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Analysis of Nuclear Magnetic Resonance Line Shapes by Lattice Harmonics*
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The second (3f&) and fourth (M4) moments of magnetic resonance absorption lines of nuclei in crystals
resulting from dipolar and exchange interactions have been given by Van Vleck. The dependence of M& and
3II4 on the orientation of the magnetic field in the crystal coordinate system may be rewritten in terms of
lattice harmonics of the crystal point group. Only lattice harmonics belonging to the identity representation
occur. The number of such functions, and hence the number of independent quantities needed to specify
3I2 and 354 have been determined for all 32 point groups. These numbers vary from 15 and 45 for triclinic
C& symmetry to 2 and 4 for cubic OJ, symmetry. 352 and iV4 are given as a finite series of lattice harmonics
of the crystal orientation, the coeS.cients of which are expressed as irreducible lattice sums. Application is
made to available data on the resonance of F'e in CaFs, Al r in aluminum metal and H' in urea, CO(NH2)2,
the effect of lattice vibrations on the moments of CaF2 and Al are examined. The inhuence of an applied
electric Geld of NMR moments and the use of lattice harmonics in other spectroscopics of the solid state
are considered,

I. INTRODUCTION

HE shapes of magnetic resonance absorption lines
of nuclei in crystals resulting from dipolar and

exchange interactions may be characterized by the
moments of the continuous wave absorption signal. '
Likewise, free precession decay signals may be ex-
pressed in terms of the moments of the continuous
wave absorption by means of a series expansion in
powers of the time following a 90 pulse. ' The moments
are intimately related to the relative positions of
magnetic nuclei in the crystal as shown by the calcu-
lations of Van Vleck' wherein the second and fourth
moments were expressed as a function of the direction
of the applied field relative to radii vectors between
nuclei. These expressions, particularly that for the
second moment, have been extensively used3 4 in the
determination of the relative positions of magnetic
nuclei in crystals. Most applications have been con-
cerned with crystals containing protons situated in
groups of two or three since the analysis of the nuclear
magnetic resonance signals is relatively simple in such
cases. For more general situations, the problem of
determining the positions of the nuclei in the crystal
from the observed angular dependence of nuclear mag-
netic resonance signals on crystal orientation is a rather
formidable one. One reason for this is that Van Vleck's
expressions for the second and fourth moments are
generally rather cumbersome for an arbitrary orien-
tation of the crystal relative to the applied fieM.
Furthermore, it has not been known exactly how much
information couM be extracted from the experimental
moments —that is, whether it is possible to completely
determine the relative positions of the magnetic nuclei
from a given amount of experimental data. It is the

*Based on work performed under the auspices of the U. S.
Atomic Energy Commission.' J. H. Van Vleck, Phys. Rev. 74, 1168 (1948).

s I. J. Lowe and R. E. Norberg, Phys. Rev. 107, 46 (1957).' K. R. Andrew, ENcLear 3/Iagnetic Resonance (Cambridge
University Press, New York, 1958).

'A. Abragam, The Prilcjpies of Xgclear 3fagaetism (Oxford
University Press, New York, 1961), Chap. 4.

purpose of the present work to show that these diffi-
culties may be removed by rewriting the moments in
terms of the lattice harmonics corresponding to the
point group of the magnetic nuclei in the crystal under
study. Lattice harmonics form a complete and ortho-
normal set of functions" which form a basis for the
irreducible representations of the point group of the
crystal and hence are ideally suited for expression of
quantities which depend on the crystal orientation. In
addition, it will be shown that only those lattice
harmonics which belong to the identity representation
of the crystal point group need to be considered; this
result fixes the number of independent quantities
needed to specify the moments.

In the next section some of the properties of moments
and Van Uleck's calculation are reviewed. In the
following two sections we consider the transformation
properties of the second and fourth moments under
coordinate rotations and rewrite Van Vleck's expres-
sions in their most convenient and irreducible forms.
The number of independent components for the 32
point groups are derived and tabulated along with
vector coupling coefficients for spherical and lattice
harmonics which are useful in the analytical expression
of the moments. In Sec. V, the influence of the space
group on the moments is considered and in the fol-
lowing section illustrations of the above theory for
available experimental data on CaF2, aluminum metal,
and urea Co(NHs) s

1
are given.

In the final section, other possible applications of
lattice harmonics in the angular dependence of mag-
netic resonance and optical spectra of crystals are
briefly discussed.

II. MOMENT METHOD

The eth moment M„of a nuclear magnetic resonance
absorption spectrum with intensity f(co) at an angular

'F. C. Von der Lage and H. A. Bethe, Phys. Rev. 71, 612
(&947).

e D. G. Bell, Revs. Modern Phys. 26, 311 (1954).
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frequency ~ is de6ned as follows':

f(or)Cor . (1)

In the case of only dipolar or exchange interactions
between nuclei and in the absence of quadrupolar
interactions, coo is the mean resonance frequency for
which

(od oro)f(or)Zor= 0

and generally all odd moments vanish in this situation.
Van Vleck' computed the second and fourth moments

of the nuclear resonance line in the vicinity of ~0 due
to nuclear dipolar and exchange interactions by a
diagonal sum method. Only contributions due to the
resonance line centered at coo were considered. In the
case of only a single kind of magnetic nuclei with
gyromagnetic ratio p and spin I the second moment
M2 in units of (rad sec ')', is as follows:

where

I(I+1)
Q b;a'

3Th'

b r,= (3y'As/-2r 1s) (1—3 cos'8 r,)

E is the total number of nuclei in the crystal, r;I, is the
radius vector between nuclei j and k, and 0;I, is the angle
between the direction of the applied static magnetic
6eld and the vector r;A.

The fourth moment M4 in the absence of exchange
interactions is as follows':

—L3(g—1 Q b.„2)2 (xP7—1 Q b.„2(b. b„)2

I(I+1) '
(-')& ' Z»' '(g+(')(I'+I) ')3 ~ (3)

352

The evaluation of M& requires a summation over
pairs of nuclei. M4 consists of three types of terms:
(1) terms containing the quantity b;& to the fourth
power, (2) terms which are proportional to the square
of Ms, and (3) terms which involve a summation over
all possible triangles formed by triplets of nuclei.

In the more general case of two species of spins with
exchange interactions between them, the corresponding
expressions for M2 and M4 are somewhat more com-
plicated; however, as will be evident from the discussion
in the following sections these situations yield the same
kind of irreducible forms as do the simpler expressions
given in Eqs. (2) and (3). In the following two sections
we shall further limit the discussion without loss of
generality to only one magnetic nucleus per unit cell.
In Sec. V the eGects of space group symmetry and other
magnetic nuclear species will be examined.

b s= —3(4rr/5)'"p'A'Yso(jk)r v, ',

where jk, the argument of I"20, refers to the ang1e 0,1,

between the applied Geld H and the radius vector r, r,.
Mo will contain I'&o(jk) squared which by the couPling
rule for spherical harmonics' may be expressed as a
sum of spherical harmonics of orders 0, 2, and 4 as
follows:

5 C(22I; 00)'
yoo( jk) Vzo( jk) = Q &Lo(j k), (4)

(4rr)»s L=0,2,4 (2L+1)'r

and hence from Eq. (2)

C(22L; 00)o F'Lo (j k)
Ms=3(rrrrr)'r'y'O'I(I+1) QP, (5)

s L (2L+1) rs y

where the quantity C(22I. ; 00) is a Clebsch-Gordan
coefGcient' which has the general form C(lr, lo, l; nor,
rrs —rrsr); the projection quantum numbers satisfy
rnr+rno=rrs while the numbers lr, ls, and / form a
triangle with l~r lol ~~~~~ llr+~ol.

It is not clear from this form of M2 how M2 depends
on the orientation of the applied Geld H relative to
axes 6xed in the crystal, which is what can be ascer-
tained in an experiment. 'Zo remedy this we transform
the FLo(jk) from the laboratory coordinate system
whose s axis is along H to the crystal coordinate system.
This may be performed by means of the spherical
harmonic addition theorem' by which a spherical
harmonic (m=0) with coordinates 8;~, d;s is expressed
in terms of the polar coordinates 0, p of H relative to
the crystal coordinate system and the polar coordinates
0;r„p;r, of the vector r;z relative to the crystal coordi-
nate system as shown in Fig. 1. M2 now takes on the

~k
l

l

I

FIG. 1. Coordinates asso-
ciated with transformation
between laboratory (H) and
crystal (e,g, s) coordinate
systems.

