of excitation to the other occurs at higher
energies for heavier nuclei. In general, we may conclude
that Coulomb excitation can be neglected, except for
small scattering angles, provided the energy is well
above the Coulomb barrier. However, as the energy ap-
proaches the barrier, Coulomb excitation becomes im-
portant and may be included in the above manner.
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suming that elastic scattering is predominant —the
distorted-wave approximation. Higher order corrections
here tell us how valid is this procedure. The second ap-
proximation is specific to our treatment in Section III
of the nuclear collective model; in particular, the ex-
pansion in pov:ers of the deformation P and the neglect
of terms of order P' and higher. The importance of these
higher order terms reflects upon the significance of our
interpretation in terms of this model.

A. Strong Coupling

When the interaction strength increases, and the in-
elastic cross section becomes comparable to the elastic,
the first-order distorted-wave Born approximation is
inadequate. For example, virtual excitation of the
excited states begins to affect the elastic scattering. An
important aspect of this concerns conservation of Aux, '

the number of scattered particles cannot exceed the
number incident. (Equivalently the corresponding
scattering matrix must be unitary', we return to this
point in the following paper. )" However, in the first-
order treatment, the inelastic cross section is propor-
tional to the square of the interaction strength, so must
be inadequate when the strength is large.

When the coupling is strong, we are obliged to solve
for elastic and inelastic transitions simultaneously, '

formally the Schrodinger equation may be reduced to a
set of coupled radial equations. "Such a calculation was
carried out" for 43-MeV alphas on Ni, using a deforma-
tion of P=0.2 (typical for this mass region), and com-
pared with the distorted-wave calculation using the same
optical potential. Only the coupling between the ground
state and 1.45-MeV excited state was included. It was
found that there is little difference for scattering angles
in the forward hemisphere. At forward angles the dis-
torted-wave method overestimates the inelastic cross
section by about 10%;this discrepancy has increased to
about 20% at 60'. The difference is larger at backward
angles, the optical model and distorted waves over-
estimating both elastic and inelastic cross sections,
although the oscillatory behavior of the angular distribu-
tions is similar in both cases.

In practice, these differences are partly taken into
account by adjusting the optical potential parameters
used in the distorted-wave calculation; this is done
implicitly when the optical potential is adjusted to fit
the observed elastic scattering. We conclude then that
the distorted-wave method is quite accurate at this
energy, especially for forward scattering angles. When
the deformation becomes much larger than /=0. 2,
preliminary results indicate that the diffraction struc-
ture of the angular distribution is preserved, especially
at forward angles, but the cross section does not increase
like P'. In such cases the distorted-wave method may

~' S. Yoshida, Proc. Phys. Soc. (London) A69, 668 (1956);
J. R. Lamarsh and H. Feshbach, Phys. Rev. 104, 1633 (1956);
D. M. Chase, L. Wilets, and A. R. Edmonds, ibid. 110, 1080
(1958l.

give a reasonable account of the angular distributions,
while underestimating the deformation.

B. The Nuclear Model

Use of the collective model is itself an approximation,
albeit a reasonable one, as discussed in the introduction.
However, we are here concerned with further approxi-
mations and uncertainties involved in its use. One
uncertainty has already been illustrated by the two
alternative ways, Eqs. (20) and (29), of defining the
deformed potential well. Fortunately, these only lead
to slight differences in the scattering.

Another uncertainty involves the use of the absorp-
tive potential. This will also be nonspherical when the
nucleus is deformed and could then contribute to the
inelastic scattering. The calculations reported above
have neglected this contribution. If the imaginary well
has the same shape as the real, (ro=ro' and a=a' in
Eq. (43)), the only e&ect is to increase the cross section
by a factor 1+(W/V)'. For the case shown in Fig. 2
this is an increase of 8%, and so leads to deformations
4% smaller. If the imaginary potential has a shape dif-
ferent from the real well, its contribution to the inelastic
amplitude must be computed with the correspondingly
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FzG. 18. Comparison of angular distributions induced by the
first- and second-derivative interaction form factors of Eqs. (37)
and {50),respectively, for 43-MeV alphas on Ni.



INELASTIC SCATTERING OF e PARTICLES. I

different (and imaginary) form factor (namely using
Rs'=ra'A'" and g'), and will interfere with the ampli-
tude from the real well. The insensitivity of the shapes
of the cross sections to variations in Eo and a, as shown
in Fig. 14, suggests this interference effect may be small.
This was checked explicitly in one case by adding the
two amplitudes; the only effect was some filling of the
minima in the inelastic angular distribution.

Next, we discuss the terms of order P' in the expansion
(23) of the interaction potential. These are associated
with the second derivative of the optical potential, so
for a Woods-Saxon potential they have a form factor

F(r) = (d'/ dx') (e~+1) '—x= (r —Rs)/u. (50)

In the vibrational mode, these terms are quadratic in
the operators o. A, ~, and cannot contribute to the excita-
tion of a single phonon. They can excite two-phonon
states, however; in particular, the quadrupole deforma-
tion in second order can give rise to l= 4 transitions.
The excitation has been observed"" of states in even
nuclei known to be 4+, which are often regarded as
members of the two-phonon triplet of states. The angu-
lar distributions were anomalous in the sense that they
disobeved the parity phase rule and oscillated "in phase"
with the elastic angular distribution. Such transitions
can be explained by the Fraunhofer diffraction model
when expanded to second order in the deformation, "
and it was believed initially that using the second-order

"R.Beurtey, P. Catillon, R. Chaminade, M. Crut, H. I arragi,
A. Papineau, J. Saudinos, and J. Thirion, Compt. rend. 252,
1756 (1961)."S.I.Drozdov, Soviet Phys. —JETP 11,362 (1960);J. S. Blair
(private communication, 1961).

interaction in the distorted-wave method would also
explain them. This belief was supported by the results
of calculations using plane waves, in which it was also
estimated that the two-step process (with intermediate
excitation of the one-phonon 2+ sta, te) gave a negligible
contribution. "However, Fig. 18 shows that the reduced
cross sections predicted by form factor (50) are very
close to those predicted by the first-order form factor,
Eq. (37), with no change of phase of the oscillations in
the angular distributions. This is opposite to the predic-
tions when plane waves are used, and is due to the
localization of contributions to the scattering from a
region somewhat outside Eo which occurs when the
optical-model distorted waves are used. In this region,
as we see from Fig. 1, the two form factors are closely
similar both in shape and magnitude. The discrepancy
between these results and both experiment and the dif-
fraction model are now known to be due to the two-step
transitions which have an intensity comparable to the
direct transitions considered here. " This again is in
strong contrast to predictions of the plane-wave theory,
and may be understood qualitatively from the struc-
ture of the second-order, distorted-wave Born
approximation. "
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