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made using Eq. (13). The best over-all agreement
between the present results and previous measurements
seems to be obtained if the results of Risch (see reference
c of Table I) are used. It should also be pointed out that
the previous results quoted in Table I are obtained by a
completely different method than the present measure-
ment and are the result of averaging a number of
observations for elements with atomic number 81
(TP") and 83 (Bi'"). The value of corri, obtained for
thallium (Z=81) in the present work is considerably
lower than the value quoted for lead (Z=82). Kinsey'
gives values of ~I.II and ~~III ro which the number for
coxl, (Z=81) given in Table I is calculated using
Eq. (3). This number is smaller than the one measured
in the present experiment by about 15%. The cause

for the disagreement may be that the I.III shell yield
given by Kinsey is too small. Recent measurements'
of this number give somewhat larger values in this

region of atomic numbers. The measurement of coz, L,

for Z= 78 is compared with an I.I subshell yield meas-
ured by Roos and quoted in reference 9. (It is as-
sumed that this yield is v~, rather than coL,, as quoted
in reference 9. This assumption is reasonable since orl.,
should be only about one third as large due to the eRect
of Coster-Kronig transitions. ) The agreement between
these two numbers is only fair and may be accidental
because of the large experimental error quoted for the
previous measurement.

The authors would like to thank ArnoM Kirkewoog
for his help during the course of this work.
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A variational perturbation method used by Hylleraas has been extended to include 70-term basis sets as
approximations to the erst-order wave function of the two-electron atomic species. An upper limit of
—0.15766625+ a.u. has been found for the second-order perturbation energy coeKcient. It is estimated
that this value is converged to at least two units in the seventh decimal place. A value of the third-ord«
perturbation energy coefficient of 0.00869868 a.u. is calculated from the same variational first-order wave func-
tion. A number of expectation values to first-order for certain operators Le.g., b(ri), 8(ri&), pi', ri", coo&is, etc.g
are computed, and compared, where possible, to known values. A variety of basis sets is studied, including
a set that contains negative powers of the metric variables ("Kinoshita" type) and one that contains only
positive powers ("Hylleraas" type). A scheme is proposed that uses first and higher order expectation values

for the analysis and characterization of approximate wave functions. This scheme, which is not restricted
to two electrons, also opens the possibility of a nonenergetic variational procedure for obtaining wave
functions.

I. INTRODUCTION

N upper limit for the second-order perturbation

~ ~

~ ~

~

energy coefficient, e&, of the two-electron atomic
species is found here which is the deepest so far reported.
It is estimated that the value oP

&2 = —0.15766625+ a.u.

is converged to at least two units in the seventh decimal
place. The method employed is due to Hylleraas, ' and
is admirably adapted to retaining the full numerical
accuracy available with an electronic computer. First-
order approximations to other properties of interest
are also found, and in Sec. IV a proposal is made for
the application of perturbation theory results to the
analysis and characterization of approximate wave
functions.

i Atomic units (of length, the Bohr radius; of energy, 2Rhc) are
used throughout.' K. Hylleraas, Z. Physik 6S, 209 (1930).

Conventional Schrodinger perturbation theory pre-
sents an atomic wave function as an expansion in powers
of the nuclear charge Z:

4=2-Z V- (2)

where the sum to a particular e is called the mth order

wave function. This expansion leads to what might be
called a perturbation expansion for the expectation
value of an operator. Thus, the expansion through 6rst
order of the expectation value of an operator is given
in obvious notation by

(Q)o+Z '(Q)i= dr Po*&Po+2Z ' dr pi*&Ps (3)

Recently a fund of information on such perturbation
expansion terms of various expectation values averaged
over the ground states of the hrst few members of the
two-electron isoelectronic sequence has become avail-
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TABLE i. Some erst-order expectation values, in atomic units.

