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Deformation Potentials in Silicon. I. Uniaxial Strain*
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The rate of splitting with uniaxial strain of the fourfold degenerate (7=3/2) valence-band edge of
silicon is computed by applying perturbation theory to the Si wave functions calculated previously by
Kleinman and Phillips. Based on a "self-consistent" model the calculated values for strain along the [100]
and [111jdirections are 40o/& larger than Hensel's experimental values. A primary objective of this calcula-
tion was to test the rigid-ion and deformable-ion models often used in the theory of electron-phonon coupling.
The rigid-ion model agrees with experiment to within the accuracy of the calculation while the deformable-
ion model disagrees with experiment by 300%. For [111jstrain the crystal symmetry is so reduced that the
separation of the two atoms in each unit cell is not uniquely determined from the macroscopic strain. Ke
have used a model in which the atoms locate themselves in such a way that nearest-neighbor covalent bonds
are unchanged in length by shearing strains. This "bond-bending" model is contrasted with a model in which
the atomic separation changes v ith strain like a macroscopic vector. The latter model yields a deformation
potential of opposite sign to the experimental one,

I. INTRODUCTION

'HE rate of splitting with applied uniaxial strain of
the fourfold degenerate (J= 3j2) valence-band

edge of the covalently bonding semiconductors has only
recently been measured. The first estimates were made
using piezoresistance data' ' but because of oversimpli-
fications in the theory, the results for silicon differ by
more than an order of magnitude from the latest work. '
Better results have been obtained (for Ge) by measuring
the Hall mobility as a function of strain'; the popula-
tions and hence the splitting of the two levels are thus
determined. Thomas" has measured the splitting of the
J= 3/2 valence band in CdTe from the splitting of the
exciton peak in the reflection spectra. Price' has de-
termined the splitting dependence of the binding energy
of acceptor impurities and thus measured the splitting
in Ge. Perhaps the most accurate measurements yet are
those on Si made by HenseP who measured the effective
masses of the split levels by cyclotron resonance.
Utilizing the small dependence of the eRective masses on
the splitting, he was able to determine the splitting as a
function of strain,

The effect of a homogeneous strain e;, on the valence
band edge has been described by Kleiner and Roth' with

Hamiltonian written down from symmetry con-
siderations:

BC=Xp+De(E +coo+a-,)+ssD„I (J s —ts Js)e +c p ]
+:D"DJ"'+J',-),:+"~, (1)
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where the D's are the deformation potential coefficients,
J is the angular momentum of the hole, Xp describes the
situation in the absence of strain, and "c.p." means
cyclic permutation. This Hamiltonian is valid in the
limit that J is a good quantum number, i.e., the strain
splitting is much less than the spin-orbit splitting. D,~

is the shift of the band edge per unit dilation. Its value
has not been determined experimentally and we shall
leave its calculation to a later publication for it depends
sensitively on changes in Vppp, the zeroth Fourier trans-
form of the crystal potential —a quantity difficult to
come by. ' (The difference between Da for conduction
and valence band edges has been measured" and could
be calculated on the uncertain assumption that con-
duction and valence states both see the sa,me Vppp. ) The
splitting of the band edge per unit extension along the
C100j axis is given by I sD„I while

I
sD„'I p»ys the

same role for the L111jaxis.
Bardeen and Shockley" have shown that in simple

semiconductors (nondegenerate band edge at k=0) the
electron-phonon interaction may be written D& u,
v here u is the displacement of the lattice due to thermal
vibrations (V u is the dilation) and D is the static
deformation potential. Khitheld ' has derived the de-
formation potential theorem in its general form (valid
for long-wavelength acoustical phonons), and several
authors have" " extended it to include degenerate
levels. Thus, the constants we here calculate (D„and
D„'~ and which were measured in a statically deformed
crystal by HenseP are two of the three independent

' L. Kleinman and J. C. Phillips, Phys. Rev. 118, 1153 (1960)
hereafter called KP.

"W. Paul and D. M. Worschauer, J. Phys. Chem. Solids 5, 102
(1958)."J.Bardeen and W. Shockley, Phys. Rev. 80, 72 (1950)."G.D. Whitfteld, Phys. Rev. 121, 720 (1961).

'g G. L. Sir and G. E. Pikus, Fiz. Tverd. Tela 2, 2287 (19&&)
[translation: Soviet Phys. —Solid State 2, 2039 (1961)j."M. Lax, Application of Group Theory to Solid-State Physics,
Notes on Lectures, Bell Telephone Laboratories, 1960—196&
(unpublished)."M. Tiersten, IBM J. Research and Develop. 5, 122 {1961),
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components of the hole-phonon coupling tensor in
silicon.

