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Semiclassical Dispersion Theory of Interband Magneto-Optical Effects
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From the classical equation of motion a conductivity tensor is derived for a bound electron in a dc external
magnetic Geld. Then the conductivity for a circularly polarized wave is obtained, which is expanded in terms
of the magnetic Geld. With the appropriate form of the oscillator strength for the interband transitions, the
conductivity components are evaluated for the zeroth, erst, and second power of the magnetic 6eld over
the two energy bands for the direct and the indirect transitions. The results are used to obtain expressions
for the interband Faraday rotation and the Voigt phase shift in the limits of co (cv, and co)co„where co is
optical frequency and c0, the frequency corresponding to the energy gap. In the latter case oscillatory be-
havior is described by the expression near the frequency of singularities with a loss term in the form of re-
laxation time r.

INTRODUCTION

'HE early interband magneto-optical phenomena
investigated in semiconductors were the oscilla-

tory magneto absorption where it was only necessary
to calculate the absorption coe%cient in the presence
of dc magnetic Geld. This has been carried out by a
number of investigators' by evaluating the absorption
coefficient from the following integral:
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where E is a constant, M the momentum matrix, s the
direction of the magnetic 6eld, and E (k'), E (k) the
eigenvalues in the presence of the magnetic 6eld for
the two sets of bands considered. This type of integral
has been used to evaluate the coefficients for the direct
allowed, the direct forbidden, and the indirect transi-
tions and applied to interpret the experimental results
in several semiconductors. ' More recently, however,
the investigations have been extended to reQection
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phenomena in semiconductors' and semimetals' as well
as to the study of the interband Faraday rotation5 in
some of these materials. Theory of reflection from a
metal in magnetic fields has been also treated by
Dresselhaus and Dresselhaus. Furthermore, it has
occurred to us that the interband Uoigt eRect which has
recently been observed experimentally~ is amenable to
analysis at the same time. In order to interpret these
experiments, it was necessary to consider the dispersion
associated with the interband transitions as well as the
absorption. For the interband Faraday rotation this
was first carried out by the use of the Kramers-Kronig
relation which expresses the dispersive components in
terms of the absorption. ' Similar results were obtained
by SuRczynski. ' Subsequently, in this treatment and an
earlier one involving the Kramers-Heisenberg integrals
with a magnetic field, only the scalar or diagonal quan-
tities were evaluated corresponding to a rotating frame
of reference. This, however, did not give the proper
symmetry relations for the Faraday rotation. However,
in order to treat properly the magnetoreQection and the
interband Faraday rotation and the Voigt effects, it
is necessary to formulate the Kramers-Heisenberg in-
tegrals in tensor form in the presence of a magnetic
Geld. The results then do possess the correct symmetry
properties.

' G. B.Wright and B.Lax, J. Appl. Phys. M, 2113 (1961).' R. N. Brown, J. G. Mavroides, M. S. Dresselhaus, and B.Lax,
Phys. Rev. Letters 5, 243 (1960):R. N. Brown, B.Lax, and J. G.
Mavroides (to be published).' Y. Kishina, J. Kolodziejczak, and B.Lax, Phys. Rev. Letters
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CONDUCTIVITY TENSOR RELATIONS

If we consider an electron in the valence band as a
classical oscillator with the oscillator frequency corre-
sponding to that of the energy associated with the par-
ticular interband transitions involved, then in the
presence of a magnetic 6eld we can write the equations
of motion of this bound electron as follows:

d'r~ dr~ dr~ eE
+~1,'rj, +vJ. + X~.=—e'"'. (2)

dP 52

~1, is the appropriate oscillator frequency; rA, is the dis-
placement vector; E is the electric vector of the optical
radiation; aa, = eH//inc is the cyclotron frequency; H is
the dc magnetic Geld; and vqdrI/dt is the damping term,
where vl, is the collision frequency. The index k corre-
sponds to the wave number of the electron. This equa-
tion can be solved for the velocity components which
are expressed in terms of the electric field components
and those of the magnetic 6eld. If the coordinate system
is so chosen that the magnetic field is taken along the s
direction, then we can calculate the current vector for
all these transitions as follows:

J=P eVplVk,

where Vl, is the velocity of the electron and 1Vq is the
number of transitions corresponding to the wave
number k, which depends on the oscillator strength.
Substituting the solution of Eq. (2) into Eq. (3), we
can derive