2k

62

31m-IZ-IS
—~z 2s(r,-}

—2-Z 'sir„}—5 (r2 —r2}—Z 'P14

—(nz} 282
yl 1 y2 1

Z'(ri+r2}
Z2(rP+r22}
~ y12—Zr1 r2

2.55
0.157666254
0.125332617
0.008698679
0.133293412
0.6677846

0.2429172
0.2102302
4.0911498

0.0814216757
0.624999998
1.124999976
4.78124998
1.02968827
0.378616569

2.73
0.157666149
0.125332144
0.008698674
0.133293679
0.6678131

0.2428040
0.2102390
4.0912292

0.0814258583
0.624999812
1.124998477
4.78123054
1.02968741
0.378618085

2.0
0.125331979
0.125331979—0.005215406
0
0.6698709

0.1529560
0.2099754
4.091449

0
0.624999998
1.125000002
4.781250000
0.872551061
0

Other

~ ~ ~

0.1576664~
0.12534b
0.008690'
0.13327$
0.667639614'
0.6675~
0.2431~

~ ~ ~

4.09111691''
4.092
0.08141.
0 625c,d, e

1.125c2e
4 78125c,d,e,f

~ ~ ~

0.379'

a From an analysis of Pekeris' data. See present footnote 9.
b See footnote 17.
& Exact values from footnote 5.

d Exact values from footnote 6.
e Exact values from footnote 7.
f Values from footnote 3.

able both from theoretical calculations' ' and from
analysis of experimental data. "The (Q)s part of Eq. (2)
is usually easily computed, and in special cases so is the
(Q)1 part. ' ' In general, in order to find the (Q)1 con-
veniently, an approximate form for 1' is required. Aside
from calculations of the third-order energy coefficient,
ss, the only previous direct calculation of an (0)1 from
a $1 for the two-electron system is due to Dalgarno
and Stewart. ' 4

The Hylleraas method employed is a variational
perturbation procedure. The variational wave function
is an approximation to F1. In addition to computing a
bounded s2 (and an approximate, but presumably not
bounded es), this approximate iti has been used in
Eq. (3) to compute approximate values for (Q)1. These
(Q)1 not only have an intrinsic interest, but they may
turn out to have some interesting applications as
discussed below. Thus, it seemed worthwhile to extend
the work of Hylleraas to other and larger basis sets.

an expansion whose form is given in a conventional
notation by

$1 Q 1 $1 (ri, r2)~1(cosl712) ~

When the summation is cut off at t =0, 1,2, the sets
are referred to as 5, P D . . .'3 The actual P used in-
cluded 40 1=0 (s-type) terms and 30 /=1 (p-type)
terms. The actual D used included 40 s-type terms,
20 p-type terms, and 10 l=2 (d-type) terms. The best
limiting ~& value that can be obtained from an infinity-
term S is called the s limit, (e2 ); from an infinity-term
P is called the P limit, (es ), etc. All the basis sets include
a scaling factor, AZ, where k is a variation parameter.

Table I tabulates the results. Comparison values
obtained from an analysis' of the very accurate expecta-
tion values found by Pekeris" are also tabulated, as
well as some from other sources, and such exact values
as are available. Note that

V1' V2$0 Z cost 12/0)

II. PROCEDURE AND RESULTS
so that

(~m)1 (Vi' V2)1 Z (cos012)1)
Three basically different basis sets are considered

here. The 6rst set, referred to as K, includes 70 of the 80
terms employed by Kinoshita. " The second set,
referred to as H, includes 70 terms of the "Hylleraas"
type. "The third set is a group of 70 term sets based on

'A. Dalgarno and A. L. Stewart, Proc. Roy. Soc. (London}
A247, 245 (1958).

4 A. Daigarno and A. L. Stewart, Proc. Phys. Soc. (London} 75,
441 (1960}.

2 M. Cohen and A. Dalgarno, Proc. Roy. Soc. (London} A261,
S6S (1961).' C. Schwartz, Ann. Phys. (New York) 6, 156—180 (1959}.

~ C. %. Scherr (unpublished).
C. Schwartz, Phys. Rev. 126, 1015 (1962).

'C. W. Scherr and J. N. Silverman, J. Chem. Phys. 37, 1154
(196')."C. W. Scherr, J.N. Silverman, and F. A. Matsen, Phys. Rev.
127, 830 (1962).

11 T. Kinoshita, Phys. Rev. 115, 366 (1959}.
"That is, only positive powers of the metric variables.

where 8 is the mass polarization; and, of course,

(r„—'),= 2s2.