Several models (rigid ion, " deformable ion, " self-
consistent") of the change in crystal potential with
lattice displacement have been used to calculate elec-
tron-phonon couplings. Ehrenreich and Overhauser'9
have calculated the scattering of holes in germanium by
acoustical and optical modes. For the acoustical modes
they found that with the deformable-ion model scat-
tering by transverse and longitudinal phonons are
equally important but with the rigid-ion model only
longitudinal phonons play an important role. With a
reasonable choice of parameters they were able to ht the
experimental T " law of the drift mobility of holes
using either model. "Hence, the determination of which,
if either, of these two models gives the correct. static
deformation potential would be of considerable im-
portance in the theory of electron-phonon interactions,

In Sec. II we derive the perturbation Hamiltonian
deformec[ undeformed which we use in Sec. III to

compute the static deformation potential constants
from a "self-consistent" model. In the fourth section we

compare calculations based on the rigid-ion (R.I.) and
deformable-ion (D.I.) models wit:h the "self-consistent"
(S.C.) calculation and with the experimental values. '
The rigid-ion model is shown to be far superior to the
deformable-ion model.

Even though our model is nearly self-consistent, an
additional assumption is required to calculate D '. In a
Si crystal strained along the L111jdirection the location
of the two atoms in the unit cell is not uniquely de-
termined by the macroscopic strain. We use a model in
which the atoms move in such a way as to keep all
nearest-neighbor bond lengths equal, i.e., a "bond-
bending" model. In Sec. IV, we compare this model
with one in which the separation between atoms changes
with strain as if it were a macroscopic vector. The
"bond-bending" model is shown to agree well with ex-
periment while the other model does not. We are also
able to show that the "bond-bending" model is com-
patible with what is known about interatomic force
constants.

II. PERTURBING HAMILTONIAN

It is well known that the wave functions of the valence
band edge in silicon are at k=0 and (neglecting spin)
transform according to the threefold-degenerate repre-
sentation I » i.e., as xy, xs', ys.' "The most satisfactory
procedure for determining these wave functions is to

"L.Nordheim, Ann. Physik 9, 607 (1931);and W. V. Houston,
Phys. Rev. 88, 1321 (1952)."F.Bloch, Z. Physik 59, 208 (1930).

' J. Bardeen, Phys. Rev. 52, 688 (1937).
"H. Ehrenreich and A. W. Overhauser, Phys. Rev. 104, 331

(1956).
"H. Ehrenreich and A. %'. Overhauser, Phys. Rev. 104, 649

(1956)."G. Dresselhaus, A. F. Kip, and C. Kittel, Phys. Rev. 98, 368
(1955).

expand them in a series of orthogonalized plane
waves" ":

v, n, Z

aC= —V'+ V(r), (4)

where V(r) is a local crystal potential which may be
determined self-consistently. ' It may easily be shown
that"" if we write

P g a P e~k, ~ r

(3'())"' '

then q obeys the following Schrodinger equation:

(5&+ VR)~-=I"-'&-,

where Vg is a nonlocal repulsive potential such that

(6)

(7)

V~(r s)=Z 2 (I-'—I-'. i)
n, l, m

X U ~„*(s—R„)U„~,„(r—R„), (g)

where the E ~ are the eigenvalues of the core eigen-
functions U„~ .

The p 's (n = a'y, xs, or ys) have been computed in KP'
and we now wish to use 6rst-order perturbation theory
and diagonalize the6X6matrix(p

~

V'+ V~'+)tL S~ &ps),

where XL S is the spin-orbit interaction term, and V (r)
= VD(r) —V(r), where VD(r) is the potential in a,

crystal uniaxially strained along one of the two inde-
pendent axes of Eq. (1). However, as pointed out by
Pikus and Sir, ' in ordinary perturbation theory the
wave functions in the perturbed problem are expanded

"C.Herring, Phys. Rev. 57, 1169 (1940).
s'Other expansions either converge too slowly (e.g. , plane

waves} or require an approximation for the potential which is not
justified for the semiconductors (e.g., the mu6in-tin potential for
the augmented plane-wave expansion).

'4 We use atomic units throughout this paper."J.C. Phillips and L. Kleinman, Phys. Rev. 116, 287 (1959)."M. H. Cohen and V. Heine, Phys. Rev. 122, 1821 (1961).