J=OE,

where 0 is the complex conductivity tensor, components
of which are given by

0 ~~=0'vv =k (~++~—) i
(3)

0'gy= gyg= g 0+ 0—
q
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era is the conductivity in the absence of the magnetic
6eld. The definition of the conductivities for circularly
polarized waves are quantities which follow from Max-
well's equations when the rotating vectors are intro-
duced. This is done by putting the equations of motion
in component form and then combining the x and y
components to obtain the solution for J,~iJ„to obtain
0.+. It also follows from Maxwell's equations that
0y= 0'gg&M gym

When this is done, the results become

e' $G0$p
0.~=—P (6)
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We shall show presently that the above expressions of
Eqs. (11), (12), and (13) are the terms associated with
the diagonal or scalar magnetoabsorption or magneto-
reQection, the Faraday rotation, and the Voigt eGect,
respectively.

Prom Maxwell's equations it has been shown that
the complex indices of refraction (I—ik) can be repre-
sented in the most general form in mks units by an
equation as follows:

(z—ik)' = ~ (1+rr, t q/iu&e),

where ~ is the dielectric constant, O.,~g is the appro-
priate conductivity for longitudinal or transverse pro-
pagation, i.e., the Poynting vector is parallel or per-
pendicular to the magnetic 6eld and e is the permit-
tivity. If we assume further that the conduction current
is smaB compared to the displacement current, i.e.,
O.,q~&cv~, then we can write

e ck z"'(—1+0,f(/2zcoe)

For l.ongitudinal propagation„

0'eg~ =0'~= 0'&g&20'g~.

For transverse propagation,

Mathematically, it is simpler to evaluate the inter-
band transitions for o.~ and then obtain O.„and cr,„
from these by the use of Eq. (5). To do this we shall
further assume that %~+=%A, =Sk' which is con-
sistent with the results of the quantum treatment to a
first-order approximation for an isotropic band. For
the purpose of this paper we shall further simplify our
results in order to arrive at the appropriate expressions
for the scalar or diagonal component of the magneto-
absorption which has been considered to date and to
also calculate the Faraday rotation and the Voigt
effect or phase shift between linearly polarized waves
parallel and perpendicular to the magnetic field. Fur-
thermore, initially we shall ignore the relaxation term
v~ and solve for the "lossless" case. Later the loss will
be reintroduced at the appropriate place.

In the approximation that is appropriate for our
problem, we shall assume that cu,((co even for high
6elds and we can, therefore, expand the conductivity as
a function of magnetic field or co,.If we do this for vI:=0,
we obtain

e' t' i(uXv i(o'(o,EI, i(o'a).2iVy )+
I (1O)
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0 ff —0 J,=o„+o,„'/(izoe+o„) o„. for EJ H, (17)

since 0. „0.„((co~.Also,

g factors which have an orbital origin and can have
anomalously large values and reversal in sign in the
presence of spin-orbit coupling. It can be given by

(18)
'Y = stslz (gv+gc) z (27)

8= (zo/2c)(n~ —n ). (19)

Substituting the results of Eqs. (12), (15), and (16)
into Eq. (19), we obtain

0— 0 (&)—
Sg

2c6

~1/2' ~2~ g
z; (co&s—coo) s

(2o)

Similarly the phase shift of the Voigt effect is given by

zt
'= (co/c) (n„—n,). (21)

From Eqs. (15), (17), (18), (11), and (13), we obtain
the following:

ic'" QPco Xg
o (&)=-

2zce 2cern ~ (cotz
—co )

(22)

From the definition of the Faraday effect, the angle
of rotation per unit length 8 is given by

where p~ is the Bohr magneton, g, and g, are the eGec-
tive g factors of the conduction and valence bands
suitable to the splittings of the magnetic levels. Since
this splitting is orbital in nature, the orbital splitting
of the classical bound oscillators which were given by
cv, has to be replaced in the effective mass or band
picture by yII in Eqs. (12) and (13) for the conductivi-
ties and in the evaluation of the expressions for the
Faraday rotation. In order to sum up the contributions
of all the electrons, it is assumed that the valence band
is completely filled and the conduction band is empty.
iV„=fz, z, hV the number of transitions becomes a
product of the oscillator strength and the combined
density of states, AV=2m 'd'k for the two bands. Then
the summation with respect to k and k' can be replaced
by an integral over the bands since the states are quasi-
continuous. When all these steps are incorporated into
the theory, the expressions for the three conductivities
of interest for the two cases considered become

