
COHERENT SCATTERING OF PHOTONS BY ATOMIC H

and is related to the result by

P(k) = (Si/3)S(2).
The result is'

16 1—X 'l~ "~ dl
P(k) =-

k' 1+X i 1+
1+At ""

(1—t99)—
( t)4 1—Xt

(10)

'This result has been obtained previously by Professor C.
Schwartz (unpublished). We are indebted to him for making it
available to us and for his instructive comments.

where X= (1—k)'". This has been evaluated numerically
with the aid of an IBM 650 in the range —0.7 k =. 0.7.
Results are presented below. Figure 1 displays P(k) in
this range. Figure 2 gives the ratio of the cross section
to the Thomson cross section vs k in units of rydbergs
(13.6 eV). We note that P(k) —+ s as k —& 0 so that the
cross section vanishes (as k') as the incident photon
"sees" less and less atomic structure. In the high-energy
limit, P(k)+P( —k) 1/k' so that the binding becomes

unimportant and the scattering takes place as though
from a free electron.

P(k) is singular for k=4, the first threshold. The
singularity is, of course, nonphysical. Ke have omitted
the finite linewidth from our description of the inter-
mediate states in (4). Its inclusion would yield a slight
shift of the eigenvalues E„, making them complex.
P(k) would then exhibit a sharp finite peak at the
threshold. If the linewidth were solely due to natural
broadening, P(k) would have the value

~P(s)
~

~ sn
—'=1.25&&10',

yielding the extremely large and narrow resonance cross
section. This value would be reduced and broadened if
other broadening mechanisms were operative. We shall
not pursue this further since the results will depend
upon the experimental environment of the atom. An
analytic continuation of (10) to the region above the
first threshold can be obtained by an integration by
parts, reducing the power of the singularity in the

inte grand.

PHYSICAL REVIEW VOLUME 128, NU MB ER 6 DECEMBER 15, 1962

Study of Electron Correlation in Helium-Like Systems Using an
Exactly Soluble Model*

NErL R. KESTNER$ AND OKTAY SINANOGLtr

Sterling Chemistry Laboratory, Yale University, gem Haven, Connecticut

(Received July 13, 1962)

The exact solution of a two-electron system in which the electron-electron interaction is Coulombic but
the electron-nuclear attraction is a harmonic oscillator potential gives the following wave function: x&x2f (rrs),
where the x's are one-particle spherical harmonic oscillator wave functions. The exact f(r») has only a small
curvature in r», the distance between the two electrons. This exactly soluble model is used to gain some
insight into electron correlation in actual two electron atoms and into the usual approximations. A varia-
tional trial function, f(r~m) = 1+urrs, where' is a variable parameter, gives energies and even wave functions
close to the exact solution. The correlation energy determined from an analytic Hartree-Fock solution
and the average angle betv een the two electrons are somewhat less than in actual helium-like systems.

I. INTRODUCTION
'

~~ROM the early work of Hylleraas to the present,
the main problem in the quantum mechanics of

two-electron systems has been the choice of correct
trial wave functions. The present state of this research
is summarized by Lowdin. ' The problem is to find the
correct two-electron part of the wave function since
the Hartree-Pock solution is the best one-electron
result.

*This research was supported by a grant from the National
Science Foundation.

t National Science Foundation Predoctoral Fellow.
P. O. Lowdin, in Advances in Chemical Physics, edited by

I. Prigogine (Interscience Publishers, Inc. , New Pork, 1959),
Vol. II, p. 207; P. O. Lowdin and L. Redei, Phys. Rev. 114, 752
(1959).

The studies of Pock, ' Kinoshita, ' Kato, 4 and others
sought to obtain the form of a power series solution,
hoping that a trial function of that form would rapidly
converge to the exact wave function. Kinoshita's
energy calculations on helium' attest to this approach.

