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The theory of thermal diffusion is developed by defining two isothermal systems: one at a temperature
such that the jump frequency is equal to that in the direction along the temperature gradient in the non-
isothermal system, and another at a temperature such that the jump frequency is equal to that in the
direction against the gradient. The difference between these two defined temperatures, and the existing
temperature gradient, are used to define a distance parameter x,. The flux equations in a temperature
gradient are then developed in a formal way using . as an expansion parameter for interstitial impurity
diffusion, substitutional impurity diffusion by a vacancy mechanism for the two extreme cases of weak bind-
ing and tight binding of the vacancy-impurity complex, and for the flux of vacancies in pure metals. x, is
interpreted in such a way that it defines the region in which the maximum energy is localized in the critical
configuration for a jump, and is, therefore, a measure of the spatial distribution of activation energy. The

analysis is applied to existing experimental data.

I. INTRODUCTION

CCORDING to the macroscopic theory of irre-
versible processes, the flux of matter in any
system depends on the temperature gradient as well as
the concentration gradient.! Thus, when a temperature
gradient is imposed on a multicomponent, homogeneous
material, a segregation is expected in which some com-
ponents migrate to hot regions while other components
migrate to cold regions. This phenomenon, known as
thermal diffusion or the Soret effect, has actually been
observed in a number of crystalline systems. Experi-
ments show that a temperature gradient in dilute
solutions of carbon or nitrogen in iron results in a motion
of the solute towards hot regions*~* whereas hydrogen
in iron?* and hydrogen in zirconium® move toward cold
regions. Experiments on impurity thermal diffusion in
zinc show that indium and thallium move toward hot
regions while silver moves toward cold regions.®
Furthermore, the separation factor for the impurity is
greater in the direction parallel to the hexagonal axis
than in the perpendicular direction for silver in zinc,
whereas the reverse is true for thallium in zinc.$
It has been pointed out that point defects, such as
vacancies, should also exhibit segregation in a tempera-
ture gradient.” ! If efficient sources and sinks for the
defects are present, the migration of defects in a tem-

* This study is a contribution from the Laboratory for Research
on the Structure of Matter, University of Pennsylvania, supported
by the Advanced Research Projects Agency.
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perature gradient should result in a marker motion
similar to that observed in the Kirkendall effect.
Thermal diffusion experiments on pure a-iron'? and
zinc,® have failed to reveal any observable marker
motion, but marker has been observed in copper and
gold."

It is clear that the existence of thermal diffusion in
crystals implies that the frequency of atomic jumps
across a plane is different in the direction of increasing
temperature than in the direction of decreasing tem-
perature. Microscopic theories have been proposed in
which local temperatures have been assigned to lattice
sites, and the jump frequency was assumed to have a
value characteristic of an isothermal system at that
temperature.” 21415 An alternative approach is often
used? 318 in which the activation energy is taken to be
spatially distributed about the jumping atom. Thermal
diffusion then depends on the details of the spatial
distribution. Allnatt and Rice!” have treated thermal
diffusion as a random walk problem in which the mean
displacement does not vanish.!® They were successful
in deriving a formal equation for thermal diffusion, but
in relating this equation to the kinetics of the atomic
jumps, they assumed that the jump frequency of a
given atom is the same in both the directions of increas-
ing and decreasing temperature. This amounts to taking
the activation energy as concentrated in the plane
separating the final and original position of the moving
atom, and in this respect their treatment is closely
related to those mentioned previously. The Allnatt-Rice
treatment predicts that the heat of transport is always
positive for interstitial-impurity diffusion, so that
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interstitial solutes should always migrate towards
colder regions. This prediction is in direct disagreement
with experiment.?3

Oriani® has given a qualitative analysis of the prob-
lem of Soret diffusion in crystals and has concluded that
the phenomenon may be understood in terms of a
thermodynamic and a kinetic effect. For diffusion by a
vacancy mechanism, the thermodynamic effect arises
from the creation of a vacancy as the jumping atom
leaves its normal position and jumps to an adjacent
vacancy. Thus, the heat of transport contains a positive
contribution, which is the energy needed to form the
pseudovacancy as the diffusing atom jumps, and this
contribution tends to drive atoms to colder regions. For
interstitial diffusion, the thermodynamic effect arises
simply from the thermal energy absorbed or released on
removing a solute atom from its position in the crystal.
The kinetic effect always arises from the redistribution
of vibrational energy between the two sides of the flux
plane as a result of the jump.

Oriani’s analysis emphasizes the subtle and complex
nature of the thermal diffusion problem. In order to
arrive at a proper theory of the Soret effect a detailed
study of the phonon distribution in nonisothermal
crystals, and of the interaction of this distribution with
the moving atoms is required. A rigorous program of
this sort would encounter great difficulties, since it
would require a coupling of the fundamental theories of
heat conduction and atomic migration.