70ur notations for spherical harmonics and Clebsch-Gordan
coeKcients will follow those of M. E. Rose, Elementary Theory of
Angrelur 3lomentnm (John Wiley 8r Sons, Inc. , New York, 1957).

III. COORDINATE TRANSFORMATIONS OP Mg

To put the expression for the second moment M2 in
its most convenient form we will rewrite 312 in a co-
ordinate system fixed in the crystal. In order to ac-
complish this, b;~ will be expressed as a spherical
harmonic; thus we will write
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following form:
C(22L; 00)'

3E s= 12 syr4A'I(I+1) Q Q Q
2L+1

YLst*(jk)
YLM (8 4')

(6)

However, the coefficients of only those lattice
harmonics XL'~ (8,&) which belong to the identity
(tt=1) representation are different from zero. This is
necessary since, as is physically evident, 3I2 must be
invariant under all the operations of the point group G.
A more formal proof is as follows. M2 may be expressed
as a linear combination of lattice harmonics:

where 3f runs from —I. to I. and jA: refers to the
orientation of r;A, relative to the crystal coordinate
system. M2 is now in the form of a finite series of

(2L+1)= 15
L=0,2,4

spherical harmonics. The VL~ are a complete and ortho-
normal set of functions but are also generally somewhat
redundant since the coefficients of these functions, i.e.,
the lattice sums, are generally not all independent due
to restrictions imposed by the symmetry of the crystal.
To determine the number of independent parameters
it is necessary to rewrite 3f2 in terms of lattice har-
monics of the crystal.

The lattice harmonics XL& ' form a basis for an
irreducible representation p of the crystal point group. ' '
p= 1 will always be used for the identity representation.
Q. labels different sets of functions belonging to the same
representation p, i labels the different basis functions
within a representation p, n. That is, if E. is an element
of the point group G, then'

P X o"=P Do (R) "X ~

where P& is a unitary operator defined by Wigner'
and D"(R),; is a matrix element of the p, th irreducible
matrix representation of the Group G. The XL& ' may
be derived from spherical harmonics of order I. by a
unitary transformation.

~ (8,~) =Z Z C."'x"-(8,~),

where CL& ' are coeKcients and (8,&) refer to the
orientation of the crystal relative to a particular set of
laboratory coordinate axes. Since M& is invariant under
any rotation E. which belongs to the point group G, it
follows that:

1
M, (e,y)=- p p,m,

RGg
1

= P P P -C -D&~(R)'X -'
Rgg L ~aiitg

=Q Q CL" '8, 8,',XL" ' =Q Cz,' Xz,' (11)
L yai La

LC(22L; 00)]'
N s 12sry4fPI(I+——1) Q Q

2L+1L, a

XL' "(jk)X, XL'"(e,y)
&16

where g is the order of the grouP G, PztMs=IJ: .(8',$'), '

(8',p') being the orientation of the crystal after the
application of the symmetry operation E. The last
step follows from the orthogonality relation of the
irreducible representations. '

Since only coeKcients of lattice harmonics belonging
to the identity representation may be different from
zero for M&, (9) may be simplified to

iz *Xz," ',
t'ai

where the sum on 3f runs from —I. to J. Since the
(2L+1)X (2L+ 1) transformation matrix UL is unitary,
the XL& ' also constitute a complete and orthonormal
set of functions. Using the unitary properties of the
transformation of Eq. (8), one finds upon substitution
of the YL~ for XL&~' in Eq. (6) that

[C(22L; 00)]'
Ms= 127ry4i't'I(I+1) Q Q

-Xe'*(jk)
y4A'I(I+1) P Xe'(8 P)

5 g~, ~6

12'

X '~*(jk)
+(2/7) 2 x"-(8,~)

X4' *(jk)
+(2/'1) 2 x '(8 e)

a

Xe'(e,y) = (4sr) '".

(12)

k Lanai

XLo '*(jk)
x x. -(8A). (9)

r~k'

8 E. P. signer, Group Theory and its A pp/icati on to the Quantum
Mechaatcs of Atomic SPectro (Academic Press Inc. , New York,
1959), Chaps. 9 and 11.

The number of independent parameters needed to
specify 3f2 is obviously equal to the total number of
lattice harmonics 1V2(G) which belong to the identity
representation for L=O, 2, and 4. This quantity 1Vs(G)
may be seen to be equal to the total number of times
the identity representation of the point group G occurs
in the direct sum decomposition of the representation
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TABLE I.Number of independent components for second and fourth moments LE&(G) and iV 4(G)g

System

Triclinic

Monoclinic

Orthorhombic

Trigonal

Tetragonal

Hexagonal

Cubic

Point
group G

C1
C;
C2
C,
C2h
D2
C~v
Dlh
C3
Ca,
D6
C3~
D6d
C4
S4
C4h
D4
C4.
D2d
D4h
C6
C3h
Csh
D6
C6,

D6h
T
Th
0
Td

Number of times that the identity
representation occurs

L=2 L=4 L=6
13
13

7
7
7
4

5
5
3
3
3
3
3
3
2
2
2
2
3
3
3
2
2
2
2
2
2
1
1
1

L=8

17
17
9
9
9
5
5
5
5
5
3
3
3
5
5
5
3
3
3
3
3
3

2
2
2
2
1

1
1

Es(G)

15
15
9
9
9
6
6
6
5
5

5
5
5

4

3
3
3
3
3
3
3
2
2
2
2
2

E4(G)

45
45
25
25
25
15
15
15
15
15
10
10
10
13
13
13
9
9
9
9
9
9
9
7
7
7
7
5
5

of the full rotation group for L=O, 2, and 4. %e denote
the representations of the full rotation group by FL
and those of the point group 6 by 5„.Then

where the a„L are integers. Therefore,

Ãs(G) = Q air,
L=0,2,4

(14)

is the total number of times the identity representation
occurs in 312. The quantities a~L are determined as
follows:

where g is the order of the group, r; is the number of
elements contained in the ith class, x,L is the character
of the representation I for the ith class, and r is the
total number of classes. x;~ is equal to sin/(I. +is)p, ]/
sin(p;/2) where P, is the rotation angle corresponding
to the operations of the sth class. The quantities E&(G)
determined in this manner for all 32 point groups are
given in Table I. Xs(G) ranges from 15 for triclinic Ci
symmetry to 2 for cubic 0& symmetry. Only the eleven

proper (Laue) point groups are distinguished by Es(G)
due to the occurrence of only even values of I. in M~.

Only even values of I- occur since M2 has even parity
with respect to reversal of the direction of the applied
field H. As a result, nuclear magnetic resona, nce meas-
urements cannot distinguish between proper and im-

proper point groups which differ onl.y by the inclusion
of the inversion operator or an improper rotation for the
corresponding proper rotation. However, as will be
discussed in Sec. VII, the application of external
electric 6eld to the crystal may allow such a distinction.

Ms in the form of Eq. (12) is most useful in the
analysis of experimental data. The lattice harmonics
corresponding to various point groups have been
tabulated by Bell.' These functions may be also gen-
erated by the idempotent method. ' Since nuclear
magnetic resonance moment data are usually obtained
by rotation of the crystal about a,n axis perpendicular
to the field H, it is useful to project the Xi ~(0,&) into
such a plane. This always yields the angular dependence
of Ms in the form of a finite series in e+' & (m&4)
where f is the angle of rotation. A similar angular
dependence has been demonstra, ted by McCall and
Hamming. "This procedure will be further illustrated
in Sec. VI.

J. S. Lomont, A ppk'cations of Finite Groups (Academic Press
Inc. , New York, 1959), Chap. III, Sec. 9.

' D. %. McCall and R. %. Hamming, Acta. Cryst. 12, 81
(1959).
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IV. FOURTH MOMENT

The various sums which occur in the expression for
the fourth moment of Eq. (3) may be classified into
three distinct types of terms in increasing order of
complexity.

Type I: Qo b~o,

Type II: (Pi, b;o')',

Type III: P b, oob;„bz .
kgn

In analogy with the treatment of the second moment
given above, we wish to express the fourth moment as
a series of lattice harmonics in the crystal coordinate
system. In the following each type of term is considered
in the order given above.

By repeated application of the coupling rule for.

spherical harmonics one finds

25
LI"&o(jk) O'= P P C(221 ) 00)'C(22l', 00)'

(47»)l r «

FIG. 2. Orientation of the
triangle jhow in the labora-
tory coordinate system.

lattice harmonics. These, in close analogy to the
coupling rule for spherical harmonics may be expressed
as a linear combination of lattice harmonics belonging
to the identity representation, as is discussed more
fully in Appendix A.

