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Scattering of Neutrons by an Anharnmnic Crystal

A. A. MARADUDIN AND A. E. FEIN+

westinghouse Research Laboratories, Pittsburgh, Pennsylvania
(Received July 30, 1962)

The one-phonon differential scattering cross section for the coherent scattering of thermal neutrons by an
anharmonic Bravais crystal is obtained correct to the lowest nonvanishing order in the anharmonic force
constants. Cubic and quartic anharmonic terms are retained in the crystal s Hamiltonian. It is found that
the 8-function peaks in the energy distribution of the scattered neutrons for a fixed momentum transfer
(which occur at the unperturbed phonon energies) in the harmonic approximation are broadened and their
positions are shifted in an anharmonic crystal. Some numerical results for the magnitudes of the phonon
widths and shifts are obtained for a simple model of a face-centered cubic crystal.

I. INTRODUCTION

'HE diffraction of neutrons by crystals has been
the subject of much experimental and theoretical

study since the middle of the nineteen thirties. Like
x rays, thermal neutrons have a de Broglie wavelength
of the order of the interatomic spacings in crystals so
that they can be used in diffraction studies. However,
unlike x rays, whose energies are about a million times
greater, thermal neutrons have energies which are of
the order of the energies of the lattice vibrations. This
means that measurements of the energies of neutrons
scattered by crystals as functions of the scattering
angle can provide information about the energies, and
hence the frequencies, of the lattice vibrations with a
detail which it is presently impossible to obtain by
other means.

The earliest work was primarily concerned with the
elastic scattering of neutrons and with the scattering
of neutrons by magnetic crystals. Then in 1944, in a
fundamental paper, Weinstock' derived expressions for
the inelastic cross sections for the scattering of a neutron
by processes in which the neutron either gains energy
from or loses energy to the crystal.

In a crystal whose atoms interact with Hooke's law
forces, that is, in a crystal whose potential energy is
expanded up to quadratic terms in the displacements
of the atoms from their equilibrium positions, the
motions of the atoms can be expressed as the super-
position of the vibrations of independent harmonic
oscillators of which there are as many as there are
degrees of freedom in the crystal. Each of these inde-
pendent modes of vibrations, or normal modes as they
are called, has its own characteristic frequency. It is
characterized by a wave vector k whose magnitude i:
the reciprocal of the wavelength of the lattice wave to
which it corresponds, and by an index j which specifies
the polarization of the wave. It is well known that a
harmonic oscillator of angular frequency a&(kj) has an
in6nity of equally spaced energy levels, the spacing
between consecutive levels being hru(k j).This quantum
of energy is called a "phonon, " a term apparently due

*Present address: Westinghouse Electric Corporation, Elec-
tronics Division, Baltimore, Maryland.' R. Weinstock, Phys. Rev. 64, 1 (1944).

to Tamm, ' and if the oscillator is in its e state of
excitation, this situation is described by saying that
there are rs phonons in the mode (kj).

In his work, Keinstock calculated the inelastic cross
sections only for one-phonon processes, that is, processes
in which a neutron either creates or absorbs a single
vibrational quantum of energy. Although his work has
subsequently been extended to the case of multiphonon
processes, ' the one-phonon processes remain the most
interesting from the standpoint of the information they
give about the dynamical properties of crystals. Kith
a proper choice of experimental conditions (low tem-
peratures, low incident neutron energies, high nuclear
masses) it seems that the multiphonon effects can be
made negligible or at least reduced to the size of a
manageable correction. Accordingly, we will not discuss
multiphonon processes in this paper.

At this point, we must distinguish between the
coherent and incoherent scattering of neutrons. Since
a crystal is a periodic array of nuclei, a neutron wave
scattered by one nucleus can interfere with those
scattered by other nuclei. This interferent scattering is
called coherent scattering and both elastic and inelastic
scattering will give rise to it. It is stronger the more
isotopically pure a crystal is and if the nuclei have no
spins. On the other hand, if the nuclei can exist in
several isotopic states, and/or have a spin, then because,
in general, the various isotopes and the spin orientations
will be distributed randomly over the lattice sites, the
nuclei will tend to scatter independently of one another.
This type of scattering is called incoherent, and it is
also found in both elastic and inelastic scattering.