In this paper, a much simpler approach is proposed in
which the actual jump frequency in a particular
direction in a nonisothermal system is used to define a
temperature that gives the jump frequency the same
form it would have in an isothermal system. The jump
frequencies along and against the temperature gradient
are, therefore, compared to the jump frequencies in
two isothermal systems whose temperatures differ by
an amount A7, This temperature difference is then
used to define a distance %, in terms of the temperature
gradient in the nonisothermal crystal. A kinetic
formalism for thermal diffusion is then constructed
containing x, as a parameter, which represents the
empirical content of the theory. x. can be interpreted in
terms of the critical configuration for the atomic jump
and, therefore, can be used to extract detailed informa-
tion about the jump process from thermal diffusion
data. This approach also shows that there is no a priori
reason to expect Soret migration to take place in a
particular direction; the direction and magnitude of the
Soret effect depends on the nature of the critical
configuration of the jump process. The value of w, also
controls the value of the heat of transport, which, in
the formalism given in this paper, may be positive,
negative, or zero. The parameter x., therefore, also
provides a link between the mechanism of diffusion and
the heat of transport.

B R. A. Oriani, J. Chem. Phys. 34, 1773 (1961).
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If x. is interpreted as defining the point in the crystal
which has the temperature appearing in the rate theory
expression for the jump frequency, then the present
method is equivalent to a generalization of Wirtz’
theory.!® Wirtz assumes that the energy of activation is
accumulated at three sites, the initial site, the saddle
point, and the final site, and he assigns three energies
and three temperatures to these sites. In the present
theory, . merely defines the center of a general distri-
bution of activation energy; however, contact can be
made between «, and the Wirtz assumptions, as will be
shown later.

II. SORET EFFECT FOR INTERSTITIAL
SOLUTE DIFFUSION

The simplest example of the Soret effect in crystals
is the migration of a dilute interstitial solute in a con-
stant, one-dimensional temperature gradient. We,
therefore, consider a system with a constant tempera-
ture gradient and a solute concentration gradient in the
« direction and calculate the flux across a plane normal
to the # axis. Proceeding in the usual way, we find that
the flux is

J=BNN (L)I'+—N (R)I'], )

where N (L) is the solute concentration in the inter-
stitial plane just to the left of the flux plane, N (R) is
the concentration in the plane to the right of the flux
plane, I', is the atomic jump frequency from the plane
on the left to the plane on the right, and T'_ is the jump
frequency from the plane on the right to the plane on
the left. The flux plane is taken to be midway between
the left and right interstitial planes. A is the jump
distance and 8 is a geometric factor.

Expanding N (R) in powers of A to the first order
converts Eq. (1) to

TJ=B\[N (L) (T4 —T_)—AT_(dN/dx)].  (2)

It would not do to expand the jump frequencies in a
similar manner because they involve atoms distributed
over several atomic planes. Instead we introduce a
formal device by defining two temperatures 7'y and 7.

by the equations
P+= Ve—Em/IcT+,

T = Ve“E'"/kT“, (3)

where E™ is the energy of motion for diffusion and » is
an atomic frequency factor.®® The significance of the
temperatures 77 and 7. can be understood by referring
to Fig. 1. Following Oriani®® we construct a “coordina-
tion sphere” about the midpoint of the line connecting
the original position of the jumping atom and the site
into which it jumps. The coordination sphere contains
all atoms whose motion has a sensible effect on the
moving atom. The coordination sphere is sliced into
slabs normal to the x direction. For any particular

2 G. H. Vineyard, J. Phys. Chem. Solids 3, 121 (1957).
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Fic. 1. Spatial energy distribution at the critical configuration
for (A), a jump from the left-hand to the right-hand plane; and
(B), a jump from the right-hand to the left-hand plane.

configuration, the energy content of each slab can be
defined, and a plot of the energy as a function of dis-
tance can be constructed. A unique meaning can be
given to this plot by considering a statistical ensemble
of systems each in a critical configuration required for
an atomic jump.’® For the present problem, we con-
struct an energy plot in this manner for two cases: the
critical configuration for an atomic jump from the left-
hand plane to the right-hand plane, and the critical
configuration for an atomic jump from the plane on
the right to the plane on the left. The forms of these
two plots are shown in Figs. 1(A) and 1(B), respec-
tively. Since the jump is certain to occur once the
critical configuration is reached, the probability of
occurrence of this configuration determines the jump
frequency.