DIRECT TRANSITION

In evaluating the various quantities for the experi-
mental situations under consideration, we shall separate
the phenomena according to the situation which in-
volves photon energies below the energy gap or those
above, which usually involve oscillatory phenomena.
When we do this, we have to consider the proper
representation of the oscillator strength for the inter-
band transition. It has been shown that this takes the
form for the direct transition,

0„.(') =3
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where MkI, is the momentum matrix and is defined by

M„.=(a~ I e~u'), (24)

A = izoe'/zn'A.

In order to evaluate the above integrals, the computa-
tions are facilitated by the following relations which are
satisfied by Ip, 1&, and I2.

where e is the unit vector along the electric field of the
electromagnetic wave. coI,~ in the absence of a magnetic
field is given by

1 dIp
11

2G0 dc'
(29)

&oz,s =&oo+hk'/2tt = tot„ (25)

where co, is the frequency corresponding to the energy
gap, p, the reduced effective mass for two simple para-
bolic bands. When the quantization of the energy bands
is considered in the presence of a magnetic field, then
the energies corresponding to the transverse electric
dipole transitions, i.e., for the circularly polarized
fields, are represented by

zo +=zoo+ (n+-', )co,*~yII+Ak '/2tt. (26)

where co,* is the cyclotron frequency zo,~= eII/tsc, yII is
the splitting of the eth state due to the magnetic field,
and y is a phenomenological factor which involves
parameters of the conduction and valence bands and
may be represented in terms of equivalent or effective

1 dIi 1 (d'Io 1dIo)

4zo doo 8zo'kdcos zo dzot
(30)

(d'n 1 dn)
~=—(&II)'I

8c ~dec oo dMz
(32)

"The classical correspondence of Eq. (31) is given in T. S.
Moss, Opticrzt Properties of Sezzzicozzdztctors (Academic Press Izzc. ,
New York, 1959), Chap. 5, p. 85.

Using Eqs. (29) and (30) and the expression given by
Eqs. (20), (22), and (28), it follows that"

co ds
0= ——7'—,

t," des
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For photon energies below the gap, the density of
states for spherical surfaces is

dv=L2/(2~)sjdsk= (I/ ')k'dk

M»~ =o/&+kk /2/l
(33)

For photon energies above the gap, the density of
states is

d2/= (/2/2rsh) o/, +dk„

o/22. ——o/2+ (I+-,')(o,*+5k,2/2/2.
(34)

BVII
t/
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If the integrals are carried out for the case of Eq.
(33), the expressions for the appropriate quantities for
the magnetoabsorption and magnetoreQection, Faraday
rotation, and Voigt effect become

22= «'/'+ (B/o12) j2o/ '/' —(o/, —o/)'" —(o/ +o/)'/2) (35a)

the frequency, or ) ' dependence. The Voigt effect, in
turn, shows an ~' or X ' dependence. These results can
be directly obtained from the integrals of Eqs. (28b)
and (28c) by letting o12)0 in the denominator. It is also
apparent that the low-frequency Faraday rotation in
most semiconductors is primarily due to the contribu-
tion of direct transitions with low energy gaps.

1/2 Q L2o1
—1/2 (o/ o1)

—1/2 (o/ +~)—1/2j
2QP

(37)
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When the photon energies exceed that of the energy
gap, then the transitions are quantized and show an
oscillatory behavior. The expressions corresponding to
those of Eqs. (35a), (35b), and (35c) become"

1/2 (~ o1)1/2 (o1 +~)1/2j (35b) + L 2~ —1/2+ (~ ~)—1/2+ (to +~)—1/2j (38a)
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0=—
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8 (yH)'oP
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The first result of Eq. (36) shows that the index of

refraction at low frequencies is essentially a sum of
terms similar to the dispersive tail of the single idealized
direct transition represented here. %hen the density of
states is large as in the case of the higher transitions in
germanium, silicon, etc., near 2 eV and 4 eV, then the
coefficient 8 is large. These are the transitions which
then determine the dielectric constant in the infrared
and lower frequencies. The Faraday rotation on the
other hand shows a dependence on co', the square of

These results apply to those experiments in a magnetic
field in which the frequency of photons is below the
energy gap. In particular for low frequencies, we can
show that

e=« /+a/4, ,

Bco,*
+.