X„"(g,y)X„'- "(e,y)

=2 (Li(1~i)Lo(1~o) IL~)X~'(~A), (18)

where (Li(1ni)L&(1no) ILn) is a coupling coefFicient for
lattice harmonics analogous to the Clebsch-Gordan
coefficients.

Using Eq. (18) one finds
C(ll'L 00)'-

X I ..(jk), (16) (E b,")'
(2L+1)'" k

where 1, l'=0, 2, 4 and L=0, 2, 4, 6, 8. Once again one
niay transform I'zo( jk) to the crystal coordinate system
and express Pb;~, ' in terms of lattice harmonics be-
longing to the identity representation. The result is as
follows:

Q b; g4= (3y'i'')' Q Q Q C(22l 00)'C(22l') 00)'
La ll' k

C(22Li 00)' C(22Loi 00)' Xr, ' '*(jk)
X

pL 2 p o

Xr„"o(jn)
X Xr,' (&,4), (19)

=(3y'l'i')'Q Q P Q (Li(1ni)Lo(1no)ILcx)
La ~n Llctl L2&2

rjn 6

y. 12
gk

C(L~'L; 00)' Xz,'~*(j k)
X 1-~0

where L takes on the values 0, 2, 4, 6, 8.

where pr, =L(2L+1)/4ir]'i', summation is over L=O,
2, 4, 6, 8. For simplicity let

4x
Q C(22&; 00)'C(22l' 00)'C(ll'L 00)'= A,

2L+1 «'

hence
Xr,' "(jk)

Q b o'= (3y'A')' Q Q A r, Xz,'"(e y), (17)
y. 12

yk

where

A o
——12m/35, A o= 16ir/77, 34——816ir/5005,

A o
——288ir/5005, A„=288ir/12155.

Type II
Since these terms are proportional to the square of

M&, we may evaluate them directly from Eq. (12). In
doing so we obtain products of identity representation

Type III
Terms of this type require considerably more ma-

nipulation to place into the desired form than that
required for terms of types I and II. This is the case
since terms of type III involve a summation over all

possible triangles formed by triplets of nuclei jhow where

j, k, or e are not equal to each other. It will be con-
venient to express b~ in terms of b;l„- and b; . Referring
to Fig. 2 (which is drawn in the magnetic 6eld coordi-
nate system), I'&o(ke) may be expressed in terms of
0;l„e;„,and 0~, where 8~ is the angle between the vectors
r; and r;„.Noting that

coseo = (r,„/ri„) cose, —(r, i//rq ) coso;o,

and ri„o——r,o'+r;„' 2», ir, „coseq, it follows —that

I' o(&ii)= (» '/ri. ')I'oo(jri)+(r, o'/ro ')&oo(j&)
—(5X4ir)'i'(r, ir;„/ri ') Vio( jr') I'io( j&)

+ (5/4~)"'(r, kr,./»i, .') cos~d (2o)
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kgn ll' Pv

I'io(jk)I'1 o(jjl)
X

~jk ~j n~kn. 6

Transforming to the crystal coordinate system, using
the coupling rule for spherical harmonics Fl (8,&) and
Yl (8,&) and proceeding to lattice harmonics through
the tra, nsformation of Eq. (8) one obtains

(P bjPbjn4n)a

4x ' Po'PL
= (3v'&')'—

5 ll' mm' 4, 'a'V 4ai LA Pl Pv

XC(22l; 00)'C(221') 00)'C(l'Ll; 00)

XC(l'Ll; jjl', jjl jjl') U„.—; 'U„,'„'"U1A...

By means of Eq. (20) one may express bz„as a sum of
four terms, each of which, when incorporated into
Pbjlobj b&, gives rise to a sum which may be reduced
to the standard form, i.e., a sum of lattice harmonics
of the identity representation in the crystal coordinate
system. The techniques involved in this procedure will

be illustrated for the sum arising from the first term on
the right side of Eq. (20) which we designate by
(Z~~. b,~'b;A ).:
(Q b;i,'b; bl ).

C(22l 00)'C(22P'00)'
=(3v'&')' 2 Z

side of (22), jk and jn refers to the orientation of two
sides jk and je of a particular triangle.

The proof is as follows. Once again we make use of
the orthogonality relations between irreducible repre-
sentations of G. Operate on r, & or;„'r&„'Xl4 '"(jk)
XXl 4' "'(jn) (where jk and jn are the orientation
of two sides jk and jjl of a particular triangle) with
an element R of G and sum over R. Since the distances
r;„, etc., are invariant under R, only the effect on the
lattice harmonics will be indicated.

2 I'~X14 "(jk)I'zX14'"" (j rl)

=P P Dl»(R)„*Dl4'&(R)„;.X, 4 4*(jk)Xl 4'"&'(jn)
8 pp'

=d„—'g P 8„„.8,;8„„.X, *(jk)X ~
'"' '(j )

= d„-'gb„„b;,' P Xla"4*(jk)X,.4"4(j n)

Also, we have

p I'jlX14 '*(jk)I'&Xl 4' "'(jn)

=gal, -' P X,"'"(jk)Xv4'""'(j n),

where the summation on the right side of the above
equation is carried over all distinct triangles that may
be generated from the particular jhow triangle by
applying all rotation operations of the point Group G.
Therefore Eq. (22) follows. Using (22), (21) may be
simplified to the following:

X4 "(jk)X 4'""(jn)-
XL»(8,y), (21)

fjk ~jn~kn. 6 . 5

(2»."bj-b~-).= (3v'&')'
P &

CL j CX j g jm j tRI I
Pl 'Pv 'PL

XC(22l;00)'C(22l', 00)'C(l'I-l 00)C(l'Ll jjl' ja—jjl')

X U4aim U4a'im' U1A, m—m' jP +ilil4 P rj k'an
p

where L=O, 2, 4, 6, 8. Since (+1m„bj~'b;„bl,„) is
invariant when the static magnetic field direction is
rotated by an operation of the point group G, only
XL4 '(8,&) which belong to the identity representation
can occur. (See proof given in Sec. III.)

A simplication of Eq. (21) may be made by con-
sideration of the effect of operations of the point group
of the crystal on the quantity enclosed in brackets in
Eq. (21). It may be shown that

Xl4 "(jk)Xv4' "'(jn)

Xrt,„xla "*(gk)Xv4a'4(j n) )XL'"(8y).

This equation may be further simplified by noting that

(l(ltl&)l (V&')
I L~)

=Pl PVPL P U4aim Uaa'im' U1Am m', —

r;k r;nrkn. 6 . 5

X; 4*(jk)X, "'4(jn)

d~ r;k 'f;nrkn. 6 . 5

XC(l'Ll; jrj'jjj jrl')C(l'L/; 00—), (23)

where (l(llln)l'(Ijn') ~LA1) is the coupling coefficient for
lattice harmonics. A discussion of these coupling co-

(22) efficients may be found in Appendix A.
Using (23), we get

where Pq indicates a sum over all inequivalent tri-
angles, i.e., triangles that cannot be brought into
coincidence by an operation of the point group, e& is
the number of equivalent triangles formed by a triplet
jkjl, (that is, jig is the number of distinct triangles that
may be obtained by applying all operations of the point
group to the triangle jkjl) and lln is the dimensionality
of the pth irreducible representation of G. On the right

(P b;,'b;.b,.).= (3~'ko)' g g C(22t; 00)o
LA ll'

~jk ~jn~kn. 6 . 5

C(22l'; 00)'
x '

Z (&l(&~),1'(&~') IL~))
PPPv'

no, Xl " *(jk)Xl 4 '&(jn)
xp —Z- XL'"(8A) (24a)

d~ p
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The remaining three contributions to gb;& b;„b&„arising from Eq. (20) may be evaluated by similar
procedures. The 6nal results for type III terms is as follows where the remaining terms of Eq. (20) are
labeled by b, c, and d

C(l2l', 00)'
(P b;ssb;„b;„)s——(3y'A')' Q Q C(22l; 00)' Q ((l(ttn), 2(ttn') ~LA))
kgn LA Zl' Ps'Pt'

nA Xt »*(jk)xs&"&(j n)
X,'"(e,y) (24b)

u

pt, spt, 'LA lZ] l2

X„s (qk)X„s-"(jn)
xQ —P XL'"(8 y) (24c)

dq n

C (22l; 00)'
(Q b, s'b;„bs~)a= (3y'I't')' Q Q Q ((l(ttn))2(ttn') ~LA))

kgn LA l PPPs pan'

nA Xts~s'"(j k)xsi'~'s'(j n) cos|tA
XZ —Z XL'" (8 y). (24d)

r;a f;„ra~. 5 . 2 5

C(l1lt, 00)'C(21/s, 00)'
(P b ssb „bs„),= —3(3ysks)4 Q Q C(22l; 00)s Q ((ly(ttn), ls(pn)

~
LA))

The total of type III terms is simply the sum of the
above contributions IIIa, IIIb, IIIc, and IIId. In all
of the above expressions 1.=0, 2, 4, 6 or 8. Values of
the l values for other terms are as follows:

Type IIIa: l, I'=0, 2, 4.