In general, the maximum energy need not be at the
flux plane (labeled O in Fig. 1). The flux plane is located
in an atomic plane of the solvent, so that if the energy
maximum is at the flux plane, the most important
contribution to the critical configuration is an out-of-
phase motion in which the solvent atoms open up and
allow the solute to fall through to the new position. If
the energy maximum is near the original site of the
moving atom, the critical configuration corresponds to
an accumulation of energy in the solute atom, which
then punches its way through the shell of solute atoms
at O. If the energy maximum is close to the final site of
the moving atom, solute atoms beyond the final site
are active in the critical configuration, perhaps by
exerting attractive forces on the solute atom as the out
of phase motion takes place. In Fig. 1(A), these possi-
bilities are represented by different values of §, the
distance between the energy maximum and the flux
plane. If § <0, atoms to the left of —A/2 impart a great

L. A. GIRIFALCO

deal of energy to the solute atom which is pushed
through the flux plane. If §>0, atoms to the right of
N\/2 exert an attractive force on the solute and pull it
through the flux plane. In both cases, of course, the
opening of the shell of solvent atoms must play a role,
and the actual value of 6 depends on the balance among
the repulsion experienced by the solute atom from
atoms on the left, the attraction from atoms on the
right and the out of phase motions of the atoms at O.
For 6=0, the repulsive and attractive contributions to
the critical configuration are equally important.
Certainly, it is a great simplification to describe this
complex process by a single parameter §, but such a
description does lead to a fruitful interpretation of
thermal diffusion experiments.

The qualitative interpretation of the temperature 7'
and 7_ follow from this discussion in a natural way.
Actually, what is important is the difference AT,
=T,—T_. If §<0, then ', <T'., since the probability
of a jump in the forward direction is controlled by an
energy fluctuation on the left of the flux plane, while a
jump in the reverse direction is controlled by a fluctua-
tion on the right of the flux plane. Since the left side
is “cold” and the right side is “hot,” jumps to the left
are more frequent than jumps to the right. Thus,
for §<0, AT.<0. Similarly for >0, I'y>T_ and
AT.>0, since jumps to the right are controlled by an
energy fluctuation on the “hot” side, while jumps to the
left are controlled by fluctuations on the cold side. If
6=0, we expect, of course, that AT =0, since then the
jump frequency is determined by a fluctuation at the
flux plane and is, therefore, the same for both directions.
We now define a “critical configuration separation
distance” x. by

AT ,=x.4T/dx. 4)

T, and 7_ are the temperatures of two isothermal
systems for which the jump frequencies are I'y and I'_,
respectively. A less rigorous, but more useful, inter-
pretation is that 7"y and 7 are average temperatures
of a coordination sphere centered on the energy maxi-
mum in the critical configuration energy plots for a
forward and a reverse jump, respectively. In the spirit
of this interpretation, we can identify x. with 26.
Although somewhat lacking in rigor, this procedure is
at least qualitatively correct and . then becomes a very
convenient parameter for interpreting the Soret effect
in terms of atomic mechanisms.

Expanding 'y in powers of AT to the first order and
substituting into Eq. (2) gives

J =B\ (%.(E™/kT?)N (dT/dx)—NdN/dx),  (5)

where we have dropped the subscripts of I' and the
arguments of N, and the quantities 7, ', and N are
interpreted in the usual macroscopic sense as averages
over regions containing many atoms but small compared
to the dimensions of the specimen. At equilibrium,
J=0, and integration of (5) then gives for the stationary
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distribution

N X\ [En\/T—T
GGG ) o
Ny A k T,T
where V and NV are concentrations at two temperatures
T and T'. Comparison of these results with macroscopic

theory (e.g., reference 17) shows that the heat of
transport Q* is given by

Q*=— (x/NE™. ()

This analysis shows that the heat of transport is closely
related to the activation energy for motion, but is equal
to it only when x,= —\; i.e., only when the energy of
the critical configuration is centered on the original
site of the moving atom. Equation (7) shows that Q*
can be positive, negative or zero, and its magnitude can
be less than or greater than E™ depending on the
detailed nature of the diffusion mechanism. Equation
(6) shows that if x,=0 there is no preferential segrega-
tion of interstitial solutes in a temperature gradient.
If x,.<0, the solute collects in the colder regions while
if x,>0, the solute migrates to the hot regions.

III. DIFFUSION BY A VACANCY MECHANISM—
WEAK BINDING CASE

The qualitative substructure of the theory presented
in the previous section is applicable to all diffusion
mechanisms, but the quantitative form of the flux
equation varies from one mechanism to another. We
now consider thermal diffusion of a substitutional
impurity by a vacancy mechanism for the special case
of weak binding between a vacancy and an impurity
atom. That is, the probability of finding a vacancy at
a particular site is not affected by the presence of an
impurity atom at an adjacent site. We now let N (L) be
the concentration of impurity atoms in the plane to the
left of the flux plane and N (R) be the concentration of
impurity atoms in the plane to the right of the flux
plane. Also, let #,(L) and #,(R) be the atomic fraction
of vacancies in the plane to the left and the plane to the
right, respectively. Then the flux across the plane
midway between the left and right planes is