The E2 (a retardation correction) has been discussed

by Dalgarno and Stewart' and by Pekeris. '

III. OISCUSSIom

A. The K and H Basis Sets

The optimum k values were readily determined to
within a few hundredths of a unit for both the K and H
basis sets. Each of the k values is greater than unity,
as may be seen from Table l, so that the conventional

"The Grst-order wave function used by Dalgarno and Stewart
and referred. to above was an F-type.

'4 C. L. Pekeris, Phys. Rev. 112, 1649 {1958).
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TABLE II. A comparison with some exact values, in atomic units.

Operator

rl +r2
Z'(rl+r, )
Z'(rll+ rs')
Z (4rlrs+rl +rs ) cos812
Z3 (4+Zr j.+Zrg) r1rg cosH12
Z (rl+r2) cos812
Z'(11r1rg —Zr13 —Zr p) cos812
Z—

3p 4

41rZ 'S(r,)

Exact theoretical value

—0.625—1.125—4.78125—2.40625—3.12890625—0.4375—6.15234375—4.091116916.. .—2.670558458. . .

Value obtained via K
—0.624999998—1.12499998—4.78124998—2.40624943—3.12890148—0.437499808—6.15232381—4.0911498—2.6711384

Relative error

2.7X10 '
2.2X10 8

4.1X10 '
2.4X10 ~

1.5X10-6
4.4X10 7

3.2X10 6

8.0X10 6

2.2X10 4

interpretation of a scaling factor as introducing "shield-
ing" does not apply in this case. The lower value of e2

obtained via K as well as the better reproduction of the
exactly known expectation values seems to allow the
conclusion that the present K is superior to the H types
investigated. However, it would be premature to
generalize from this result. "It is very difficult to assess
the degree of convergence of the computed e2. An
attempted extrapolation from the data of 40-, 50-, 60-,
70-, and 80-term K basis sets failed as the 80-term
results were beginning to be in some doubt in the eighth
or ninth decimal due to accumulation of roundoff. "An
indication of the accuracy of the calculation can be
obtained by comparing how well the (0)1 are found for
those cases where the exact results are known. A
consideration of Table II shows that these cases seem
to form three groups, one whose relative errors (for K)
are of the order 10 s to 10 ' (operators of the form
rl"+re", m&~—1), one whose relative errors are of the
order 10 ' to 10 r (operators typically involving
cos8ls), and one whose relative errors are of the order
10—4 to 1() ' [pi' and 5(rt)$. The first group owe their
accuracy to their dependence only on s-type terms (see
subsection 8).The third group are discussed in the next
paragraph. The operator used to furnish c~ involves
cos8», and is probably a member of the second group.
In fact, e2 may be the best converged member of the
second group, as the form of lit (i.e., the variational
wave function) is tailored specifically to the needs of
computing e~. This would furnish an approximate upper
limit for the relative error of the computed e2.

It is not surprising that the relative errors of the
expectation values of the operators of the third group
are large. The expectation values of these operators are
sensitive to the goodness of pl near the nucleus. This is
obvious in the case of B(rl), and, as shown elsewhere, "

found from the analysis of his data is 2.2)&10 4. Like-
wise, for (P14)l the relative error is 2.0X10 4. To see
just how poor a 6rst-order wave function is near the
nucleus, consider the coeKcients of the constant and
linear terms in the unnormalized H after the exponen-
tials have been expanded in a power series

p=po+Z 'lpi+.
= (1—1.1124Z ') —(1—1.11485Z ')Z(rl+r, )

+0.4630ris+, (9)

so that for Z= 2,

1P = 1—1.9186(rl+rs)+ 1.0433rls+, (10)

whereas the exact solution should start with

P= 1 Z(rt+rs)+0. 5r—is+

Note from Eqs. (9) and (11) that in the limit of infinite
Z the coeKcient of rt+rs approaches the correct value,
but the coefFicient of r~2 remains incorrect.

B. S, I', and D, and ~&'

The best eso value'r computed from a 70-term S was
—0.125331979.The minimum was insensitive to k and
was given indifferently by any k in the range of about
0.9 to 1.4. The reported value of unity was picked
arbitrarily. Because of the limited interest of the P and
D results, they are not presented in Table I.The P was
optimized at 4=1.8 and gave an es= —0.151778065.
The D was optimized at k =1.8 and gave an
t.2

———0.155390431.These compare well with Schwartz's
values' of e2'= —0.12527, e2'= —0.1516, and(—0.1550.