XU. ik, (r —R,)j, (3)

where the sum over (k,; ) means over a. symmetrized
combination of plane waves transforming according to
the irreducible representation of interest, R, is the r th
lattice point in the crystal, U„~~ are silicon-core wave
functions with quantum numbers e, I, m= 0 and s axis
in direction of k;, lV is the number of unit cells of
volume 0 in the crystal, A „&(k)=(U„&&,e'k"), and the
expansion coeScients b,"are determined by minimizing

(p
~

R
~
lt )/(f. ~

f.). The one-electron Hamil tonian 3C is
usually approximated by'4
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in unperturbed functions which satisfy the same bound-

ary conditions as the perturbed function. In the present
case of a periodic lattice of infinite extent that periodicity
is the boundary condition; hence, both the perturbed
and unperturbed functions must have the same peri-
odicity. Thus, following Pikus and air, we perform the
following transformation of coordinates in order to
bring the deformed crystal into coincidence with the
undeformecP'.

r'=(1+i ') —r= (1—e) r, (9)

where ~ is the strain tensor whose components appear
in (1). Thus

and
V"=V'+2V e V, (10)

VD(r'+or') =Q VkD expLik (r'+er'))

cell

+~ 2 2 (~—I-' i)
v n, l, m

)&(p.(S) I
17„&„*(S+eS ~„D)U„„„—(r+ er ~„D)—

III. CALCULATIONS

Before we can calculate the matrix elements (13), we
must decide upon a model for the change in crystal
potential with lattice displacement. Ke choose the
following "self-consistent" model. Assume the crystal to

"We &vork only to the first order in e.

where k'=k+ek is the reciprocal lattice vector in the
unstrained crystal corresponding to k in the strained
crystal. V~D is the kth Fourier transform of the po-
tential in the strained crystal and depends on the model
chosen. Finally,

Vg (r'+er', s'+~s')

=2 2 (&—I'"-i)~-, i, -'((1+~)(s'—R'') —~.")
v, i n, l. , m

X&.„.((1+.)(r' —R ) —~, ), (12)

where R, is a vector to the center of the ith cell in the
unstrained crystal and where ~„D is the vector from the
center of a cell to one of the atoms in the cell when the
crystal has been deformed. Thus, the matrix elements
of the perturbing Hamiltonian (neglecting spin-orbit
coupling for the time being) in the unstrained coordi-
nates, 3C'(r')=BE'.D(r') —3C(r'), are given by (dropping
the primes)

&c.~'=(v « I
&&'I v i)

be made up of perfectly rigid Si4+ ions centered at the
lattice cites and an electron gas which responds in a self-
consistent manner to the potential due to itself and the
Si'+ ions. The approximation of perfect rigidity is very
nearly self-consistent for the small Si4+ ions; the very
small redistribution of ionic charge that does take place
will be reflected only in the high Fourier components
of ionic potential which have little effect on (13) be-
cause (y Ie'k'I pp) approaches zero rapidly as k gets
large. Because we assume the ions to be rigid, they
rema, in spherical and we may write"

U ionD V ionD cos( (k &k) .& )
—Vo, k k "cos( (k —ek) ~D), (14)

where Vp, k „-k""~ is the Fourier transform of the
(Coulomb+exchange) potential due to a single ion and
the cos((k —~k) rD} is a structure factor arising from
the two ions at +~ in the unit cell. Note Vp, g
= Vp, l, ,~""follows directly from the R.I. model:

VD(r) =P v(r+~„D —R„—u„),
n, v

where v is the potential due to a single (spherically
symmetric) ion and u„= ~R„ is the displacement of the
center of the cell located at R„ in the undeformed
crystal. Note further that if ~ deforms normally, i.e., if
~D ——~+c ~ then cos((k —«k) rD) =cos(k ~). AVere we
to use the D.I. model,

UD(r) = V(r —er),

then Vk, k
——. Vk and the potential energy term of (13)

would disappear, i.e., the transformation of coordinates
(9) transforms the entire D.I. potential-energy term
into a kinetic-energy term. Ke shall see that the R.I.
potential energy term is needed in its entirety to give
agreement with experiment. Ke shall also see that the
R.I. approximation app/ied to the valence electrons
yields a result not too different from the "self-con-
sistent" model we now discuss.

Cohen and Phillips" have pointed out that to first
order in the effective ionic potential I

the true ionic
potential plus Vg of Eq. (6)], one may write

vnl V e+ V' ex

Vke= Ukr'on «f(L1/e(k)] —1j, (1g)

where V~' is the kth Fourier transform of the Coulomb
potential due to the screening (i.e., valence) electrons,
Vk'* the kth Fourier transform of the exchange po-
tential due to the valence electrons, and e(k) is the
static dielectric constant of wave number k. Hence, if ~

deforms normally wd may write

Uk —k Uk I UO, k—k UO, k

+Uk i. "—Vkvn') cos(k z), (19)
28 ''or typographical convenience the tilde has been dropped

from ~™in subscripts."M. H. Cohen and J. C. Phillips, Phys. Rev. 124, 1818 (1961).
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or in diA'erential form

ion

Vg, k
—Vk= —cos(k x)