J=BNN (L)ny(R)T =N (R)n, (L)T_], ®

where I',. and T_ are the jump frequencies for an im-
purity atom moving from the left to a vacancy on the
right, and from the right to a vacancy on the left,
respectively. Expanding #,(R) and N (R) in powers of
A, the jump distance, to the first order gives

J=BNN(L)n,(L)(I',—T-)
+N(L)T_(dn,/dx)—n,(L)NT_(AN/dx)], (9)

and expanding T'; in powers of the critical configuration
separation distance x, gives
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Al

E,
J=,8)\(N(L)n,,(L)I‘_acc —
kRT? dx

dn, aN
+N(L)YTN\——n, (L)I‘Jx——), (10)
dx dx

where £™ is the energy of motion for the impurity atom
jumping into a vacancy. At equilibrium, /=0 and (10)

reduces to
dIn(N/n,) «, En dT

=— (11)

dx A kT? dx
If we assume that local equilibrium is established for the
vacancies so that n,=c¢ exp(—E//kT) for all tempera-
tures, where E/ is the energy of vacancy formation,
Eq. (11) integrates to

N 1/x, T—T,
()G )G
No/ E\X TT,
N and Ny being the impurity concentrations in two
regions of the specimen at temperature 7" and 7. In
this case we see that the direction and magnitude of the
impurity migration does not depend merely on ., but
also on the relative values of E™ and E/.

The equations derived in this section are also valid
for diffusion in ionic crystals with the sodium chloride
structure if E is interpreted as one half the energy of
formation of a Frenkel pair.

(12)

IV. DIFFUSION BY A VACANCY MECHANISM—
TIGHT BINDING CASE

If the energy of interaction between a vacancy and
a substitutional impurity atom is very high, the im-
purity atoms will all exist bound to vacancies, and
diffusion will take place by motion of the atom-vacancy
pair, provided the impurity concentration is small. The
atom-vacancy pair can move by two elementary
processes: the impurity atom can jump into the
vacancy, or a solute atom that is a nearest neighbor to
both the impurity atom and the vacancy can jump into
the vacancy.

The flux equation for this case can be derived by a
modification of the method of Lidiard®* which takes
into account the asymmetry of the jump frequencies.
With Lidiard, we choose an atomic plane at x as the
flux plane and define three concentrations N, (x), N (x),
and N.(x) which are the concentration of impurity
vacancy complexes for which the impurity atom is in
the plane at x, and the vacancy is in the plane (x4)),
%, and (x—N\), respectively. The N,, N, and N, thus
give the concentrations of the differently oriented com-
plexes whose atom is in the flux plane. The flux is then

J =3Bt (%) N o (%) — Lo (w+2)N . (x+\)
—Fz_Nc(x)+F2+((XJ—)\)N2(OG—)\),
2 A. B. Lidiard, Phil. Mag. 46, 1218 (1955).

(13)
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where T's*(x) is the jump frequency for an impurity
atom at x jumping into a vacancy at (x+\) and
I's~(x) is the jump frequency for an impurity atom at »
jumping into a vacancy at (x—X\). We now calculate the
time derivatives of N4, N3, and N, restricting ourselves
to diffusion along a cubic axis in a face-centered cubic
structure:

No(%) =201 @+N)Np(2)+ T (4NN (x+N)

—Tyt(x)No(x)— 2T (x) N, (x), (14)
Ny(®) =201 (%) N o () 4+ 2T~ (%) N (%)
— 2T (NN (x) — 20 (e — NNy (x),  (15)
N.(z)=2T(x—N)Np(®) 4Tt (x—N)Na(x—N)
—T5 (x)No(x)— 2 (%)N(x), (16)

where I';t(x) is the jump frequency for a solvent atom
at 4 jumping into a vacancy at (x+)\), and I'y~(x) is the
jump frequency for a solvent atom at # jumping into a
vacancy at (x—N\). Equations (13)-(16) are identical
to those of Lidiard except that we have taken care to
distinguish between jumps in the forward and reverse
directions. Now expand the concentrations about x to
the first order in X and the jump frequencies to the first
order in the critical configuration separation distances.

No(x+N) =N (x)+NdN ,/dx, an
No(x—N)=Ny(x)—NdN./dx;
Iy (4N =gt () (14 (Ee™/ kT2, PdT/da ],
Iy (x)=Tg"(@)[1— (L kT (N —x,2)dT/dx],
Ist(x—N) =Tt (w)[1— (Ee/kT)NIT/dx ], (18)