Coherent inelastic scattering of thermal neutrons is
of particular interest since from a study of the energy
change of the scattered neutrons for a given momentum
transfer the phonon dispersion curve, the relation
between the frequencies of modes of a given polarization
and the wave vector k, can be obtained. Incoherent
inelastic scattering is also of considerable interest, since
the energy distribution of the scattered neutrons is
proportional to the frequency spectrum of the crystal. 4

'F. Seitz, in Imperfections in clearly Perfect Crystals (John
Wiley 8z Sons, Inc. , New York, 1952), p. 15.

3 A. Sjolander, Arkiv Fysik 7, 375 (1954).' G. Placzek and L. van Hove, Phys. Rev. 93, 1207 (1954).
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However, vanadium and hydrogen are the only elements
which scatter thermal neutrons primarily incoherently,
so that apart from experiments with alloys there is not
much scope for experiments of this type at the present
time. Consequently, this paper will be devoted to a
discussion of the coherent, inelastic scattering of
thermal neutrons by one-phonon processes.

If the scattering of neutrons by a Bravais crystal is

studied in the harmonic approximation, the one-phonon
scattering cross section for a fixed momentum transfer
Ax=2~5k from neutron to crystal as a function of

energy transfer is found to consist of a number of
6-function peaks. These peaks are centered at the
frequencies co(kj). The number of peaks in the cross
section is determined by the energy and momentum
conservation conditions which govern the scattering
process. From measurements of the changes in the
momenta and energies of the neutrons as a result of
the scattering process the phonon dispersion curves
co= cv(kj) can be mapped out.

However, no crystal is perfectly harmonic. If we

retain the cubic, quartic, ~ . ~, terms in the expansion
of the crystal's potential energy in powers of the dis-

placements of the atoms from their equilibrium positions
we are dealing with what is called an anharmonic

crystal. It is then found that the transformation which

diagonalizes the harmonic part of the crystal Hamil-

tonian into a superposition of one mode harmonic
oscillator Hamiltonians leads to coupling between these
modes which is associated with the anharmonic terms
in the potential energy. The study of the various
thermal and dynamic properties of anharmonic crystals
thus necessitates the solution of many-body problems.

Within the past several years the coherent scattering
of neutrons by anharmonic crystals has been studied
theoretically by several authors. The earliest work is

that of van Hove' who gave a brief discussion of the
scattering at the absolute zero of temperature. Van
Hove's work was extended to finite temperatures by
Kokkedee' who obtained an expression for the one-

phonon coherent scattering cross section.
In his work Kokkedee retained anharmonic terms

to all orders in the atomic displacements, and presented

explicitly the contributions to the coherent scattering
cross section from the cubic and quartic anharmonic

terms. No attempt to evaluate the results of this

analysis was made in this paper.
A different approach to this problem was made by

Baym' who showed that the evaluation of the neutron

scattering cross section could be reduced to the evalu-

ation of the Fourier transform in space and time of a
time-relaxed displacement-displacement correlation

'L. van Hove, Technical Report No. 11, Solid State and
Molecular Theory Group, Massachusetts Institute of Technology
March 15, 1959 (unpublished). See also, L. van Hove, N. M.
Hugenho1tz, and L. P. How/and, 'III Quantum Theory of Many
I'article Systems (W. A. Benjamin, Inc. , New York, 1961).

6 J. Kokkedee, Physica 28, 374 (1962).
r 6. Baytn, Phys. Rev. 121, 741 (1961).

function, the phonon propagator. He did not, however,
carry out a calculation of the propagator. 3foreover,
although Baym's result is exact for a harmonic crystal,
it is only approximate for an anharmonic crystal. A
calculation of the phonon propagator was carried out
by Kashcheev and Krivogjaz who solved the equation
of motion it satisfies. However, these authors retained
only cubic anharmonic terms in the crystal Hamiltonian
so that their results are less complete than those of
Kokkedee.

The effects of the anharmonic terms in the crystal's
potential energy on the scattering of neutrons can be
summarized qualitatively in the following way. Each
of the harmonic normal mode frequencies ro(kj), the
unperturbed "single-particle" energies of the system,
suffers a complex shift Are(kj)+iI'(kj), the real part
of which gives the change in the value of the frequency,
and the imaginary part of which is the reciprocal of the
lifetime of the single-particle amplitude for the phonon
state described by (kj). Both parts are temperature
dependent. The imaginary part of the shift shows up
experimentally in the broadening of the peaks in the
energy distribution of the scattered neutrons, and F is
the haH-width at haH-maximum of the peak. The real
part shows up as a shift in the center of the peak.