Type IIIb: l=0, 2, 4;

Type IIIc: l=O, 2, 4;

Type IIId: l=O, 2, 4.

l'=0, 2, 4, 6.

1~=1, 3, 5' l2=~, 3.

The values which the various l's may assume for a
nonzero result are determined by the symmetry
properties of the Clebsch-Gordan coeS.cients. ~ Values
of these coefficients that are necessary in the evaluation
of M2 and 354 are tabulated in Table II as calculated
from standard formulas. ' The vector coupling coeK-
cients for lattice harmonics may be calculated by a
method discussed in Appendix A. Values of the quanti-
tieS (l( t)t,nl'( t't)n, ~LA) fOr CubiC OA Symmetry are
given in Table III.

The number of independent components lV4 (G)
needed to determine the fourth moment may be deter-
mined by precisely the same method used for the second
moment; that is, Jl74(G) is the number of times the
identity representation of G occurs in the direct sum
decomposition of the representations of the full rotation
group for L=O, 2, 4, 6, and 8. X4(G) have been deter-
mined for all 32 point groups and are given in Table I.

By means of the above expressions the second and
fourth moments may be readily written down as a
6nite series of lattice harmonics in the coordinate
system of the crystal. Before illustrating the method
in Sec. VI, aspects pertinent to the choice of a crystal
coordinate system and the effect of space group sym-
metry will be discussed.

V. SPACE GROUP SYMMETRY

The space group of a crystal is the entire group of
operations which leaves the crystal invariant. " The
space group (b) may be expressed as the direct product
of two subgroups: the translation group of the lattice
(T) and a group of operations (5) which is simply
isomorphic to the point group of the crystal. The e8ect
of an element of (T) on a radius vector r may be repre-
sented as follows

T„,„,„,r = r+nrar+nsas+nsas,

where e~, e2, and e3 are integers and a~, a2, and a3 are
unit lattice vectors. The effect of an element of (5) on

TABLE II. Clebsch-Gordsn coeij5cients C(44L; 00).

C(lzlsL; 00)

1
S-I/2

1/3

—(2/5)"'
1—(2/7)'t'
(2/7)"'—(5/3) (4/77) &t'

(3/5)'t'—2/3
(18/35)'t'—PP/77) I/2

9 (2/1001)'t'
(5/9) j./2

(5/11)'t'
—(2/3) (5/11)~&'

(7/3) (10/143)"'

"For a general discussion, see W. H. Zachariasen, Theory of
X-Ray Dsgractt'art t'rt Crystals (John Wiley 8z Sons, Inc. , New
York, 1945).
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TABLE III. Tabulation of (4m)'1~(l(po), l'(po.'')
~
LA) for cubic group Oz. '

1
1
1
1
2
2
2
2
2

2
3
3
3
3
3
3

1o(P)
10(P)
10'(pi)
102(Pg)
3 (d)
4 (g/)
3 (d)
4(d')
3 (d)
4, (dg')
42(A')
7(f)
10(P)
9(f')
10&(P&)
102 (P2)
9(f')
1(s)
3 (d)
5(a)
4(d')

2
-'(7/11)'l2
—,
' (5/11)'"
(12/'7) "'

(12/7)l/
40(7)'"/77—30(7)'"/77
(10/11) (30/13) '~~

(5/22) (39/2) '"
(15/2) (15/286) '"—2 (21)'"/33
3(21)'~/11—(21)'"/11
(30/13)(3/11)'"—(6/13)(105/11)'"—(10/13)(21/11)"'
18(21)'"/143
(36/143)(3/7)'"
27(21)'"/143—(27/11)(3/7)'"

L=6

9(3/286)'"
—3(105/286)'"

(15/11)(6/13)'I'
(60/11)(3/26)'~'
(4/11)(7/5)'"—15(7)'"/22
(3/2)(7/55)'"
(20/11) (2/13) '"
(25/11) (2/13) '"—(45/11) (2/13)'"
(7/2) (7/286) '"
(21/2) (5/286)'12
—21(286) "'
(20/11) (2/13) '"—(32/11) (2/13) '"—(3/11) (2/13)'"
(15/11) (2/13) '"

L=8

2(462/1105)'n
0

-8(42/1105)ilm

(21/13)(21/17)'~~
(7/13)(15/17)'"
(42/13)(3/17)'"
(70/13)(3/187)'"
(98/13)(3/187)'"
(168/13)(3/187)'"

0

' The blank spaces in this table correspond to the case t, l', L do not form a triangle; hence the coefficients always vanish. The representations p, in
Bell's notation are given in parentheses. The letters n and A are always omitted because there is only one representation. The letter n' is written as a sub-
script for p, in cases where there is more than one pth representation for L'.

a radius vector r may be given by moment are of the form

5 r=[R,t] r
=R r+t,

where R is a dyadic representing a proper or improper
rotation and if not the null vector, t is a nonprimitive
translation, i.e., t cannot be expressed as a lattice vector
of the form niai+n2a2+naa, . (T) must be an invariant
subgroup of the space group. This results in the re-
quirement that the elements of R must be integers
when R is expressed. in the coordinate system defined

by a&, a&, a&. For a given point group restrictions on the

primitive lattice vectors result in the seven crystal
systems. Standard choices for the set a&, a2, a3 have
been made for each crystal system and these will be
adhered to in choosing a crystal coordinate system. In
the cubic system the directions of a&, a2, a,nd a& are
along the three equivalent and orthogonal rotation
axes. In the triclinic system the choice of the directions
of the lattice vectors is not determined by the poirit
group symmetry of the crystal. This corresponds to the
fact that in the triclinic system all even I. lattice
harmonics belong to the identity and may be chosen
equal to the spherical harmonics.

Space groups may be classified into symmorphic
space groups which have t=0 and nonsymmorphic
space groups which have t/0. Let us first consider the
nature of the lattice sums occurring in the second and
fourth moments for symmorphic space groups. In this
case the symmetry operations of (g) are proper or
improper rotations plus translations which are lattice
vectors so that (S)=—(G), the point group of the crystal.
The lattice sums occurring in Eq. (9) for the second

Xz,'"(jk)

E7~~ r &'

where the sum extends over all pairs of nuclei in the
crystal. Let us define pairs of physically inequivalent
nuclei as those whose lattice sites which may be brought
into coincidence by a symmetry operation of (g).
Chemically inequivalent pairs of nuclei are those whose
lattice sites cannot be brought into coincidence by such
a,n operation. If now we consider the operation of
elements of (g) on the above sum we see that it may be
reduced to the following form:

1 Xz,' (tTc)

where X is the total number of chemically inequivalent
"like" nuclei in a unit cell, the index t runs over all
chemically inequivalent nuclei in a unit cell, and the
index k as before runs over all the nuclei in the crystal.
It is clear that since the original sum is simply an
average of the interactions between nuclear pairs taken
over the entire crystal, due to the symmetry elements of
(T) and (G), this is equal to the average over chemically
inequivalent nuclei in a unit cell. A similar result is
obtained for the lattice sums of Eqs. (17) and (18).
The triple sum of Eq. (24a) may be written as

1 nba Xi»*(tk)Xp& '&(tn)

X &~ de u ~5k ~knelt:e
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where the sum is over all triangles (tkNW) that can be

formed at each distinct chemically inequivalent site 3

in a unit cell. The same results are valid for nonsym-

morphic space groups, since the sums depend only on

the distance vector r;~ between pairs of nuclei. Hence

)R,t] r, g
——$R,t](r,—rp)=R r, e,

where r, and r~ are expressed relative to some selected
origin.

I.et us now briefly consider the effect of the space

group symmetry on the magnitude of the coefficients

of identity representation lattice harmonics for a
moment M and a fixed I.aue group, i.e., a fixed

number of irreducible components iV (G) The .moment

M„ is of the form

M„=Jr..m„~ Xr,'(e,y), (25)

where m ~ are the coeKcients L takes on the m+1
values 0, 2, 4, 2e and Ln takes on X„(G) values.