I (a4-N) =T+ (@) [ 14 (B kT?)x. Vd T/ da],
I () =T @)[1— (Ey/RT?) (\— 1, 0)d T/ dacT,
It (x—N) =T+ () [1— (B kT)HNT/dx],

where Ey™ and E,™ are the activation energies for a
solvent-vacancy interchange and a solute-vacancy
interchange, respectively. x. and x,® are the critical
configuration separation distances for a solvent vacancy
and a solute-vacancy interchange, respectively, defined
as in Sec. II. Equations (18) are easily verified by draw-
ing figures similar to Fig. 1 for each type of jump.
Substitution of (17) and (18) into Eqgs. (13)-(16) gives
the result
d(Na+N c)
J= B}\[I‘z(N —Ng)—i\[y——

dx

m

2 aT
+%I‘2—__)‘ (A7E_A7(l)_]) (19)
kT? dx

dN,
No=2T1(Ny=No) +To(N.— No)+ATy—
X
EmdT Exm dT
2Ny, O —+ N o @— —,  (20)
ET? dx kT? dx
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No=201(No+N,—2N)

1™ 7

+2F1_—(xc(l)'—)\) (Nc—Nb)—, (21)
kRT? dx
N.=2I'(Ny— No)+To(No—N,)
1T — [N =2, 0) = N\
kT? dx
E,™ dN,
+I‘ — —I:]V ()\ Xe (2)) ]\70,)\:‘ )\Pg—li—‘ (22)
X

In these equations, the -+ superscript on the jump
frequencies has been dropped for convenience.
The total impurity concentration N is given by

N=N,+Ny+N,, (23)
and in the absence of any gradients,
N.,=Ny=N,=3N (24)

since all orientations of the complex are equally
probable. If we stay within the limits of the linear
theory, then we can use (24) in all terms in which
concentrations are multiplied by a temperature
gradient. Also, when (19)-(22) are used to derive a
flux equation for the total concentration, the only time
derivative that appears in the ﬁnal equation is
(N.,—N,). Since N, and N, differ only through
gradients, this term represents a time derivative of
gradients and can be neglected if the system is not too
far from steady state.® The algebra is considerably
simplified if we take advantage of these approximations
at this point by using (24) in all terms containing the
temperature gradient and taking N,=N,=N,=0. Then
Eqgs. (19) to (22) become

Ny d(N,+N,)
]=6>\|:I‘2(N —Nj)—— ————], (25)
2 dx
A
2T (No—Na)+To(No—Ng)+Ao—
dx
NdT 1
+———[2F1]“1'”xc<1)+I‘2E2 .M ]=0, (26)
3 dx kT2
No+N—2N,=0, (27)
2F1.<A7b—Nc)+F2(ATu_Nc)
1dT N T E o o
—— — —[ 2Ty, O+ Ty By, @ 28
3 dx kT [ o ’ . @8)

Subtracting (28) from (26) and solving for (N,—N.)
gives
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A d(N,+N,)
ATy dx
aT

1
—_—— —[21‘1E1"‘xc @ +P2E2mx3(2)]_“.
3(01+Ts) dx T

N.—N

(29)

Also, frorn (27) and (23)
Nq+N.=2%N.
Substituting (29) and (30) into (25) gives

(30)

3 (F1+F2) dx

BAT.N  dT 1
— —[2E . O+ T By, P —.  (31)
3('4T,) dx kT2
This is the flux equation for tightly bound impurity-
vacancy complexes in a face-centered cubic crystal. It
is identical to Lidiard’s Eq. 3.8, except for the second
term, which comes about because of the temperature
gradient. If we write D for the ordinary diffusion
coefficient and Dy for the thermal diffusion coefficient,
so that

J=—DAdN /dzx—DdT/dx, (32)
then
BN Tl
D=—— (33)
3 (I1+Ty)
and
Dr=— (DN/N[2E1mx. O+ (Te/T1) Eymx, @ J(1/kT?).
(34)

These equations are also correct for body-centered
cubic crystals, and for hexagonal crystals when the
diffusion takes place in a direction perpendicular to the
¢ axis. For diffusion parallel to the ¢ axis of a hexagonal
crystal, however, a solvent-vacancy interchange can
take place in three ways on each side of the flux plane,
and (33) and (34) must be replaced by

Dyy=2/98N[T'1I"s/ (U1 +T2) ], (35)
Dy''=—5(DulN/\)
X [3E1’"x¢“)+ (Fz/rl)Ezmxc (2)] (1//3T2) (36)

Integrating (32) for the case of zero flux gives, for the
equilibrium distribution of tightly bound complexes in
a temperature gradient,

N 2x,® E{”(T—To)

In—=
No A k TT,

xc(” E2m Vo .
- _(eAE/kT_eAE//cﬂo),

)\ AE V1

(37

2635

where AE=E;™— Ey™ and »; and »; are the vibration
frequencies in the jump frequency equations

— —E1m/kT
Pl—-— Vi€ 5

Fzz yze—Ez"‘/kT_

(38)

Equation (37) is valid for diffusion in face-centered,
body-centered, and hexagonal crystals in which diffu-
sion is perpendicular to the ¢ direction. For diffusion
parallel to the ¢ direction,