8k
8 /BVex

+ — +I- e k, (20)
Blk k k Bk

where

TABLE II. Kinetic, potential, and orthogonalization energy
contributions in Ry to (xy K' xy) —(xs I

X'
I xs).K' is the perturba-

tion per unit strain in the L001j direction. The wave functions q, „
and p, have been expanded in symmetrized combinations of
plane waves with coefficients b;; contributions with coefficients
b&b&, 2b2b2, and b2b2 are listed separately to show convergence. The
rom labeled remainder contains all kinetic-energy terms b,' and
potential and orthogonalization energy terms 2bib; and 2b2b;
where Ib'l)0014

BVg' Vsg'"" "' Be )
Bk „e'(k) Bki i,

ion off

(1—1/e(k) ) (21)
Bk

2bibo
b2b2
Remainder

Total

0
0—0.864

—0.041
—0.905

0.376
0.384
0.089
0.160
1.009

—0.229—0.176—0.067
—0.134—0.606

II0'

0.147
0.208—0.842—0.015—0.502

In an Appendix to this paper ~e derive a, formula
analogous to (18) for Vj,'" using the Slater" free-
electron and the dielectric-screening" approximations.
Considering the number of approximations involved in
their derivation, Eqs. (17), (18), and (A4) give results in
remarkably good agreement with detailed band calcula-
tions' of the (111) Fourier component of the valence
potential (see Appendix). We use them with the
knowledge tha, t they contain several 10 20%%u~ errors
which may not cancel so well for (BV /vBk)»i as for
I ].&]. Higher Vk ' are very nearly zero' and shall be
taken to be exactly zero.

We now can calculate D„by assuming the crystal to
be strained thus:

c„=e, e;;=0 for i, jets. (22)

The erst thing to notice is that if we take the p„'s in 13
to be q „y„,, and p.„only diagonal matrix elements
exist. With the y 's expanded as in (5) the first (kinetic
energy) term of (13) is just —2e g;b,'P&~,. & b,. ',
where k, , is the s component of k; . In Table I we list
the b, 's which were computed but not listed in reference
9. The first two symmetrized combinations of plane
waves for p „, p„, and p„are listed by Herman. " In
the second column of Table II we list the difference be-
tween 2(q „,I ~,s

I y„,) and 2(y, , I V.s
I
rp„) showing ex-

plicitly the contributions from the first two symmetrized
combinations of plane waves. Note that for the strain
in the s direction, K'„„.,=X'„„„,.

The second (potential-energy) term of (13) is calcu-
lated using (20). That ~ deforms normally can be seen
from symmetry considerations; there are x, y, and s
rotation axes passing through the ions which are not
destroyed by a uniaxial strain in the s direction. The

TABLE I. CoeAicients of symmetrized combinations of plane waves
appearing in the state F25 .

SCPW (111) (200) (220) (311) (311)s (222)

b 0.831 0.537 0.076 —0.099 —0.013 —0.073

so J. C. Sister, Phys. Rev. 81, 385 (1951)."F. Herman, Phys. Rev. 93, 1214 (1954).

valence-electron term of (19) is nonzero only for
k= (2m/a)(+1, &1, +1); but with e given by (22),
k e k is identical for all the k= (2m/a) (+1, &1, &1),
Thus, the potential energy due to the valence-electron
charge density does not contribute to the differ-
ence BC',„,,„BC'„—, „and hence not to D„BVo ~""./
Bf(a/2m)k]' is listed in Table III." It is obtained by

TABLE III. I'ourier transforms of potential of Si4+ ion for
various reciprocal lattice vectors k and their derivatives with re-
spect to L(a/2x)kg'.

k'= L(a/2x)kg'

3
8

11
16
19
24
27

—0.793—0.368—0.294—0.229—0.205
-0.176
—0.163

ion/rlk2

0.22
0.034
0.019
0.0096
0.0072
0.0048
0.0040

fitting the last column of Table II in Kp. with an
analytical expression and differentiating; it is accurate
to the two significant figures listed. The potential-
energy contribution to X'„,„„—3C' „,. is listed in
Table II next to the kinetic-energy contribution.

The third (repulsive-potential) term of (13) may be
calculated in the local approximation used by us in

energy-band calculations; this is done by approximating

p(s) in (7) by the product of a radial function and a
spherical harmonic. This approximation simplifies the
calculation greatly and causes only a 5% error in D„.
However, it was felt beforehand that the error might be
much larger than this and so the repulsive potential
term was calculated exactly by substituting (5) in it,
yielding a contribution from the 2p core levels"

Vit.„'——(I:—1:,„)2P b,b;
i2

P {(A ~ (k,")A (k;") cos0, ,'
(k, &~ (k;~

—A*(k,)A (k;) cosB,,) cosL~ (k,—k,)]), (23)

"Since Up, k""depends only on the magnitude of k, 8Up, i, '0"/c9k
=2k(a/2x)'hPp "»/al (a/2x)kg'. Similarly for A (k) and e(k).