'
P r '/2 Re(X +2) '/'

n
(39a)

~p+ c0=-
4ca) ~ dX„

Re(X„+i) '", (39b)

g (~H)2~ + $2

gr 2/2

16cco ~ dX„'
Re(X„+i) '/2 (39c)

' Expression (37) for the diagonal term has also been obtained
by L. I. Korovin, Soviet Phys. —Solid State 3, 1299 (1961).

Each of the above expressions show singularities at
the transitions between the magnetic levels of the con-
duction and valence bands. Actually in this region the
most significant terms are those with singularities and
in the narrow region above the energy gap the other
terms can then be neglected. Then in order to properly
represent the line shapes, it is necessary to introduce
the damping term with a relaxation time. Hence,
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where X„=(cu„~)~„and we have neglected the first
derivative in Eq. (32), since that term is divided by cu

and is, therefore, small compared to the term with the
second derivative.

INDIRECT TRANSITION

The integrals for evaluating the indirect transition
differ from that of the direct case in that they have to
be evaluated over both the conduction and valence
bands separately since the momenta are not conserved
in the process of emitting or absorbing a phonon. In
this case then, the double integrals take the form:

For very low frequency:

0= DyH—(v'/12c~ p',

D(y—H)'cv'/6cco p4,

where
e'(m„m, )'~2

~
Mi, p. ['h,"@

D=
Sg m'5'e

For photon energies above the gap, M&My~Mph,
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where

4M2 2M

(44c)
,2 M2 M, 2 M2 2

where M~~ is now a product of a momentum matrix
for an allowed transition to an intermediate state and
a phonon matrix from the intermediate to the Anal state.
The phonon contribution is weighted by the appropriate
phonon density factor. For energies below the gap,
we have

dp= (1/m')k'dk dp'= (1/~')k"dk'

cpgI, =cop+Ak'/2m„+Ak "/2m. +(mph,

where Mpq is the Phonon frequency. For energies above
the gap where the quantization of both the conduction
and valence bands have to be taken into account, we
have to sum the integrals of both sets of one-dimensional
bands corresponding to the magnetic quantum numbers
e and e'. In addition, the density of states factor then
becomes

de = (m„/n'A)(v, i+dk„(u. i*=eH/m„c,

dv = (m, /'ir A)ru, 2 dk~; %~2*=eH/m, c)

DMg] Mg2*
n=d" — Q Re ln(X„„.+i),

nn'
(45a)

DPHM +M *

D(yH)'(a +(o *

Re 1n(X„„+i), (45b)
nn' dXnni

7 nn~
2

~nn'=~p+ (~3+a)~ci + ('I +g)~c2 ~&ph.

These results also indicate an oscillatory behavior
since the logarithmic functions show singularities near
the energy gap or the energies corresponding to the
transitions between the Landau levels. Consequently,
near the singularities it is appropriate to introduce a
relaxation time r . If only those terms with singulari-
ties are retained, the Faraday rotation and the Voigt
phase shift in the oscillatory case can be represented by
the following expressions'~:

cpkk' cpg+~ph+ (++2)~el*+ (I +2)~e2
+Ak.2/2m„+Ak, "/2m, . (42)

8CM nnf

&&Re ln(X „.+~), (45c)

Fol M (Mg~Mph,

DPH Mg Mg Mg Mg M
0= —ln +—ln +1

2C M GP M cp Mp+4)
(43a)

D(VH) M K Q7 3M M +CO
2—ln +——ln +1 . (43b)

4CM M Gog 2 M Mg G0

When these are inserted in the expression for the
integrals of Zq (34), we obtain the following results:

Re ln(X„„.+i) =-,' ln(X„„'+1).