N 3x,D Em/T—T,
T 7( o )
+§ _E_i'f E(eAE/IcT___eAT/IcTo)_ (39)
2 AE »,

V. FLUX OF VACANCIES IN PURE METALS

We now calculate the flux of vacancies in a pure
metal having a one dimensional temperature gradient.
If N,(L) is the vacancy concentration just to the right,
then the flux is

Jo=BAWN o (L)T-=N ,(R)T'y), (40)

where I'_. is the jump frequency for an atom to the right
of the flux plane moving into a vacancy to the left,
while I'y. is the jump frequency for an atom moving
from the left into a vacancy on the right. Expanding
N(R) to the first order in A, and T, to the first order in
Xe, glVES

dn, E™ 4T
Jy=—BNT——pB\x~—T—N,. (41)
dx kT2 dx

If the crystal is free of sources and sinks, an equilibrium
is eventually established for which /=0, and integration
of (41) then gives for the vacancy distribution

In(V./N.%)= (we/N) (Em/R)[(T—T0)/TTo]. (42)

If the crystal contains large numbers of efficient sources
and sinks, so that the vacancies are in local thermo-
dynamic equilibrium, then since N, « e=2//*7 where E/
is the formation energy for a vacancy,

dN,/dx=N ,(E'/kT?) (dT/dx), (43)
and the flux becomes
Jo=—BAN,(1/kT?) (2 E"+NE?)(dT/dx), (44)

so that zero vacancy flux cannot be established unless
x.=—NES/E™,
VI. CONNECTION WITH THE THEORY OF WIRTZ

The theory of Wirtz!® states that the jump frequency
in the forward direction is given by

Ty=v exp[— (1/k)(E:/T 1+ Es/To+Es/Ts)], (45)
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where E,;, E;, and E; are the parts of the activation
energy accumulated at the initial site, the saddle point,
and the final site during a diffusive jump. 7', Ty, and T's
are the temperatures at the initial site, saddle point,
and final site, respectively. The sum of the energies is
the energy of motion,

Emn=E\+ E,+E;, (46)
and the temperatures are related, to the first order, by
Ts=Ts+3NdT/dx,

We now establish a connection between x. and the
theory of Wirtz by requiring that I'y defined by Eq. (3)
must be equal to Ty defined by Eq. (45), i.e., the Wirtz
assumptions are incorporated in the present theory.

The temperature T in Eq. (3) is related to T by the
first-order relation,

T.=Tot+1x.dT/dx. (48)
Equating (3) and (45), and using (47) and (48) gives

x. AT\ N AT\
Em(1+ —) =E1(1————) +Es
2T, do 2T, do

A dT\
+E3<1+—— -—) . (49)

2T2 dx

(47)

Expanding the parentheses in (49) to the first order,
making use of (46) and solving for x./\ gives

%e/N= (Es—E1)/Enm. (50)

Equation (50) shows that, within the limits of the
Wirtz theory, %./\ can only take values between 1.
If x,/A <0, then the energy of the moving atom is the
more important factor in the critical configuration for
diffusion, while if x,/A>0, the local expansion of the
site receiving the moving atom is more important.

If x,/A=0, then E1=FE; and the two factors are
equally important. The value of «,/\ has nothing to say
about the contribution E; to the critical configuration.
This is to be expected, since the saddle point is at a
symmetry plane between the initial and final jumps
and, therefore, Es has no effect on the asymmetry of T'
implied by thermal diffusion.

VII. DISCUSSION AND COMPARISON
WITH EXPERIMENTS

From the point of view of the theory of thermal
diffusion, the simplest type of system is the interstitial
impurity diffusing in an otherwise pure metal by an
interstitial mechanism. As shown by Egs. (5) and (6),
thermal diffusion in such systems depends only on the
critical configuration separation distance, and the
activation energy for motion of the interstitial. If the
latter is known from ordinary diffusion experiments,
the former can be calculated from thermal diffusion
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TasBLE I. Critical configuration separation distances.

System Xo/N
a-Fe (C) 1
v-Fe (C) 0.056
a-Fe (N) 1
o-Fe (H) <0
a-Zr (H) —-0.5
Zn (Ag) ~—0.5
Zn (Th,In) ~-0.3
Au —1.6
Cu -1
KCl (K+) —0.21
KClI (CIN) +0.53

data. Table I includes values of x,/\ for interstitial
diffusion calculated from a compilation of heats of
transport by Oriani.* We see that x, is positive for
carbon and nitrogen diffusion in iron, while x. is
negative for hydrogen diffusion in iron or zirconium.
According to the interpretation of x, that is proposed
in this paper, the negative value of x. for hydrogen
diffusion suggests that the accumulation of energy in
the hydrogen atom itself is of great importance in the
critical configuration for the jump. This is to be ex-
pected, since the hydrogen atom has such a small mass
that it acts as an Einstein oscillator when in its inter-
stitial position, and can probably find its way through
the interstices of the metal rather easily. However, the
fact that x,= —0.5 for hydrogen in zirconium, indicates
that some cooperative motion of the zirconium atoms
that surround the final positions of the hydrogen must
occur during the jump. If the hydrogen atom could
jump whenever it acquired the activation energy
without any help from the zirconium atoms, we would
expect x,=—1.