However, one cannot solve the two-electron atomic
system exactly; nor can one obtain the coefIicients of
each term in a formal power series solution. To study
the two-electron effects which represent the correlation
in the motions of the two electrons, we consider here a
model problem which can be solved exactly.

A single-particle Gaussian wave function of a spheri-

2 V. Fock, Kgl. Norske Videnskab. Selskabs Forh. 31, 138, 145
(1958).' T. Kinoshita, Phys. Rev. 105, 1490 (1957).' T. Kato, Trans. Am. Math. Soc. 70, 195, 212 (1951).
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cally symmetric harmonic oscillator is quite similar to
the is state of a hydrogenic atom, lacking primarily a
cusp at the origin. Our model consists of tao electrons
placed in a harmonic oscillator well, but repelling one
another with the Coulomb force. Since the electron-
electron interaction is the same as in actual helium
atom and only the nuclear attraction is approximated,
the model is realistic as far as electron correlation is
concerned.

Even the analogous model for the hydrogen molecule
can be solved, but the behavior of the harmonic oscil-
lator potential at long distances makes this a poor
approximation.

Similar models have been used in the study of nuclei. '
On finite nuclei, Eden and Emery' used single-particle
harmonic oscillator potentials and effective pairwise
nucleon interactions treating the hard core as a per-
turbation. Our model combined with that of Eden and
Emery may be useful in calculating electrostatic re-
pulsion effects in finite nuclei.

Gaussian orbitals have been used also in actual atomic
and molecular problems as infinite basis sets for the
correct Hamiltonian. ' ' They are easier to use than ex-
ponentials in regard to the evaluation of integrals. Two-
electron systems were studied this way by Kimball and
Neumark. ' Single Gaussians used as trial functions with
the true Hamiltonian give poor energy values in atomic
systems primarily due to the lack of a cusp at the origin.
The sum of two Gaussians is somewhat betters because
they tend to create a cusp. The studies all use Gaussians
to build up convenient trial functions for the true
Hamiltonian. They are of a different nature than the
work reported here with a model Hamiltonian.

Wulfman" also studied a model, but he replaced all
Coulombic interactions, including electron-electron re-
pulsions, by harmonic oscillator potentials in his study
of large molecules.

Our purpose is to study the correlation part of the
wave function and energy with the model defined above.
Correlation energies of two-electron systems are remark-
ably insensitive to central fields (e.g. , they change very
little along the He, Li+, Be++ isoelectronic series').
Therefore, a model in which the (1/rrs) repulsion is re-
tained as such and only the nuclear attractions re-

placed should be a useful one. Most of the specifics of
the electron-electron interaction should appear in the

' D. J.Thouless, The Quantum Mechanics of 3fany-Body Systems
(Academic Press Inc. , New York, 1961), pp. 12—13; Y. C. Hseih
and I. Block, Phys. Rev. 101, 205 (1956); G. A. Baker, Jr. , J. L.
Gammel, B.J. Hill, and J. G. Wills, Phys. Rev. 125, 1754 (1962).

6 R. J. Eden and V. J. Emery, Proc. Roy. Soc. (London) A248,
266 (1958).

r S. F. Boys, Proc. Roy. Soc. (London) A200, 542 (1950);
R. K. Nesbet, J. Chem. Phys. 32, 1114 (1960).

'R. McWeeny, Nature 166, 21 (1950); Acta Cryst. 6, 631
(19S3).

G. E. Kimball and G. F. Neumark, J. Chem. Phys. 26, 1285
(19S7)."C. E. Wnlfman, J. Chem. Phys. 33, 1567 (1960).

two-electron part. of the wave function and this should
be closely related to real atomic systems. We shall com-

pare the exact solution of this model with trial func-
tions similar to those used on actual two-electron
atoms.