» Although F» has d-like symmetry about the center of a cell,
it is p like about the atoms.
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I)'= L(a/2)r)kg'

3

8
11
12

0.0915
0.0978
0.1043
0.1012
0.0997

BA/DIP

0.0081
0.0050—0.0004

—0.0015—0.0016

TABLE IV. Orthogonalization coefficients for plane waves ap-
pearing in expansion of p and their derivatives with respect to
L ()k/2m. )k]'.

the spin-orbit term,

v ~)"'= (1/v'2) (v *.+i~")~,
v»s"'= (1/v'~)L(v -+i~")&—2s *a]

I"-= (1/v'6) L(v '—i~")~+2s ..8]
p sIs'"= (1/ v2)(q „i—v)„,)p,

~vs"'= (I/v3) I:(() *.+is ")0+v *s~]

v »»'=-(1/~3)I:(v *.—4 ..)~- v *.8],

where k"=k—ek is a reciprocal lattice vector in the
strained crystal corresponding to k in the unstrained, '4

8,, is the angle bet;ween k; and k;, and we have used the
fact that ~ deforms normally. In differential form

~ ~

Vi)
' ——2(F..„E)Qb, b—; Q Q A*(k,)

(&t~) &&)~) k,k.

BA) 1 k; k kk;—
&& I

+Ae(k, )A(k,)———
Bk)k., k, k, kk, k;

, k,+[ ) k; cos[v (k;—k;))), ()4)

where the second pair of brackets are identical to the
first withi and j interchanged. A (k) and BA/c) [(a/2w)k]s
calculated from the 2p core functions of KP are listed"
in Table IV; also from KP, E—E»=7.42 ry. V&„,, „,—Vg „„is listed in the fourth column of Table II as
calculated from (24). The last column of Table II, the
sum of the first three, gives 3C'„, „,—X',:

Ke now wish to diagonalize the 6)&6 matrix

(q IX'+)kI, S
I (Is). If we choose the (I) 's to diagonalize

FIG. 1.Covalent bonds showing forces along L1 iOj, Ltui ~, L011]
directions which bend the three bonds J3, C, D but leave the
lengths of all four bonds unchanged for /=1.

"Recall that in Eq. (13) we dropped the primes which had
previously appeared on all vectors in the unstrained coordinate
system.

where o( and g denot:e states of 5,= 1/2 a,nd 5,= —1/2,
then note that R' connects states of diAerent J but is
still diagonal within either set of states with the same J.
Hence, when the deformation split ting is small compared
with the spin-orbit splitting, we need calculate only
diagonal elements of the 4)&4 (J=3/2) X' matrix. V'e
find immediately

xa =(v+sIs"'IX I v+sI"")—(~+i, s'"IX
I v ~)i-"')

= s (X zz, xz X xk, xk)y (2())

where we have used the clefinition of D„, Eq. (1).Thus
from Table II we find D„=0.251 Ry=3.41 eV. This is
compared with the experimental value in Table VII.

Ke now determine D„' by considering a strain 3e
along the L111]axis giving a strain tensor e»=3e and
z;;=0 for i, j&1 in a coordinate system with the x axis
in the I 111] direction and e;;=c for ail i, j in the
crystal-coordinate system. The dilation ~„=e»= ~„
may be set equal to zero to simplify the calculations as
it cannot lead to a splitting of the levels. If the q

's

are now chosen to be (I)g=((I)»+p„,+q„)!&3, ys)
= (q,„—)e„)/%2, and ass ——(to„,+(I)„—2(I)„.)/~'6 the
X' matrix

I Eq. (13)]will be diagonalized with X'zi, ri
=BC'z2, z2. The calculation of the kinetic-energy con-
tributions proceeds as before and we list X'z~(KE)
—X'ss(KE) in the first column of Table VI.

The potential-energy and repulsive-potential terms
are a bit more complicated, however, because the loca-
tion of the ions in the strained unit cell is not known.
From symmetry considerations the ions must remain on
the threefold axis along which the strain is applied and
must be reAection images of each other in the center of
the unit cell but their distance apart is not determined,
the twofold rotation-inversion axes perpendicular to the
strain having been destroyed. Ke have already divided
the strain into a dilation, which we ignore, and a shear.
&Ve now choose the following model whose implications
will be discussed in the next section: All shears take place
through the mechanism. of "bond bending. "The three
shears of which the

I 111]uniaxial strain is composed
are equivalent to three uniaxial strains along the three
L110] axes perpendicular to the L111]strain direction.
In our model these strains do not change the length of
a,ny (nearest-neighbor) bonds but rather bend those
bonds not along the L111]strain direction. (See Fig. 1.)
Kith this assumption then ~~= ~; thus we can write
Vk, kD —Vs= Vs"+Vs~', where V)," is what would be
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TAnLE V. Quantities appearing in Eqs. (21) and (AS) evaluated
at k= (2s./o)(1, 1,1).