It follows from Eq. (4) that the 5 part of any lent is
given by

(P,4),= 8 Z(S(r,)),+1.25Zs. (8)
lplPo(cosgls)lf COSOls, (12)

It is interesting to note that for this third group the
values recovered from Pekeris' calculations are qualita-
tively no better. Thus, the relative error of the (5(rl))i

'~ The superiority may be an artifact, and some better choice of
the 70 terms used in H might lead to an improvement in its results.
This point was investigated to some extent.' For what it may be worth, an 80-term K identical in its
selection of terms with the 80 of Kinoshita gave an ~2 of—0.15766631, and e3=0.00869875,

due to the orthogonality of the Legendre polynomials.
This S part can be used to compute estimates of e~',

"This value should agree with the value obtained by C. W.
Scherr, J. Chem. Phys. 33, 317 (1960), by direct summation of the
perturbation series terms. It does not as Scherr has one integral,
the "Contribution to e-„from doubly ionized states )from termsg
with l= 0," incorrect by a factor of 2 (see C. Schwartz, reference
8). When this error is taken into account Scherr would obtain
0.12534 in agreement with the value obtained here.
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the s limit e~, via

&20= dr 4o*rg2
—'PP. (13)

The s limit so computed from K is deeper than that
computed from S. Even though all 70 terms of K
contribute to the s limit, this result is somewhat hard
to understand. The difhculty may lie in the possibility
that the &20 value computed via Eq. (13) is not a bound,
and/or it may lie in an ineKcient choice of terms for 5.

Any operator such as r&"+r2" which does not depend
on cos0~2 can be expected to be obtained with high
precision from an S as its total (Q)& depends only on
the PP part of Pt. A glance at Table I shows that these
operators are obtained correct to more than nine
significant figures.

It is shown elsewhere' that

IV. A POSSIBLE APPLICATION

These first-order corrections can be used to compute
good estimates of an expectation value when Z is large.
In addition to this obvious application, they could also
be used:

(1) to investigate how well an approximate wave
function describes the various regions of its configura-
tion space;

(2) to investigate, for a particular region of configura-
tion space, which approximate wave function among a
collection of them does best; and, as is suggested by
F. A. Matsen (private communication),

(3) to determine which terms in a basis set are
effective and which are ineffective in contributing to
the calculation of the expectation value of a particular
operator.

4&~' ———2(& (1))i—0.921875,

where t=r2 —r~. The e2 computed in this fashion comes
out to be —0.125353, indicating convergence to two
units in the fifth decimal place. This is probably a
pessimistic estimate due to the difhculty involved in
obtaining a good value for a delta function.

These uses can be implemented in two ways:

(1) by comparing the computed expectation values
with exactly known values, and

(2) by computing the expectation values of an
operator, 0, for a series of Z values, and then, by a
procedure involving differences, " obtaining estimates
for (Q)o, (Q)~, (Q)g, etc. These estimates will be obtained
with an rms deviation. For a correction term of a given
order, the smaller that rms deviation, the better the
approximate wave function, at least in the region of
configuration space most important to the operator in
question. "

For example, a recent paper by Nesbet" has very
clearly and effectively shown how the expectation
value of an operator which does not commute with the
Hamiltonian can depend very sensitively on terms
which have a negligible effect on the energy.

An intriguing aspect of uses (2) and (3) above in
connection with implementation (2) is that they offer
a nonenergetic variational criterion (via minimizing the
rms deviation) for determining a wave function. These
ideas are, of course, not restricted to two-electron
systems but can be applied just as well to a many-
electron system.

V. CONCLUDING REMARKS

This work is being extended, employing different
basis sets, to the excited singlet and triplet S and I'
states of the two-electron atom. It is planned to explore
the possibilities raised in Sec. IV in numerical detail.
The calculations were performed on a CDC 1604
located on this campus.

Note added inproof. T, he authors have extended the
investigation to include a $00-term basis set using a
double precision calculation. An ~2 value, provisionally
regarded as being converged to 8 decimal places, of—0.1576664048 has been obtained, and an ea value of
+0.0086989907.
"The authors are pleased to acknowledge that part of the above

material in this section arose from discussions with Dr. Jeremiah
N. Silverman."R. K. Nesbet, Phys. Rev. 118, 681 (1960).