One of us" has shown how the main part of the corre-
lation in a many-electron atom can be obtained from
those of two-electron systems in a Hartree-Fock "sea."
Methods similar to those of Hylleraas can be used on
these so that detailed study of correlation in two-
electron systems acquires added significance.

h»sl »1 as

+ +
4m c)XP c) I'is rlZrsl

+h(Xi'+ I'i'+Zi')F =ErI', (5)

h' ( c)'4 c)'4' c)'C' ) h
~+-(X;~~, +Z, )~

m (c)Xss c) F'ss c)Zssl 4

where

+ =Ec,c, (6)
(Xss+ I'ss+Zs') '

Er+Eg= E.
The solution of Eq. (5) is that of a spherically sym-

"O. Sinanoglu, J. Chem, Phys. 36, 706 (1962); Proc. Natl.
Acad. Sci. U. S. 47, 1217 (1961);Proc. Roy. Soc. (London) A260,
379 (1961).

II. EXACT SOLUTION

With nuclear attractions in an actual two-electron
atomic system replaced by harmonic oscillator poten-
tials, the Hamiltonian of the model is

X= —(h'/2m) (qr'+ Vs')+-,'h (ri'+rs')+ (e'/ris). (1)

Distances r~ and r2 are from the nucleus to electrons
one and two, respectively. p&' and p2' are the Laplacians
of the two electrons. k is the effective force constant of
our oscillator composed of an electron and the nucleus;
m is the reduced mass of each electron. r~2 is the dis-
tance between the electrons,

~
rs ri~. C—artesian co-

ordinates centered on the nucleus are x&, y&, s& for elec-
tron one and x~, y2, s2 for electron two.

We perform the following coordinate transformations:

Xi (ar++2)/2, Fr= (yi+ys)/2, Zi= (sr+ss)/2;
(2)

X2 ~2 ~1) ~2 g2 $1) ~2 ~2 ~l-

The transformed equation,

~+ (Xi,J 1,Z1 X2 J 2,Z2) (3)

(where 4 is the tota, l wave function and E is the total
energy), is separable:

~ (X2 +2 Z2)p (Xi J 1 Zi)
with
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metric harmonic oscillator of force constant 4k":
I'= exp/ —(km)"'r+'/&fr+'F(„(e, y)G(r+'), (8)

where G(r+') is a confluent hypergeometric function,

l.2

J.Q

Xt'+ I"ts+Zt', (9) 0.8

and I't (e,&) are the spherical harmonics. In the ground
state l=0, Fpp and 6 are constants, and

Er——-s, k(k/m)"'.

The solution of Eq. (6) is more complicated. Treating
only the ground state (most symmetric case), the angu-
lar part of the wave function is a constant. If r~2'
= xs +$2 +s2., we get

0.6

0P

0.2

0.0-
0 I 2

DISTANCE BETWEEN ELECTRONS, q

8 4 2 84' k 84' Ey
+— +—rts'C+ —=—4. (11)

2fps Bfy2 rIg ter] 2- 8 2rig 2

We remove the first derivative term by the trans-
formation C = p/r» and put our equa, tion in dimension-
less form, setting

r ts ——L2k/(mk) lllrf,

(12)

where energy e is in oscillator units: E„,—:(k/2) (k/m)'f',
and P= (8,„/E„,)"', E„„is the atomic unit of energy
(twice the energy of the hydrogen atom, 27.21 eV).

The eigenvalues of this equation cannot be found by
standard Frobenius power series methods" since we
have an irreducible three term recursion formula. Thus
we are forced to a numerical procedure. "

P represents the strength of the electron-electron re-
pulsion compared to nuclear attraction. It should de-
crease with increasing nuclear charge. To get a specific
value for P, we use a Gaussian orbital as a trial function
on an actual hydrogen-like atom. The force constant is
the variable parameter. Doing this, McWeeny' found

k = (4m'esZ'/k') (8/9m)',
or

E...= (k/2) (k/m) "'= (me'Z'/k') (8/9m )=Eau (8/9m )Z'.