Vo i 0+ equi l9Voi««i/s/fs g($) ri /BIg& SP /ah& a+ */@is

—0.32 0.18 1.97 —0.36 —0.12 0.02

obtained if z deformed normally and is given by (20)
and

Vkn'=(Vs, s""+Vs'+Vs-)(sink ~)~ c k (27)

is the contribution to the change in potential in the
distorted crystal due to bond bending. 8V'"/c) L (u/2ir) k]',
f)U'/c)L(a/2rr)kjs, and the values of e(k), f)e/f)L(is/2s)k1'
Us i,

"""' 8 Vs""""/cl((a/2ir)k)' Dork= (2rr/a) (1,1,1)j
used" to calculate them are listed in Table V. Vo, k"""'
which is Vs, q""plus an average" of the s and p repulsive
potentials v as taken from KP whence its derivative was
also taken. e(k) and its derivative were computed from
the well-known equation for the sta, tic dielectric con-
stant of a free electron gas."This approximation should
be satisfactory since the dielectric constant of a semicon-
ductor is simil. ar to that of a free electron gas for large k
where large k means e(k)((e(0)=12 for silicon. The
q«ntity V0, 111 +Vill +Vill 0.688 Ry from KP.
Uiii' was also calculated from (18) and Viii'" from (A4).
This gives Vs, iii""+Viii'+ Viii'"=0.685 Ry (see Ap-
pendix). The contributions to 3(."qg —X'ss of Vi,"and
Uk

' are listed separately in Table VI.
Similarly the matrix elements of the repulsive po-

tential are Vri '= Vr&"+Vie ', where Vrr" is given by
(24) and

IV. DISCUSSION

TAmz VII. Comparison of experimental values' of D„and D„'
(in eV) with various calculated values. Column 2 is the "self-
consistent" calculation for /=1 using E—E»=7.42 Ry. The re-
maining columns use E—E»=6.42 Ry. Columns 3 and 4 are the
"self-consistent" calculation for f =1 and &=0 (see Eq. (29)].
Column 5 is the rigid-ion model with &=1. Column 6 is the
deformable-ion model which is independent of f.

Exp S.C.H. S.C.B. S.C.N. ' R.I. D.I.

An examination of Tables II and VI reveals that a,n
expansion of p consisting of just two symmetrized
combinations of plane waves is sufficient for determining
D„and D„'.The row labeled "remainder" consists of all
kinetic-energy contributions with a factor b; and po-
tential-energy contributions with a factor 2b;b& or 2b, b2

where ~b,
~

)0.014; it contributes less than 5% to the
total. The contribution from those terms still remaining
is quite certainly much smaller yet.

Phillips" has pointed out that one can fit all the ex-
perimental data of Si by decreasing E~ —L&,.„in the KP
energy band calculation by about 1.0 Ry which leads
to a 13.5%%uo reduction in Vrr. While this does not neces-
sarily imply that either E—A» or Vz is actuallv in
error by this a,mount, if we assume such an error does
exist it leads to D =2.85 eV and D,'=3.41 eV, i.e., it
gives a, value of D„/D„' in substantial agreement with
the experimental value a,nd reduces the discrepancy
between the calculated values of D„and D„' and experi-
ment to 40%. We list these "corrected" values of D„and
D„' in the third column of Table VII and shall call these

Ua
' ——2(E—Ls„)Q b,b; Q Q A(k, )A(k, )

&i, &(i; & pp.
&&sin[(k; —k;) e](e e k,—~ e k;). (28)

2.04 3.41 2.85 2.85 2.85
2.68 3.15 3.41 —3.85 2,09

a See reference 3.
b Self-consistent bond bending.' Self-consistent normal.

6.15
4.83

UI|,.4g"—VggL;
' and Vgg.g

'—Vugg ' are listed in
Table VI. The last column of Table VI, the sum of the
first five, gives X'gg —X'L;E.

Choosing q s to diagonalize the spin-orbit term as in
(25) but with xy —+ A, xs —+ E1, ys —+ E2, we find that
(26) holds for D„'. Thus from Table VI (remembering
our initial strain was 3e this time) we find D., =0.232 Ry
=3.15 eV.