FORBIDDEN TRANSITION

The treatment for the direct forbidden transition
becomes much more complicated than that for either
the direct or the indirect case, particularly so for the
quantized oscillatory situation. The quantum me-
chanical analysis has been carried out on the magneto-
absorption' and the diagonal components of the con-
ductivity tensor have been derived. ' At present the
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experimental situation of interest corresponds only to
the nonoscillatory Faraday rotation near the energy
gap."Hence, with the approximation IMqs )'= ~Mrj'0'
in Eq. (28), the Faraday rotation is given by

where

Expressions of this type with finite limits of integral
can be evaluated to give curves similar to that given by
Lax and Nishina' to account for the interband Faraday
rotation of p-type Ge at low temperatures.

DISCUSSION

The semiclassical theory of the interband magneto-
optical effects has been developed in this paper to give
the proper mathematical form for the Faraday rotation
and the other related phenomena. The main objective
of this work has been to obtain the optical frequency
dependence of these phenomena near the singularities
where these effects are of the greatest experimental
interest. Qualitatively near these singularities the pres-
ent results do not differ greatly from the previous ones
of Lax and Nishina. Mathematically, however, the
latest results do obey the proper symmetry conditions.
For mathematical simplicity, all of the expressions have
been derived in terms of the idealized model of the two
sets of simple bands with quadratic energy-momentum
relations. Furthermore, in the limit of a weak magnetic
field the dispersion relationship was expanded in power
series of the magnetic held. This approximation is
probably valid for fairly high values of the magnetic
field. The semiclassical theory can be generalized with-
out such expansion, but further complexities are cer-
tainly expected.

In the present work the orbital contribution was
represented by the parameter yH in Eq. (26) which
described the splitting of the quantized levels in a mag-
netic field. This parameter, of course, depends on the
band parameter of both conduction and valence bands.
In an actual case it can be evaluated for each magnetic
level. Such evaluation has been made for the direct
transition by Roth. ' However, no theoretical calcula-
tions have been made for the individual transitions for
low quantum numbers where the effective g factors show
anomalous properties as they have been observed ex-
perimentally by the oscillatory Faraday rotation and
the Voigt effect. ' ~ The rigorous quantum mechanical
treatment of the dispersion theory in a magnetic heM
becomes rather complex even for an idealized model.

"A. K. Walton and T. S. Moss, Proc. Phys. Soc. (London)
78, 1393 (1961).

The theory apparently includes the terms"" in addi-
tion to those obtained from the semiclassical treatments
given here. In well-known semiconductors the bands
are often degenerate and complex in their mathe-
matical form. Consequently, the theory becomes even
more involved. Hoswarva, Howard, and Lidiard' have
given a quantum mechanical treatment of the interband
Faraday rotation which does not agree with the results
of this paper, nor with those obtained by Roth, " nor
those of Bennett and Stern. "Furthermore, their results
suffer from the fact that in the limit of zero frequency
the Faraday rotation does not vanish. Hence, they
insert a correction term which they justify on this basis
to satisfy the requirement on the low-frequency limit.
Nevertheless, in principle, it should be possible in the
limit of high quantum numbers to justify the semi-
classical dispersion relations by the correspondence
principle. This seems to be the case, since the expression
in the integral of Eq. (28b) has the form identical to
that derived by Rosenfeld" for the Faraday rotation
between the discrete levels in the paramagnetic ma-
terials. Hence, our result of Eq. (35b) is merely a sum-
mation of quasi-continuous set of levels distributed over
the bands. Furthermore, the expression evaluated for a
parabolic band for the Faraday rotation does obey the
criteria set by BHL" without any artificiality, namely,
O~c' as co~0 and the proper Kramers-Kronig rela-
tions are satished.

In addition, the results given here appear to explain
the principal effects observed experimentally and fur-
thermore seem to account for the line shape of the
oscillatory interband Faraday rotation' and the Voigt
effect in Ge.' Also, the results given here are useful in
making quantitative interpretation of the effective g
factor for the individual transitions.

iVote added in proof. Since this paper has been sub-
mitted for publication, we have carried out a quantum
mechanical analysis of the problem following the ap-
proach of Boswarva, Howard, and Lidiard" with an
important modification. %e have shown that their re-
sults were incorrect. The quantum treatment in the
limit of approximations developed in this paper, i.e.,
low frequency and small magnetic field, gives the same
results as those obtained here for the Faraday rotation
and very similar but slightly modihed results for the
Voigt effect. The details of this treatment will be subject
to future publication.
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