Therefore
P = (9m./8Z') "'= 1.879970/Z. (13)

Once P is chosen and the model thereby related to the
actual atom, the problem becomes the solution of Eq.
(12) to obtain the exact wave function of the model.
The zero of energy differs from that in a real atom since
our potential is zero at the "nucleus, " whereas in an

"E. Landau and E. Lifshitz, Quantum Mechanics. ' Eonrela-
tivistic Theory (Addison-Wesley Publishing Company, Inc. ,
Reading, Massachusetts, 1958), p. 129—30.' J. Irving and N. Mullineux, Mathematics in Physics and
Engineering (Academic Press Inc. , New York, 1959), p. 69.

'4 Reference 13, p. 697,

FIG. 1. Wave functions, C (r»l, vs effective atomic number, Z.

actual atom the potential is zero at infinite distance
from the nucleus. For this reason our energies are
positive, and not negative as in real atoms.

Initial estimates of these wave functions and the
eigenvalues were obtained by hand computation.
Further refinements were done on the IBM—709 com-
puter of Yale University. The integrations from g=0
to rf =4.0 (outward) are very sensitive to the eigenvalue
at long distances. Following Hartree, " inward integra-
tions were performed starting at g=7.0 and matched
to the outward integrations at g= 3.3. Hartree's method
for initiating the inward integration was used. "

In Fig. 1 the wave function 4 is plotted for Z = 1, 2,
and 3 in terms of p. The curves are adjusted to intersect
at one for g=0. To convert the abscissa to Bohr radii,
tf is multiplied by p. The exact energies are listed in
Table I. The total energy is the sum of Eq. (10) and the
numerical solution eigenvalue. Errors in energy were
independently estimated from the mismatch in the
inward and outward integrations. "

More meaningful is LC'/e "' j=f(rts) since this
represents the deviation of 0 from the uncoupled
oscillator results Le=0 in Eq. (1)j. In Fig. 2 we plot
f(rts) in terms of q. The solution up to rf=6 is the
numerical solution (inward and outward integrations).

If we let Ile &'~'= v, we get

(d'H/drf') 2rf(dH/drf)+ Pe —1—(P/rf) jH= 0—. (13b)

Notice that f(r») =H/rf. The power series solution is

(14)

a~+t= LPa„+(2m+1—e)a tj/(m+1) (m+2). (15)

This is a convergent alternating series for large m. It
converges very slowly and is useless beyond, about
g = 1.5.

The asymptotic solution" of Eq. (13b) is more inter-

"D. Hartree, Calculation of Atomic Structures (John Wiley R
Sons, Inc. , New York, 1957), pp. 82—84."I.Irving and N, Mullineux, reference 13, pp. 102—103,
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TABLE I. Energy" calculations for two electrons in an harmonic oscillator well, with a trial function given by
(e ~'»" +Be ~'« /) (e '»2'"+Be ~«2 /~) f(r 2), where f(res) =1+ay=1+(a/v2)pq2.

Calculation

Exact solution of model
Single orbitals (a =0, 61=1 0, B=0)
Screened orbitals (n=0, B=O)

(simplest analytic Hartree-Fock)
Two-term Gaussian orbitals (n =0)

(analytic Hartree-Fock)
Linear variation function

(Bg = 1.0, B=0)

H (Z= 1)

7.89194
8.1214
8.0352 (/h=0 850.)