TAar.E VI. Kinetic, potential, and orthogonalization energy
contributions in Ry to (A ~X'

~
A) —(E X'~E). X' is the perturba-

tion per unit s for a strain 3e in the L111$direction. The part of the
potential and orthogonalization energy which is due to the motion
of the atoms within a unit cell is listed separately in columns 4
and 5. The rows are labeled as in Table II.

v v& t/'~ v ~ a, '

blb1
2b1b2
b2b2
Remainder

Total

—2.07
0
0—0,06—2.13

1.13
2.63
0.94
0.68
5.38

—0.47—0.69—0.25—0.47—1.88

—2.30
—2.33

0—0.86—5.49

1.08 —2.63
0.91 0.52

0 069
0.74 0.03
2.73 —1.39

"J. Lindhard, Kgl. Danske Videnskab. Selskab, Mat. -fys.
Medd, 28, 8 (1954).

our calculated values. It shouM be pointed out that our
corrected values of D„and D„' do not include the
changes in the b; which must necessarily occur if we
recalculated the energy bands, using the corrected VI&.

The weaker repulsive potential would cause b. to in-
crease and b~ to decrease, thus reducing the decrease in
D„and the increase in D,'.

Other sources of error in the calculation are the Vo, ~

and the A (k) and their derivatives. Aside from Viii and
(c)V/Bk')iii which do not enter the calculation of D„,
these depend only on the atomic cores and should not be
in error by more than 5%. The errors in Viii are due
mainly to the uncertainties in the valence-electron ex-
change terms and the "self-consistent" calculation of
the valence potential, Note that the change in E—E2„
previously discussed would, if taken properly into ac-
count, decrease V»& by increasing the self-consist-
ent screening of the valence electrons. In addition,
(c)V/c)k')iii suffers from the dielectric screening ap-
proximation which does work quite well for U~~~, how-

"J.C. Phillips, Phys. Rev. 125, 1931 (1962).
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FIG. 2. Location of Rn RtoIIl 1clRt1vc to its ncR1cst Ilclghbors ln R

crystal strained 30 in the L111j clirection. For i'=0 the atom re-
mains in the center of the strained cube; for |= 1 all four bonds are
of the same length.

ever. In view of these uncertainties in the calculation,
the agreement wit;h experiment is as good as can be
expected.

We have thus far omitted the correction to the de-
formation potential due to the change in the repulsive
potential caused by the splitting of the valence and core
levels. Thus to II' we must add a term

le P P (H gg~„,)
v n, l, m

where Il' is the splitting per unit strain of the top of the
valence band and DZ&„t is the splitting of the 2P core
levels. We thus obtain

IX' =H0'+ 0.07 (H' AE „2). — (30)

D„.=T+U+U22+t'(V +V22 ), (31)

An exact calculation of AJ': ~ would be extremely tedi-
ous. Just as for H', there are kinetic and potential energy
contributions to AL&„~. The kinetic contributions are of
order BE»/Br, (0.0001 while the potential energy con-
tributions though larger are still much smaller than the
potential energy contributions to Ho', because the
change in crystal potential with strain is much smaller
in the core region than in the valence region.

The calculated values of D and D, ' are suf/iciently
accurate to enable us to make several interesting obser-
vations about the distorted crystal. The fourth column
of Table VII lists D„' as calculated neglecting the bond-
bending contributions, V~ and Vg~, of Table VI. If one
writes

that is known about interatomic force constants. In
Fig. 2, we show an atom, and its four nearest neighbors
in. a, crystal-strained 30 in the L1111 direction. If

deforms normally, the $111$ bond is of length
(v3a/4)(1+20) and the other three bonds of length
(V3a/4)(1 —2/30). If we now allow the central atom to
move a distance (a/2) (e,e, e), all four bonds attain their
natural (unstrained) length &3c2/4 eliminating the
nearest-neighbor central force energy of the system.
Opposing this reduction of energy is the increase of
nearest-neighbor noncentral force energy (i.e. , bond-
bending energy) and perhaps far-neighbor energy. Ac-
cording to Herman's" fit of the lattice-vibration spec-
trum of germanium (which should be similar to silicon)
the nearest-neighbor force constants are cr= 3.7, P= 3.4;
their difference" is a measure of the noncentral forces,
i.e. , about 10%of the central forces. Second and all even
neighbors do not. effect bond bending since all even
neighbors are moved by the same (a/2)(e, e, e). (The
diamond lattice may be considered as two interpene-
trating fcc lattices. "Bond bending" is a measure of the
separation of these two sublattices in the deformed
crystal and, thus, cannot involve forces between neigh-
bors on the same sublattice. Of course bonds connecting
two atoms on the same sublattice are bent in a strained
crystal, but this bending is uniquely determined by the
ma, croscopic strain tensor. ) Third and farther neighbor
forces are not sufficiently well known to determine
whether they aid or oppose bond bending, but in any
event, their effect will be of order 10%%.