The quantities m„~ will vary with the number of
distinct chemically inequivalent nuclei per unit cell

and the space group (g) as well as the lengths of lattice
vectors. In principle it is possible to distinguish between
diferent space groups with the same point group G on

the basis of the magnitudes of the coefficients m„~
since the lattice sums will vary in magnitude with space

group for a fixed X and lattice vector lengths. An

example of this will be given in the following section
for the cubic system.

von der I.age and Bethe. ' One obtains

(M4)powder (in rad' sec ')

9y'54P(I+1)' -7 4
—S'(6,0)+—S'(6,4)

25d" 3 21

-3 )14 3
+-(P—+I) ' ~S(12,0)

7&3 2 )
6- 4

+— gS(615,00)+—gS(615,44)
i

25 49

+—(3S(615,22)+ gS(615,44))
49

3 2 t4
+—3S(435,22)+- 3Sd (525,22)+~ —4S(615; 22)

7 7 (49

4 3 2
+—4S(615,44)+—4S(435,22)+—4Sd (525; 22)

~

7

18 18
+—eS(615; 44) ——7S(525,33)——gS(525,33)

49 49 49

tr22 18—
~

—~eS(525,11)+—&oS(525; 33) ~, (26)
(21 49

where the following notation has been used for the
various sums

(4m)'" Xg'(tk)
S(P,t) =

«a~

VI. APPLICATIONS OF MOMENT FORMULA

Although Van Vleck's formula has been applied
extensively to a large number of solids, most experi-
mental moment data have been obtained on poly-
crystalline solids. In this case, since all identity repre-
sentation lattice harmonics except unity average to
zero over a sphere the eth moment M is given by

(Mo)pOWder= (1/4~)'"mo',

where m„o is the coeKcient of Xo' in Eq. (25). As is
immediately evident from Eq. (9) and using the results
of the last section

3 y45'J (l+1) 1
(M2)powder =

5 X &» r~g6

(M4) powder may be readily written down for cubic
0& symmetry from Eqs. (13), (16), (17), and (24a)-
(24d), the coupling coeKcients of Tables I and III,
and the lattice harmonics of 0~ as given by Bell' or

and for sums involving products of lattice harmonics
under the summation sign

x;-p*(i7)x,'-'*(tn)
~ S(PvVt') =

X ~~ d„ u r,~~rg„~r~„'

where the index p labels the irreducible representation
of the group Oj, and runs from 1 to 10. A subscript 6
on 5 indicates that each term in the sum is multiplied
by cos0q. The ordering of the representations is the
same as that given by Bell'; that is, 1~s, 2+-+i,
3+-+d, etc. , where s, i, d, - are the symbols Bell'
uses in labeling the representations. The terms inside
the $ ] brackets are terms of type II, I, and III in
the order in which they appear in Eq. (26). As will be
shown presently, in the case of CaF2 this is also the
order of relatives magnitudes —terms of type II being
the largest. For a lattice with only a small fraction f
of the sites randomly occupied by magnetic nuclei
terms of type I dominate since they depend linearly on

f while terms of types I and II vary as f'
The angular dependence of the second and fourth

moments has been experimentally studied in only a



2648 D. E. O'REILLY AND T. TSANG

few instances. In the following, three examples of such
studies are considered: calcium Quoride, for which
second moment and a limited amount of fourth moment
data are available, aluminum metal, and crystalline
urea, for which a complete set of second moment data
have been obtained.

A. Calcium Fluoride

Calcium Quoride single crystals have cubic 0&,

symmetry. Fluorine nuclei occupy the positions of a
simple cubic lattice and the F" isotope has spin —,'and
is 100% abundant. "The only stable magnetic nucleus
of calcium appears to be the Ca4' which, however, is
only 0.15% abundant. "The remaining calcium consists
of the Ca4' (97.0%), Ca4' (0.6%), Ca44 (2.1%) and
Ca4s (0.2%) isotopes. " The space group" of F nuclei
only is 0&' while that of CaF2 is OJ,'. The second
moment may be written down at once from Eq. (9),
Table II and the I.=0, 4 identity representation lattice
harmonics, in cubic 0& symmetry.

Xs' ——1/(4sr)'t'

X4' ——(525/16X4~) (Z+y+z —-')

where x, y, and 5 are the three direction cosines. Hence

M = (9/4)y4A't'(1/5)S(6, 0)+ (18/35) (1/9)S(6,4)
&& {(525/16)'t'(x'+ y'+ s' —3/5) )]

which may be rearranged to give

Ms= (9/8)(3/7)'"74A'{S(6,4)(x'+y'+s')
—E(3/5) S(6,4)—(2/5) (7/3)"'S(6,0)j)

The lattice sums may be evaluated by direct summation
out to a given number of nearest neighbors and then
approximation of the remaining terms by an integral.
If the lower limit of the integral is chosen as the distance
to the last lattice site included in the sum an upper
limit to the sum is obtained. If the distance to nearest
site not included in the sum is used a lower limit on the
sum results. Carrying the direct summations out to 178
neighbors, one obtains by this method

S(6,0)= (8.399&0.006)d '

S(6,4) = (12.65&0.10)d '

where d is the lattice spacing parameter. Using these
values of the sums M~ is as follows:

Ms ——9.315(y4A'/d'){x4+y'+z4 —0.1952). (27)

y(F")=2.5167X104 rad sec ' G ' (this is the gyro-
magnetic ratio for the F" nucleus, not corrected for
the Lamb diamagnetic shielding effect, which for F"
amounts to a correction of about 0.1%.) and from x-ray
diffraction data" on CaF2, the unit cell dimension is

5.451+0.001 A and hence 0= 2.7255+0.0005 A. Hence

3IIs= 16.00{x4+ y4+ zt —0.1952}, (28)

TABLE IV. CoeScients of lattice harmonics of 3II4 contributed
by terms of Types II, I, and III for CaF2 in the rigid lattice
approximation (G'l.

XQ X4' X6' Xs'

where 3I2 is in units of 6'.
The fourth moment for CaF2 may also be computed.

The angular variation. will be expressed as lattice
harmonics of the identity representation with L,=O, 4,
6, and 8. The 1.=0 and 4 harmonics are given above.
The necessary I.=6 and 8 lattice harmonics are as
follows:

Xs' ——(3&&7)&11/8)(2X 13/4sr)'"

{x'y'z'+ (1/22) LX4'j—1/105),
Xs' ——(5&(13/16) (3&(11X17/4sr)"'

&& {x-'+y'+z' —(28/5) t:X'j
(210/143) t X4rj 1/ ).

(The lattice harmonic Xs' is incorrect as given in
reference 5. The last term in the second set of paren-
theses is shown there as —

6 rather than the correct
value —s.) LXI,'] indicates the unnormalized lattice
harmonic, i.e., the terms in the second set of paren-
theses in the above expressions for XL,'.

Type II terms may be computed from Eq. (19) and
Table III without the evaluation of any additional
lattice sums. The next largest contribution arises from
terms of type I. The following lattice sums were evalu-
ated for the nearest 26 neighbors and are within +0.1%
of the exact value.

S(12,0) = 6.198,

S(12,4) = 13.62,

S(12,6) = 7.283,

S(12,8)= 18.09,

in units of d ".This contribution to M4 is evaluated
directly from Eq. (17).

Terms of type III contribute the least to M4 and
require the most extensive computations as illustrated
by Eq. (26). Necessary lattice sums over triangles
have been evaluated for the nearest 26 neighbors by
tabulating the quantities e&, r, I, r, „&r&„&, and cos0& for
the seventeen distinct triangle types that may be
constructed (or a total number of triangles equal to
25&&26=650) and a table of values of the products of
lattice harmonics which occur in the sums for each
distinct type of triangle. The results of these calcu-

'2D. Strominger, J. M. Hollander, and G. T. Seaborg, Revs.
Modern Phys. 30, 585 (1958).

rs R. W. G. Wyckoff, Crystal Strttetttres (Interscience Publishers,
Inc. , New York, 1951),Vol. 1.

Type II
Type I
Type III
Total

413.3—37.5
3.6

379.4

337.6—39.2—1.5
296.9

46.0—7.4—0.7
37.9

44.0—7.6—5.3
31.1
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TAnrz V. Root mean second and fourth moments for CaF&—calculation and experiment (G).