7.99830 (4 =0 920,
B2

——3.4p, B= —0.24p)
7.8920 (a =0.8994)

He (Z=2)

6.99800
7.0607
7.03822 (Si =0.918)

7.02857 (Bg ——0.95'
8g

——3.85, B= —0.130)
6.99863 (n =0.3320)

Li+ (Z=3)

6.67838
6.7071
6.6970 (81——0.945)

6.6926, (5,=0.96„
b2 ——4.5p, B= —0.083)

6.6789 (a =0.2017)

'»cil»«r u»t o«nergy Bose = &l)7(k/m)'/2 (see text). The zero of energy is such that the harmonic oscillator potentials are zero at the "nuclei. " LSee
remarks a&ter Eq. (13).J The potential is always positive.

esting and useful:

f(r )~r/(e 3)/2 1—+ +Q f/ ~
—m

2n =2

b = $4Pb„ t (2m —3——e) (2m —1—e)b„sj/8m. (17)

This series does not converge, common for most asymp-
totic expansions, ' but often it can be truncated to give
a good estimate of the function. In our case four to six
terms of Eq. (16) give results good to four decimal
places even for g= 2.0.

The form of Eq. (16) is quite as expected. If our oscil-
la, tors were uncoupled (P=O), we wouM have e=3.0
and our final f(r, s) would be unity for all r/ (f/ =0 for
all m)0). In that case the H's are Hermite poly-
nomials. The z' ""term is the same for any potential,
V=x~2 "where n)0.

In Table II we list the coefficients in Eq. (16) for
Z=1, 2 and 3. These solutions are plotted in Fig. 2 as

a continuation of f(r») beyond &=5.0. Actually the
solution of Eq. (16) holds down to about r/=1.0 and
compares well with both the numerical and power
series solutions Eq. (14) where each is applicable. The
numerical solution is the least accurate due to matching
and accumulated errors.

The 6nal wave function is

e=f(r») exp{)—(km)"'/25$(rts+rss)) (18).

with f(r») behaving almost linearly with respect to
r». In Fig. 3 the total energy is plotted versus P and we

find it is almost linear in it. Fitting our exact eigen-
values, the energy can be expressed as a rapidly con-
vergent power series in P:

E=6+1.1277P—0.07588P'+0.00603Ps, (19)

where E is in oscillator units, Kq. (13).This result will

be compared later with the energy of He-like ions as a
function of Z. The energy in Eq. (19) is positive for
reasons explained after Eq. (13).

9.0

L~5Q

I.O-
0 2 8

DlSTANCE BETWEEN ELEC TRONS, 77

Z=1 Z=2 Z=3

III. COMPARISON WITH VARIATIONAL SOLUTIONS

Since f(rts) is almost linear in r) or rts, a useful form
of trial function' is

i
—(e

—slP1 /2+ f3' s2P1 /2)—
&& (e "'""+~e "'"")(1+~'p»), (2o)

using dimensionless variables

Lp= (mk/ft')"'r E' =-,'k(k/m)"'sr j.
Notice that the distance units are not those of Eq.
(12) due to the symmetry of the coordinate transforma-
tion, Kq. (2), e.g. , cr'=n/K2.

TABLE II. Six coefficients in the asymptotic expansion of f(r»),
using Eq. (16):f(r12) =q(~8)/'Z p"b g™.

FIG. 2. f(r&z) vs. r/= P(mk)r/s/2k]'/sr&z. The heavy line is the exact
solution; the light line is the variational solution, f(r12) =1+a.r12,
and the broken line is the initial slope of the exact solution for the
helium-like case. Outward integrations: g=0 to 3.3; inward inte-
grations: q=3.3 to 7.0; power series: q=0 to 1.0; asymptotic
series: q&2.

&~ E. D. Rainville, Specia/ FnrIctioes (The Macmillan Company,
New York, 1960), p, 33,

bp

b1
b2

b8

b4

b5

(c—3)/2

1.00000
0.93999—0.01842
0.00224
0.00066—0.00036
0.94597

1.00000
0.46999—0.07655
0.00759
0.00809—0.00209
0.49900

1.00000
0.31333—0.06447
0.00497
0.00923—0.00162
0.33919



ELECTRON CORRELATION I N He —LI KE SYSTEMS 269i

Substituting Eq. (20) into the standard variational
formula and minimizing the energy with respect to the
8's or n',. various special cases were treated. The result-
ing parameters and energies are listed in Table I. The
case of n'=0, 8&= 1, 8=0 gives simply the Coulombic
interaction of two independent oscillator orbitals. The
solutions for o.'=0 correspond to various approxima-
tions to the Hartree-Fock result. The case where 8 is
not zero is known to be a good analytic representation
to the Hartree-Fock orbitals from studies on the corre-
sponding atomic cases. '