The critical configuration distance has the value unity
for both nitrogen and carbon in a-iron. This indicates
that the local expansion around the site receiving the
diffusing atom is the most important contribution to
the critical configuration. Since x,=0.06 for carbon
diffusing in «-iron, we conclude that, in this case, nearly
equal parts of the activation energy are spent in moving
the carbon atom and in expanding the group of iron
atoms around the final position of the diffusing carbon.
This difference in %, between a- and y-iron is reasonable
in view of the fact that y-iron is more closely packed
than a-iron.

The data and analysis of Rosolowsky? suggest that
silver in zinc provides a good example of a substitutional
impurity that is not bound to a vacancy while indium
in zinc is a good example of a substitutional impurity
strongly bound to a vacancy. Therefore, in analyzing
thermal diffusion data for zinc,® it will be assumed that
silver in zinc corresponds to the weak binding case while
indium and thallium correspond to the tight case. The
data of Winter and Drickamer® are given in terms of a

22 J, H. Rosolowsky, Phys. Rev. 124, 1828 (1961).
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“separation constant” « defined by
In(N/No)=0aIn(T/T). (51)

Since, for their experiments (T'—Ty)=45°C, it is
sufficiently accurate for our purposes to expand the
logarithm on the right side of (51) and write

In(NV/No)=a(T—Ts)/T,. (52)

Comparing this with Eq. (12), we see that ./ is given

by
%/N=akT/Em—E,;/ E™. (53)

A rough estimate of E™ and E/ can be made by taking
E™ to be one-half the activation energy of diffusion for
the impurity atom and E’ to be one-half the activation
energy of self-diffusion of the solvent. Using the data of
Rosolowsky? and of Shirn, Wajda and Huntington?
for the diffusion activation energies, this suggests that
Ef/E™ is approximately unity for silver diffusing in
zinc. Since the absolute magnitude of « is less than
unity,® and k7/Em™=~0.1, this approximation gives
%/A=~—1. We interpret this result to mean that the
centroid of the distribution of energy in the critical
configuration is at the original site of the diffusing silver
atom. Since the silver atom and the vacancy act as
screened negative charges,® a repulsion is set up be-
tween them that must be overcome by the moving
silver atom, in addition to the ion-core interactions.
The screened charge repulsions cannot be greatly
diminished by local expansion around the vacancy, so
it is reasonable that the activation energy is concen-
trated in the moving atom.

Equations (37) and (39) show that for the tight-
binding case, thermal diffusion of a substitutional
impurity depends on two critical configuration distances
and two energies of motion so that even approximate
calculations of #,® and x,® cannot be made from the
available data with any degree of reliability. However,
a rough correlation between the x,’s and experiment can
be made by expanding e2#/*T about T\ to the first order
in AT=T—T, and comparing the result to (52). This
gives

xc(l) Elm
a=2— —

N ET

xc@) Egm 12

N kT vy

(54)

for diffusion perpendicular to the hexagonal axis, and

xc“) Elm 3 xc(” Ezm 12

)\—Ei)\kTom

a=3 (55)

for diffusion parallel to the hexagonal axis. Now if we
take E1™/kT= E;™/kT=10, then we have

zxc(l)/)\+xc(2)/)\=0.1a, (J_)

35,V /N3P /A=0.1a.  (]) (56)

2 G. A. Shirn, E. S. Wajda, and H. B. Huntington, Acta Met.
1, 513 (1953). .
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Unfortunately, we have no way of evaluating «,® and
%.® separately. However, it will be shown later that
%o/ is of the order of —1 for self-diffusion in copper
and gold. Assuming this is also true for x,®/\ gives

%0 /\=0.05¢—0.5, (L)
%D /N=0.033a—0.5, (])

and using the appropriate values® for a gives x,®/\
=—0.3 to —0.4 for diffusion of indium or thallium in
zinc, and x,M/A=~—0.5 for the diffusion of silver in
zinc. We would conclude, therefore, that the critical
configuration is one in which both an opening of the
shell of atoms around the vacancy, and a large kinetic
energy of the moving atom is important. The maximum
in the spatial distribution of activation energy is some-
where between the original site and the plane separating
the impurity from the vacancy. It would be interesting
to compare x.®/\ for the parallel and perpendicular
directions of diffusion, but the calculations are not
accurate enough for this purpose.