Direction
of H

L100]
(110]
L111]

~21/2 cale
Rlgld
lattice

3.59
2.21
1.49

M2'" calc
Corrected for

vibration

3.68
2.30
1,59

M2'", expt. '
3.49&0.20
2.21~0.10
1.55+0.06

3II4, calc

4.29
2.68
1.82

M4'", expt. '
4.16+0.16
2.70%0.08
1.92+0.07

a Reference 14.

lations are given in Table IV wherein the contribution
of each type of term to the coefficient nz4 " of Xl,' is
given. As is evident from the table the contribution of
type I terms is about 1/7 that of type II terms, and the
contribution of type III terms is generally less than
1—2'Po of the total due to terms of type I and II except
for the contribution of type III terms to m4' which is,
in this case, about 1/7 of the contributions of terms of
type I and II. A comparison of the available experi-
mental second and fourth moment data'4 for the I 100],
$110$, and $111j orientations of the crystal relative
to the applied field and results the rigid lattice ex-
pressions of Eq. (27) and Table IV for these orientations
is given in Table V. The values calculated in the rigid
lattice approximation are generally in agreement with
the experimental values within the experimental error.
To check this agreement the second and fourth moments
of polycrystalline, reagent grade calcium fluoride were
determined in this laboratory. The results are given in
Table VI along with the values computed for the rigid
lattice. The experimental powder values of j/I2'" and
M4'I are not equal to the rigid lattice values within the
experimental error. To understand why this is the case
let us consider the effect of lattice vibrations on the
various lattice sums which enter into the moments.
The quantities 1/rs, X4'/rs, etc. , occurring in the sums
may be expanded in a Taylor series in the relative
displacements of a pair of nuclei from their equilibrium
positions. For 1/rs, one finds

value of 1/r' then becomes

3 lV

(30)

Evaluation of Eq. (30) for the first 26 nearest F"
neighbors in CaF~ yields

(S(6,0)). =5(6,0)p+ (90+11.2+1.5)(LV). /d'

=5(6,0)s+102.7(lV)., /d'.

In a similar manner (S(6,4)), and (5(12,0)), are
evaluated to be as follows:

(S(6,4)). =S(6,4)p+ (73.7—61.6) (5.728)(LV/d'),
=S(6,4)a+69.3(A'/d'), ,

(5(12,0)), =5(12,0)s+408.9(LV/d'), .

Root mean square amplitudes of vibration of individual
atoms may be calculated from the temperature de-
pendence of intensities of x-ray diffraction maxima or
from the Debye characteristic temperature of the solid.
In NaF the root mean square amplitude (8'). 'i' of
the fluoride ion is equal to 0.195 A. In CaF& the average
root mean square amplitude is 0.12 A."Unfortunately,
in the case of CaF2 the root mean square amplitudes of
the Ca++ and F ions are not separately known. If the
average value of cross products of the individual atomic
displacements is neglected, then

Sx;x,—6g
+—Q 6 Ax, hx,+, (29)

2 'j p

where the subscript 0 on a parenthesis indicates that
the quantity inside the parenthesis is to be evaluated
at the relative equilibrium positions of the nuclei.
Clearly the time-average value of hx; is zero. In
addition, we shall presently assume that (Dx;hx, ),
=5;;(4'), , where (6'), is a mean square amplitude of
relative vibration of the nuclei. The assumption that
the average value of cross products of the displacements
such as (Axe), are zero is exact for CaFs since such
cross products vanish in O~ symmetry. The average

"C.R. Bruce, Phys. Rev. 107, 43 (1957).

TABLE VI. Root mean second and fourth moments for
polycrystalline CaFs (G).

Expt.

2.65+0.03
3.37+0.08

Theory
I lgld

lattice

2.55
3.22

Theory
corrected for

vibrations

2.63
3.30

"K.Lonsdale, Acta. Cryst. 1, 142 (1948).

i.e., the mean square amplitude of vibration of the
relative nuclear coordinates is equal to twice the
individual nuclear coordinates. Justification for this
assumption is given in Appendix B.We have calculated
the second and fourth moments of polycrystalline CaF2
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using (LV) =0 040 A' corresponding to (5') '"=0 14 A

These values are given in the last column of Table VI.
The agreement with experiment is now good and the
values of 3f2 calculated for the various orientations of a
crystal are equal within experimental error to the values
of Bruce. '4

B. Aluminum Metal

Nuclear magnetic resonance of AP' in aluminum

metal has been studied extensively and recently second
moment data have been obtained on single crystals. "
Al metal is face-centered cubic and the necessary rigid
lattice sums for the second moment are as follows:

5(6,0) = (115.5+0.4)d—'

5(6,4) = (—44.9&1 4)d '

where d is now the length of the edge of the cubic unit
cell (there are 4 Al atoms per unit cell). The direct
summations were carred out for the 176 nearest neigh-
bors. M2 may be immediately written down from Eq.
(12).

3fs —385.5 (——y'A'/do) (x4+y'+ s4—2.173).

y = 6.970&& 10' G ' rad sec ' and d =4.0415 A at 298'K "
Hence, the rigid-lattice second moment is (in G )

Ms —— 4 780{x—4+.y4+s4 2 173)—.

Values of M2 calculated from this expression are given
in Table VII and may be seen to be considerably less
than the experimental values for all orientations.

The mean square amplitude of vibration in Al metal
has been calculated" from the Debye temperature to
be equal to 0.033 A' at 293'K. Once again we may
correct the values of S(6,0) and 5(6,4) for this effect
as before, using (6'), =0.066 A':

(S(6,0)), =5(6,0)o+3041(A').„ /d'= 127.8d—"',

(5(6,4)), =5(6,4)o—494(dP) /do= —46.9d—o

where 42 nearest neighbors have been considered.
Using these values of the lattice sums the second
moment is as follows:

M, = —4.996[x4+y4+ g4 —2.265] G'.

TABLE VII. Experimental, rigid lattice, and vibration-corrected
values of the second moment of aluminum metal at 298'K.

The space group of area, CO(NHs)o, is Dos' (te-
tragonal, point group Dod) and there are two molecules
in the unit cell. X-ray diffraction data" have yielded
the positions of C, 0, and N in the unit cell, but little
direct information on the positions of the protons. The
two carbon and two oxygen atoms are in special
positions (c): (O, o,s) and (s,0,z). The four nitrogen
atoms are in special positions (e): (x, —,'+ x, s),
(x, -,'—x, s), (-,'+x, x, z) and (-,' —x, x, e). The eight
protons per unit cell must also be in two sets of positions

(e) and hence four parameters x~, s~ and xo, ss are
necessary to locate the two chemically inequivalent
sets of protons per unit cell.

Second moments of the proton magnetic resonance
absorption at 300'K have been reported by Andrew
and Hyndman" for various directions of II in the planes
perpendicular to the tetragonal axis [001] and the
axis [110].

By reference to Table I it is seen that four inde-

pendent parameters are necessary to completely
specify 312 in D2d symmetry. The necessary lattice
harmonics may be easily ascertained from reference 6
to be as follows:

Xo' ——(4or)
—'"[1],

X4' ' ——(525/16 X4m.)'~'[x'+ y4+ s4 ——,'],
Xs' ——(5/4X 4')"'[2P—x'—y'],

X "=(735/16X4or)'~'[2P —x4—y4 6/7[X '—]]
(31)

where [X&']=2so —x' —y'.
The angular dependence of M2 in the planes per-

pendicular to [001] and [110] may be obtained by
projection of the lattice harmonics:

~zoos [mq+ (3/20)m4& ~ —ms+ (3/28)m4& &]

+ (-'m4&'& —-'m4 "&) cos4&o, (32)

~ono [mz (3/80)m4&P+ &~md+ (15/112)m4~o&]

+[4m 4&'&+ ssmo —(1/28)m4&@] cos2go

+[~'~m4"'+ ~'~m4&" ] cos4$o, (33)

Values of M~ calculated from this expression are also

given in Table VII and are in much better agreement
with the experimental values than are those for the
rigid lattice.

C. Uxea

Direction
of B
$1001
[1103
F1117

Powder

3f2, G'
Expt.

6.7w0.6
9.9&1.2'

10.0+1,0'
9.8+1.2b

M2, G'
Theory,

rlgld
lattice

5.61
8.00
8,80
7.52

M2, 62
Theory,

corrected for
vibrations

6.32
8.82
9.65
8.32

where the triplet of superscripts on 3f2 indicates the
rotation axis, go is the rotation angle around [001]
measured relative to the [100]direction and 1t o is the
rotation angle around [110]measured relative to the
[001] direction. The coefficients ml. are, for con-
venience, presently de6ned as the coefficients of the
unnormalized lattice harmonics [Xl,' ] [defined as the
expressions in the square brackets of (31)] occurring

a See reference 16.
b J.J.Spokas and C. P. Slichter, Phys. Rev. 113, 1462 (1959).