The f(r») determined by variational methods are
plotted in Fig. 2 and we see that this simple function
does fit the exact result quite well.

x,yg (1+nri~), (21)

where y j and gg are one-electron wave functions.
Hylleraas" was the first to notice that this form im-

proves the energy significantly beyond any one-electron
wave functions despite their simplicity. For the helium
case he found m=0.364 using screened Slater orbitals
compared to our n=0.353 (in reciprocal Bohr radii).
This method is also useful in many-electron atoms. "
Notice that most of the difference between Coulombic
and harmonic potentials is in the one-electron part
(xix~)

Equation (21) gives good energies for actual helium-
like ions only when the trial function is "scaled" to
satisfy the virial theorem. ' In our model, the standard
virial theorem no longer applies since our potential is
a mixture of harmonic oscillator and Coulombic inter-
actions. The f(r, 2) =1+nri2 without any modification
gives a much better energy (within 0.02 eV) on the
model than even the "scaled" trial function does on
actual ions (within ca 0.2 eV). This is due, in part, to
the lack of a cusp in the oscillator wave function, and
the difference in the behavior of the two parts of the
potential at long distances. How well the linear form
gives the correct energy depends on two factors:

(a) The larger the value of Z, the closer crude wave
functions give the correct energy in two-electron
systems.

(b) The smaller the value of Z, the closer the exact
f(r») is to a linear form )see Eq (16)j. Th.erefore the
energy will be better also.

' E. A. Hylleraas, Z. Physik 65, 209 (1930),

IV. DISCUSSION AND COMPARISON WITH ACTUAL
TWO-ELECTRON SYSTEMS

The most significant feature of the correlation func-
tion f(ri~) is the almost linear behavior. The assumption,
f(r»)=1+nr» is very good energywise and is also
quite close to the true correlation function. For Z=2
(He-like model) the error in the exact energy of the
model due to using this trial function is only 0.00071
a.u. (0.019 eV). This linear form of the wave function
is called a "correlated orbital'"

O

tlat

O

0-
CQ

IJJ

I- 7
C3

K
LLI

I 2

P = 1.879970/Z

FIG. 3. Total energy vs coupling parameter P.

These two factors explain the observed trends in
these energy differences in Table I and in real atoms.

Our exact solutionLEq. (14)]in a power series has the
same form as Slater" obtained for two electrons so far
from the nucleus of a helium atom that one can treat
the nuclear attraction as a constant. He finds

f(ri2) = 1+-,'ri2+.

or in oscillator units

(22)

The first two terms are the same as in our model LEq.
(14)j. However, the complete power series solution
converges very slowly and is useless beyond about
q=1.5. This constant factor in front of g is quite dif-
ferent from that which yields the best value of the
energy by variational calculation (see Fig. 2).

We can also compare our exact solution (Fig. 2)
with plots of Kinoshita's thirty-eight term wave func-
tions vs ri2 for various ri+r~ and ri ri values. ' —Both
have the same shape. Notice also that our wave func-
tion is exact to all distances whereas any variational
solution, since it is concerned primarily with the most
important parts of the wave function, is expected to be
increasingly poor at long distances.

Actually f(rig) is not the true correlation function
since it is not independent of (orthogonal to) the single-
electron part. It is the orthogonal part which is physi-
cally meaningful. Details of the true correlation func-

"J.C. Slater, Quantum Theory of Atonzic Structure (McGraw-
Hill Book Company, Inc. , New York, 1960), Vol. II, pp. 37—39.
gee also Kato's work in reference 3.
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TABLE III. Correlation energies.