The absence of marker movement in thermal
diffusion'®>®® cannot be understood unless either
x%,=—AE’/E™ or the vacancy sources and sinks are
not operative in thermal diffusion. The former possi-
bility would require an unlikely coincidence, since the
negative result has been observed for the quite different
structures of a-iron and zinc. The possibility that the
sources and sinks are inefficient certainly exists, and
further experimentation on thermal diffusion marker
motion as a function of dislocation density and grain
size is needed to clarify this point. These experiments
should be performed on zone refined material since
impurity concentrations greater than 10~%—10-7 atomic
fraction can have serious effects on experiments in-
volving vacancies. The impurity atoms act as vacancy
traps: As a vacancy performs its random walk towards
a sink, it may combine with an impurity atom and be
trapped there for some time before it escapes and
continues its walk.* Such an effect seriously decreases
the efficiency of sources and sinks, particularly since
impurity atoms are expected to aggregate in the vicinity
of dislocations and grain boundaries. Meechan and
Lehman'* have emphasized the great care that must be
exercised in interpreting negative marker motions
because of experimental difficulties which give rise to
spurious results.

Positive marker motions have been observed in
copper and gold." If we assume a random distribution
of sources and sinks, then x,/A can be computed from
Eq. (44) using the marker motion data and known
values of E™ and E/.25:28 From their data, Meechan and
Lehman calculate a quantity AE which they interpret
as AE=Em™—E’, but in our theory is given by

(7

24 A, C. Damask and G. J. Dienes, Phys. Rev. 120, 99 (1960).

2 J, E. Bauerle and J. S. Koehler, Phys. Rev. 107, 1493 (1957).

26 G. Airoldi, G. L. Bacchella, and E. Germagnoli, Phys. Rev.
Letters 2, 145 (1959).
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[(#./N\)Em+E’]. Using their result of AE=—0.3 eV,
for gold and AE=+0.2 eV, for copper gives x,/A=—1.6
and —1 for gold and copper, respectively. This means
that most of the energy of activation is concentrated in
the moving atom, and if the value —1.6 is valid, the
atoms to the left of the diffusing atom are important in
the activated configuration. (Diffusion jump from left
to right).

No direct thermal diffusion data are available for
ionic crystals. However, the heat of transport has been
obtained from thermoelectric measurements for potas-
sium chloride?” with the result that for the potassium
ion the heat of transport is Qx+*=0.99 eV while for the
chloride ion, Qci-¥*=2.09 eV. Comparing Eq. (12) with
macroscopic theory gives

Qx+*= (xt/N)Eym+ 1/,
Qcr-*= (x./N)E_"+E/, (58)

where now E/ is one-half the formation energy for a
Frenkel pair, £;™ and x.+ are the migration energy and
critical configuration distance for the cation, and £_™
and x,~ are corresponding quantities for the anion. From
conductance measurements,?® £/=1.15 eV for potassium
chloride so that Eq. (52) gives x.%/A=—0.21 and
x;,~/A=0.53. This means that for a cation jump, the
energy of the moving ion is more important than the
local expansion of the site it jumps into, while the
reverse is true for an anion jump. This result is reason-
able in view of the relative sizes of the ions.

If the interpretation of x. given in this paper is
correct, we should expect %, to take on values between
+1 and —1. This is, in fact, the case for all systems
studied, except for self-diffusion in copper. The values
of %, for copper and gold are not extremely accurate,
however, since they depend on the accuracy of forma-

27 A. R. Allnatt and P. W. M. Jacobs, Proc. Roy. Soc. (I.ondon)
267, 31 (1962).

28 A. R. Allnatt and P. W. M. Jacobs, Trans. Faraday Soc. 58,
116 (1962).
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tion and motion energies determined from quenching
experiments, as well as on the accuracy of measured
marker movements. In fact, the errors are such that
%/N for copper could be as high as —1 and as low as
—2.5. More accurate data are needed to establish the
self-diffusion ®. values more precisely.

VIII. SUMMARY AND CONCLUSIONS

A theory of thermal diffusion in crystals is presented
in which the jump frequencies along and against the
temperature gradient are used to define the temperature
of two isothermal systems. The difference in these two
temperatures determines the asymmetry of the jump
frequency in the nonisothermal system, and is used to
calculate a parameter %, which is a measure of the
spatial distribution of energy of the activated state. The
analysis was applied to available experimental data,
and the results indicate that for diffusion of carbon and
nitrogen in a-iron, the activation energy is centered on
the site receiving the moving atom; for diffusion of
carbon in y-iron, the activation energy is centered near
the plane of atoms separating the initial and final
positions of the moving atom, but on the side of this
plane nearer to the final position; for diffusion of
hydrogen in «-zirconium and e-iron, and of silver,
indium, or thallium in zinc, the activation energy is
centered on the side of this plane nearer the original
site of the moving atom; for self-diffusion in gold and
copper, the activation energy is centered on the original
site of the moving atom. For diffusion of K+ in KCl, the
activation energy is centered near the flux plane, but
closer to the original than to the final site while for
diffusion of Cl~ in KCl, the reverse is true.
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