The bond-bending constant should be directly meas-
urable by x-ray scattering. The scattering factor F&« in
diamond-structure crystals is forbidden because of the
structure fact:or cos(k ~). Unlike other forbidden re-
jections which fail to vanish" (the structure factor
assumes the crystal-charge density to be a superposition
of atomic-charge densities), F200 is rigorously zero from
group theoretical considerations. In the strained crystal
F2op is no longer rigorously zero, but will still be vanish-
ingly small due to the structure factor unless bond
bending takes place. We may write for a crystal-
strained 30 in the L1111direction

F200 f200 cos(k' '0 fk' 0' '%) 7rei f200& (32)

where f200 is the atomic scattering factor. For 0=10 '
we have J'200 0.04 in Si and 0.08 in Ge. Since x-ray
scattering factors are reported to three decimal places,
there shouM be no difficulty in determining ~.

In the last two columns of Table VII we list D„and
D„' as computed from the D.I. and R.I. models. Since
we have treated the core as rigid in our "self-consistent"
model, it is not surprising that the R.I. model varies
only slightly from the S.C. calculation, The result

then a comparison of the calculated values for ~"=0 and
f'= 1 with the experimental value indicates 1 )0 9or at.
the worst i)0.8, i.e. , the "bond-bending" model is
about 90% correct. This is consistent with the little

'7 1'. Herman, J. Phys. Chem. Solids 8, 405 {1959).
22 Because nearest neighbors lie along t 111j,all components of

their force tensor are equal for central forces."L.Kleinman and J. C, Phillips, Phys. Rev. 125, 819 {1962).
4' S. Gottlicher and E. Wolfel, Z. Electrochern. 63, 891 {1959).
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of treating the valence electrons as rigid is to decrease
r}V "/BL(a/2m)k]' from —0.10 to —0.07, i.e. , to make
them screen not quite so effectively, which is exactly
what was expected. Even though the agreement of the
"self-consistent" and rigid-ion models with experiment
may be somewhat fortuitous, the disagreement of the
deformable-ion model with experiment is real. D„ is in
error by 300%. D„' is only in error by 80%, but if a,

"bond-bending" contribution were added to it, it would
be in error by 400%. Since the D.I.model is independent
of both repulsive and Coulomb potentials, the only
source of error in its calculation is the b coefficients of
the kinetic-energy terms. These could be in error by as
much as 10% not 300%. Furthermore, any attempt to
correct the b to improve D„will worsen D, ' and vice
versa. Thus, we can flatly state that the deformable-ion
model is an extremely poor approximation.

In the near future there will exist digital computer
programs which will enable self-consistent energy band
calculations to be done with extreme accuracy and ease.4'

A good test of these calculations will be to perform them
for strained crystals and thus compute D„ in a truly
self-consistent manner. (A truly self-consistent calcula-
tion of D would require t to be determined by mini-
mizing the total energy of the strained crystal; this
however appears to require accuracy beyond present.
capabilities. ) A more immediate use of deformation
potentials might be as an aid in identifying optical ab-
sorption peaks in a variety of semiconductors. 4' E'or this
reason and because a comparison of deformation po-
tentials at points throughout the Hrillouin zone is of
interest for its own sake, we are now surveying these.

"P. Herman and I'. Quelle (private communications}.
"H. Ehrenreich, H. R. Philipp, and J, C. Phillips, Phvs. T~ev.

Letters 8, 59 (1962}.
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APPENDIX

9'e here derive the exchange potential due to the
valence charge density in the dielectric screening" and
Slater free electron approximations. "' From I'oisson's
equa, tion and (18)

pk'= k' Vg'/8a.
= —(k'/87r) V '""'"{eL (k) —1j/e (k) }, (A1)

wllere
p'(r) =po'+g~ p~'e'"',

and p, '= 32/a'; there being 32 valence electrons per unit:
cell of volume a'=10.26'. In the free-electron ap-
proximation

U'"= —6L3p(r)/8~ j'"=—6(3/8~)'"(32/~')"'
X/1+a(a'/32)gk pg'e'"'j, (A3)

where we have kept the 6rst two ternis in the power
series expansion of p '3. Thus

VI„-"'- = —0.4i ik' Vg'

= 0.411k' Vg'"' "'{
t e (k) —1]/e (k) }, (A4)

and

g Vox

~ ~
= —0.411~ k- —+O.375U, ~. (A5)

clL (a/27r) k7' & c}L(a/2~) k]'

The momentum-dependent' Slater approximation is
obtained by multiplying (A4) and (A5) by 2/3. In-
sertion of the values of k, V,."""' and e(k) in (A4)
and (18) veri6es that Vo, rir""+U~rr'+ Ur~r'" ———0.793
+0.157—0.049= —0.685 Ry.