Hydride ion (Z=1)
Helium atom (Z=2)
Lithium ion (Z=3)

Actual atom
(eV)

—1.08—1.142—1.182

Our model
(eV)

—0.819—0.941—0.989

a P. O. Lowdin, reference 1, p. 240.

Using our energy expression Eq. (19), we get

E(a.u.)—3.53429Z'+ 0.59985Z
—0.07588+0.01133/Z. (25)

The signs of the first terms in Eqs. (24) and (25) differ
because they have different zeros of energy Lsee re-
marks following Eq. (13)j. Terms beyond the first in
each case represent the effects of electron-electron
interaction.

The total energy in our model is not expected to agree
with the energy of an actual two-electron system, Eq.
(24), since our Hamiltonian is different. We really want
to compare the correlation energies de6ned as the di6er-
ence between the exact eigenvalue and the Hartree-
Fock expectation value of a given Hamiltonian. ' Since
the Hartree-Fock wave functions are the best possible
one-electron functions, the correlation energy is a
measure of electron-electron interactions over and above
any average interaction. From remarks made in the
Introduction, we expect that most of the specifics of
the nuclear attraction will be absorbed in the one-
electron part of the wave functions, leaving correlation
energies similar to those in actual atoms.

The trial function, Eq. (20), with n'=0 minimized
with respect to the other three parameters is a good
approximation to the Hartree-Fock wave function and

2O O. Sinanoglu and D. Tuan, J. Chem. Phys. (to be published)."E. A. Hylleraas and J. Midtdal, Phys. Rev. 103, 829 (1956}.

tions in real two-electron systems and their effect on
the original orbitals are discussed by Sinanoglu and
Tuan "

For two-electron atomic systems, Hylleraas and
Midtdap' give the energy as a function of the atomic
number, Z:

E (in atomic units) = —Z'+ ssZ —0.15765

0.00854 0.00034 0.00082 0.00245
. (24)

Z 2

He:
Li+:

H:

012= 92.0',
812= 91.3,
012=97.3'.

Lennard-Jones and Pople, " using a wave function ex-
panded in terms of I.egendre polynomials in cose»,
calculated a maximum angle of 96' and an average
angle of 93.8' for helium.

V. CONCLUSION

The object of this paper was to compare the exact
two-electron part of the wave function with the usual
type of trial functions using a model system. We found
that (1+ttr») with cx determined variationally is a
good approximation over the entire range of r» since
the curvature of the exact two-electron part of the
wave function is small,

We also compared correlation energies and the aver-
age angle between the two electrons in our model with
actual values. They were somewhat lower.

The exact solution on a model where the electron-
electron interaction is realistic gives considerable in-
sight into the correlation behavior of actual two-electron
atomic systems.

"J.Lennard-Jones and J. A. Pople, Phil. Mag. 43, 581 (1952}

energy of the model. The analogous function in real
two-electron systems reproduces the Hartree-Fock func-
tions to three significant figures. ' The correlation en-
ergies for our model are the difference between the
e~act numerical solutions of Sec. II and the two-term
Gaussian analytic Hartree-Fock solution discussed
above. Correlation energies for our model and for actual
two-electron atomic systems are listed in Table III.
The correlation energies for our model are within 0.26
eV of those in actual systems. This difference is prob-
ably due to the mixed potential in our model; the
Coulombic part decreasing with increasing distance,
while the oscillator force increases. The lack of a cusp
in the wave function also reduces correlation energies.

It is also of interest to compare the average angle
between the two electrons in our model with the angle
in an actual atom. The average of the cosine of the angle
between the two electrons is easily calculated using

cose12—(rl +rs rls )/2rtrs. (26)

For m=0, i.e., no correlation effects in the wave
function, 8» ——90'. Using trial function, Eq. (20), with
8=0, 6&= 1.0 and integrating over all space, one gets