"P.L. Saga1yn and J. A. Hofnoann, Phys. Rev. 127, 68 (1962).

"P.Vaughan and J. Donohue, Acta. Cryst. 5, 530 (1952).
' E. R. Andrew and D. Hyndman, Discussions Faraday Soc.

19, 195 (1955).
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in the expression for M2, i.e.,

Ms Qz——, nor, &"'$Xr,'(g,y) j.
From the data given by Andrew and Hyndman the
following values are obtained for the quantities ml. ' '

mp= 20.1&0.4 G',

~4&» = —3.3m ~.~ G~

m2 ——4.3+0.1 G'

~4&» =5.~+ ~.~ G~.

Each mL, '") is, of course, directly proportional to a
lattice sum 5(6,1n), which in turn is a function of the
parameters x&, s&, x2, and s2 needed to specify the
positions of the protons. Since there are four i Ndepemderst
m&'"' one may determine the values of the four pa-
rameters which yield values of the quantities ml, ' '

that are equal to the experimental values given above.
This was d.one by first calculating the quantities

ml, & & for a selected set of proton coordinates. These
were chosen such that the bond lengths N~ —H~,
N&—H2 were equal to those given by Andrew and.
Hyndman" and the bond angles H~N~H~ and CN~H~
were equal to 1.20' where the numbering system
employed is shown in Fig. 3. These authors assumed
that the lengths of bonds N~ —H~ and N~ —H2 were
equal. All lattice sums were carried out directly for all
protons neighbors within a 4.8 A radius for each of the
two chemically inequivalent protons. For the inner
protons (1) the number of such neighbors is 22 while
for the outer protons (2) the number of such neighbors
is equal to 27. The remaining contribution to the sums
was estimated. by the continuum approximation. The
error involved in sums computed in this way is less
than 0.5%. Next, the first partial derivatives of each
mL, & ' with respect to each of the proton coordinates
were calculated. This was done by displacing the co-
ordinate x& by 0.02 A and computing new values of
the mL, & '. It was found that only the intramolecular
contributions to the sums contributed significantly to
the differential coeKcients and the remaining coe%-
cients were evaluated by calculating the change in the
intramolecular contribution to a given sum. A set of
four simultaneous equations were then solved to obtain
values of the proton coordinates which yield values of
the mL, ( & in agreement with the experimental values.
Values of the initial and final proton coordinates, bond

FIG. 3. Urea molecule.

lengths, and the H~N~H2 bond angle are listed in Table
VIII. The errors accompanying the final values are the
accumulated probable errors derived from the estimated
probable error of the data given by Andrew and
Hyndman. '8 With experimental uncertainty the outer
N —H bond distance is determined to be longer than
the inner N —H bond distance.

The effect of nuclear motions on the results of Table
VIII is uncertain due to the lack of direct information
on nuclear motions in the solid. Measurements" of the
linewidth of urea above 25' exhibit a motional nar-
rowing phenomena in the neighborhood of 50'C which
is ascribed to rotation of the NH2 groups about the
C—N bonds. These authors obtain a value of
mp= 20.8&0.6 6' at O'C which overlaps with the value
obtained above from the data of Andrew and
Hyndman. " However, little is presently known con-
cerning the temperature variation of the other quanti-
ties particularly m4"& and m4('). In view of the motional
narrowing process which sets in at temperatures just
above 25'C it is likely that the mean square amplitudes
of proton displacements out of the xy plane are not
insignificant and the various sums should be corrected
for this effect. However, in view of the present lack of
detailed knowledge concerning the mean square ampli-
tudes of such motions we have refrained from

attempting the correction. Infrared spectra" obtained
with polarized radiation indicate that the inner and
outer hydrogens are not equivalent. The symmetric
N —H stretching bands appear to differ in energy by
only 20 cm '. This small energy difference may indicate
a correspondingly small difference in the bond lengths

Ny —Hy and Ny —H2.

TABLE VIII. Initial and 6nal proton coordinates (L), NH Bond lengths (A), and H1N&H2 bond angle for urea.

X2 82 N1 —H1 N1 —H2 Hl H2 ZHlN1II2

Initial
Final

0.809 —0.175 1.450 1.394 1.046 1.046 1.812
0.824~0.014 —0.153~0.013 1.493~0.015 1.363~0.023 1.024~0.017 1.085+0.026 1.787~0.026

120'
116 &4'

' R. A. Kromhout and %'. G. Moulton, J. Chem. Phys. 23, 1673 (1955)."R.D. Waldron and R. M. Badger, J. Chem. Phys. 18, 566 (1950).
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bm„~ =P;R;~ E;, (34)

where the E; are the components of the applied electric
field along the crystal coordinate system and E„;~ is
a tensor quantity. Applying the inversion operator 8
to both sides of Eq. (34), one obtains

88~ La —g~ La P(8R—Lag 1)8E. . —

= —P (8R '"8-')E . (35)

The quantity E„;~ depends only the crystal symmetry
and if the crystal has a center of inversion, (8R„P~d ')
=E„;~ and 5m„~ =—0. If no center of inversion is
present, Sm„need not be zero. '"

B. Spectroscopy of Solids

As mentioned in the introduction, lattice harmonics
are ideally suited to represent the angular dependence
of physical quantities in the case that the source object
possesses nontrivial symmetry.

Although the group-theory method has been used
extensively to derive selection rules in spectroscopy,
little use appears to have been made of the basis
functions of the group involved, i.e., the lattice har-
monics, to derive the angular dependence of intensities.
In optical and magnetic resonance spectroscopy the
intensity of absorbed or emitted radiation may be
measured at a definite frequency as a function of crystal
orientation. In the case of optical (electric dipole or
electric quadrupole) spectroscopy, lattice harmonics
can be used to specify the intensity as a function of the
orientation of the electric vector of the absorbed or
emitted light relative to the crystal axes. Similarly, the
number of independent parameters needed to specify
the angular dependence of the intensity can be readily
derived. In quadrupole spectroscopy and electron

emote added ie proof. For solids of low dielectric constant, the
nuclear displacements resulting from an external electric Geld of
i0 kV cm ' are of the order of 10 4 to 10 6A.. Any changesin the
second or fourth moments are probably too small to be observed
except for solids of high dielectric constant such as ferroelectrics.

VII. FURTHER APPLICATIONS

A. Effect of Applied Electric Fields

As was pointed out in Secs. II and III and may be
seen from Table I, the moments produced by dipolar
interactions do not allow proper crystal point groups
to be distinguished from the corresponding (isomorphic)
improper point groups. In principle, this ambiguity may
be partially resolved by measurement of the moments
in the presence of a strong electrostatic field applied to
the crystal. If the crystal does not have a center of
inversion symmetry, the moments may be altered by
the presence of the applied electric field but cannot be
altered in the presence of a center of inversion. This
may be seen by consideration of the change bm„~ of
the quantities m„~ of Eq. (25) produced by the apphed
electric field:

paramagnetic resonance spectroscopy, the moment
method can also be used to characterize spectra and
the angular dependence of the moments expressed as
lattice harmonics which are functions of the orientation
of the applied field relative to the crystal axes. Details
of these and other applications of the lattice harmonics
method in spectroscopies of the solid state are under
consideration.

Xp-(8 y)X, '""'"(8y)

(l(pn)i, i'(p'n')i'I L~41)Xr v~r(8 P). (A1)
I,U, A, I

These coefhcients are analogous to the Clebsch-Gordan
coefficients and may be written in terms of the latter
using the matrix elements of Ul, defined by Eq. (8).

For the study of moments, it is only necessary to
study cases where the lattice' harmonics on the right
side of (A1) belong to the identity representation. In
particular, it can be shown that P; X~& '(8,$)
XX&" "*(8,&) is invariant toward any rotation be-
longing to the point group, and therefore may be
written as a sum of lattice harmonics belonging to the
identity representation only:

E' Xi" '(8A)Xi """"(8A)

= P (l(pn)yl'(JIln')
~

LA)Xg'~(8 y), (A2)
L,A

where (l (pn), l'(po. ')
~

LA)= P, (l(pa)i, l'(p'n')i
~
L1A).

The proof is as follows. Applying a rotation operator
R which belong to the point group to the left side of
(A2), we get

P, PAX)""'(8,$)PAX) " "*(8,$)
=P, „,D&»(R)„;Xp ~(8,y)D&»*(R)„X&"'&*(8,&)

=Z, X"" (8,~)X """*(8,~)

The last step follows from the unitarity of our repre-
sentation, P, D~» (R)„,D~&'*(R)„=5„,.

Using the orthogonality property between the lattice
harmonics, the coupling coefficients can be obtained by
multiplying both sides of (A2) by Xr,'"*(8,p) and
integrating over all space

(i(pn), l'(pn')
i
LA)

li space
Z Xi" '(8A)Xi """(8,e)

XXz,'"'(8 P)dQ (A3)

The lattice harmonics on the right side of (A3) may be
expanded in terms of spherical harmonics by (8), and

APPENDIX A

The lattice harmonics coupling coefficients may be
defined as follows:
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we get

(t( ),t'(t ')IL»

+aaim ~ra'ira' L 1AM

nature of this approximation will be briefly considered
for the Debye model.

The approximation of Eq. (81) may be rewritten as
follows:

m, m, ',3f

X I'in I'i m *~1.~*~~
([*' (n) —x'(n')3') =(*' ( )*' (n)&

+(x; (n')x; (n')). (82)

tn tn'
Uoaim L oa'im' U1A, m—m' Pl Pl'PL

XC(t'Ll; 00) C(/'L/; rn', r/t r/t') —(A.4)

Note that (A4) is identical to (23).
The coupling coeKcients (l(tin), l'(tin')

I
LA) may be

evaluated either by direct integration as given in (A3)
or by (A4) via the Clebsch-Gordan and transformation
coeKcients. Both methods are somewhat cumbersome.
Often the coeS.cients may be easily evaluated by
inspection of the equation

P; X& "(x,y,s)X/ "*(x,y,s)
=Ql g (l(/sn)l'(tin')

I
LA&XI.'"(x,y,s),

with the use of identities such as

x'+ y'+s'=—1—2 (x~y'+ y's'+'sx'),
and

2 (x'y'+ y's'+ 8'x') =1+(x'+ y'ps')
Qxsysss 2(xi+ y4+s4)

For example, for cubic O~ symmetry with p, =4, /= l'= 2
one has (normalized to 4sr), n=u'= 1

411 (15)1/sys X 412 (]5)1/2sx Xs418 (15)1/sxy

and, hence,

15(x~y +y's~+s~x~) = (15/2) [1—(x'+y'+ s')j
= —(15/2) [Xij+3.

Thus

x; (n) denotes the displacement along the ith cartesian
coordinate (i=1, 2, 3) of the uth atom in the nth unit
cell [n= (nq, ns, ns) j from its equilibrium position and
the angular bracket denotes the time and canonical
ensemble average value. x, (n) may be expanded in
normal p;oa(k) as follows"

*' (n)=Res&. (k)4. (k)
Xexp['( .r-(n) —~,( )t)). (83)

a, (k) is the amplitude of the qth mode with wave vector
k, q is the mode index (q=1, . 31V), and co, (k) is the
angular frequency of the qth mode at wave vector k.
If the quantity on the left of Eq. (82) is written out in
full, one obtains

g' s —g.- n '=g' sg' n

+(x; (n')x; (n')) —2(x, (n)x, (n')).

From Eq. (83) we obtain an expression for x, (n)x,"(n)
as follows:

x,-(n)x, -(n)= g p,,-(k)g, , -(1 ')*a,(k)u, .(k')*
gl q

&&exp f i(k—k') r (rt) —[/o, (k) —co,.(k')gt}.

After taking the time and canonical ensemble average
one obtains

g,. fbx,. e = g,. mix, . ef

g 2 . cK 2

Xexp(ik [ra(n) —r"(n') j}. (85)

(4r)'/'(2 (41)2 (41)
I
41)= —(12/7)'/' kq

(4sr)'/'(2 (41)2 (41)
I
11)=3. Likewise, we obtain

For cubic Os symmetry, the lattice harmonics (x' (n)x' (n'))=2 I/ts(k) I'I bio (k) I'
coupling coefIj.cients that are needed to evaluate the
fourth moment have been tabulated in Table III.

APPENDIX B

In the consideration of lattice vibrations in Secs.
VIA and VIS, the following assumption was made:

(81)
where (LP&, is the mean square amplitude of Ax; for a
nuclear pair and (hs),„ is the corresponding quantity
for an individual nucleus. In this Appendix, the validity
of this assumption will be examined. Equation (81) is
strictly true if the nuclei are considered to vibrate
independently of one another, such as for an Einstein
model of the lattice vibrations. In the following, the

In order to justify Eq. (81) it is necessary to show
that (x,a(n)x, (n')) is small compared to (x,a(n)x; (n)).
Let us consider a cubic, monatomic substance with one
atom per unit cell (u= 1). The mean square amplitude
of the quantity a, (k)p;,a(k) is the same as that of a
harmonic oscillator in thermal equilibrium. "

-1 1
(I ~.(k)t'. (k) I')= -+

km' 2

s' F. Seits, The Moderrs Theory of Solids (McGraw-Hill Bool'
Company, Inc. , New York, 1940), Chap. 3.~ R. W. James, The Opticot Pririciptes of the Diffraction of
X-R/tys (G. Bell 8I Sons, London, 1948), Chap. 5.
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where E is the total number of atoms in the crystal,
v, is the velocity of the qth mode, (i.e. , transverse or
longitudinal), lr is the Boltzmann constant and T is
temperature. The sums over k in Eqs. (84) and (BS)
may be replaced by integrals as follows:

and hence
k,= 2v-(v/vv) (31V/4v V)'",

where ~ is a mean velocity defined by

3/v'= 1/v/+2/vP.

Q F,(k) ~ F,(k)f, (k)dry,

(x;(n)x, (n))= Q 3
sqkmq t8

&my -1 1
—+-

~Avgk/ «7.'

35 -1 T' '~'r $dP-+-
a mqkm, m 4 eq' 0 e&—1

where 0,=5k„,v,/E and ns is the atomic mass.

f, (k) is the density of wave vector k for the qth mode,
dr~ is a spherical volume element in k space, and k
is a maximum possible value of k for the qth mode. In
the Debye model

fv(k) = U/Sv',

where V is the volume of the crystal. Thus for the sums
of Eqs. (84) and (BS) one obtains

At very low temperatures only the first terms in Eqs.
(86) and (BS) are nonzero and one finds

(x,(n)x, (n')) 2(1—cosk r„)
=0.14,

x' e x' R z'=p~ (k„r.)'

The other method, that of Born, is obtained by setting
the total number of waves up to a given wave number
k equal to 3Ã

k„=2v-(3X/4' V)'"

defined in this way is independent of q.
In aluminum metal (face-centered cubic structure)

the transverse and longitudinal velocities of sound are
nearly equal and for purposes of estimation we shall
take e&=~&=6X10' cm sec '. The Debye temperature
0D=390'K. Let the nearest-neighbor distance be a,
then

V= Xa'v2, and k„,=0.70(2v./a).

x; e x; e
2m't) qk

Xe'"""""k singdgdk, (87)
where r„= ~r(n) —r(n') ~.

The integration over 0 may be performed in Eq.
(87) as well as the k integration of the first term of the
integ rand.

3 A 1—cosk, r
x; s x' e' =

2 mv, k, (k,r.)'
35 T "~' sinP, )

dt, (BS)
mv, k, (k„,r„) 8, s e& —1

where p, =k,r„T/8, .
There are two simple methods for the evaluation of

k,. In the first, or Debye's method, the total number
of waves up to a given frequency ~ is set equal to 3Ã.
This yieMs

(o„=2v.v(31ll'/47r V)'",

for r„=a, the nearest-neighbor distance. At 300'K,
the remaining terms may be evaluated by graphical
integration. For nearest neighbors, the result is

x'ex e
=0.36.

x, rl, x; e -z'=3oo'r

Thus, the approximation expressed by Eq. (81) is
reasonably accurate for Al at O'K but becomes some-
what poorer at 300'K for first nearest neighbors. For
more distant nuclear pairs, Eq. (81) becomes more
nearly exact.

The detailed lattice vibration frequency spectrum
for aluminum has been experimentally measured by
Walker. "Calculated values of (x,(n)x, (n'))/(x, (n)x, (n))
for nearest neighbors at 0 and 300'K using the detailed
spectrum are not much different from the Debye values
given above.

"C.B.Walker, Phys. Rev. 103, 547 (1956).