Both of these anharmonic effects have recently been
observed experimentally. Larsson and co-workers' in
Stockholm have measured phonon energy shifts and
widths in aluminum, while similar measurements for
phonons in lead have been made by Brockhouse and
co-workers'o at Chalk River.

In the present paper, we calculate the differential
cross section for the scattering of neutrons by an
anharmonic Bravais crystal. We consider only one-
phonon processes and retain cubic and quartic anhar-
monic terms in the crystal Hamiltonian. The methods
we use to carry out this calculation differ from those
employed in the papers referred to above. In Sec. II
we reduce the calculation of the scattering cross section
to that of finding the Fourier transform in space and
time of a time-relaxed displacement-displacement
function. This reduction, however, is carried out in a
manner which is quite different from that by which
Baym achieves the same result; in particular, the
method we use makes it easy to discuss, if desired, the
higher order terms omitted from our, and from Baym's
expression for the scattering cross section. In Sec. III
our expression for the scattering cross section is manipu-
lated into a form which can be evaluated through the
use of a propagator technique similar to that employed

' V. N. Kashcheev and M. A. Krivoglaz Soviet Phys. —Solid
State 3, 1107 (1961).

K. E. Larsson, U. Dahlborg, and S. Holmryd, Arkiv Fysik
17, 369 (1960)."B.N. Brockhouse, T. Arase, G. Caglioti, M. Sakamoto,
R. N. Sinclair, and A. D. B.Woods, Inelastic Scattering ofneutrons
in Solids and Liquids (International Atomic Energy Agency,
Vienna, 1961),p. 531. See also, P. A. Egelsta6 and S. McCallum,
Nature 181, 643 E', 1958).
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where

d20eoi g2 gl=——$(x,&u),
ZQd6 5 gp

(2 1)

S(x,a))=Z 'g, e t'E'P, (E, gt expL —ix R(l)j~E,)
&&«) IZt expL'~ R(i') jlE'»(~+(E' —E)/&) (2 2)

In these equations qp is the initial wave vector of the
neutron and q&

——qp —x is its final wave vector. " A~,
which is equal to (52/22)2) (qt)2 —q)2), is the energy
transferred from the neutron to the crystal. a is the
scattering length of the nuclei and R(l) is the instan-
taneous position vector of the tth atom in the crystal.
~E,) and ~E;) are energy eigenstates of the crystal
Hamiltonian H, and Z is the crystal s partition function.

The position vector R(l) can be written as

R(l) =x(l)+u(l), (2.3)

where x(l) is the position vector of the mean position
of the 3th atom. It can be expressed as

X(l) = llal+1282+l382 (2.4)

where a~, a2, a3 are the three primitive translation
vectors of the crystal, and I&, l2, 13 are three integers
which are positive, negative, or zero. u(l) is the dis-
placement of the 1th atom away from its mean position.

If we use the Fourier integral representation for the
6 function,

d] ei tx
7 (2.5)

we ca,n rewrite Eq. (2.2) as

1
S(x,a)) =—P exp( —ix Lx(l) —x(l')])

tl'

dt e'"t(exp[ —ist u(l; t)]
&&exp/ix u(l'; 0)$&. (2.6)

"J.Lnttinger and J. C. Ward, Phys. Rev. 118, 1417 (1960)."L.van Hove, Phys. Rev. 95, 249 (1954).
"The neutron wave vectors q0 and q1 are de6ned in such a way

that their magnitudes equal 2m. times the reciprocals of their
wavelengths.

by I.uttinger and Ward" in their study of the inter-
acting electron gas. The calculation of the phonon
propagator in an anharmonic crystal is carried out in
Sec. IV, and the formal result for the scattering cross
section is obtained in Sec. V. The numerical evaluation
of the real and imaginary parts of the complex shift
in the phonon frequencies for a simple model of a three-
dimensional crystal is described in Secs. VI and VII.

II. THE DIFFERENTIAL SCATTERING
CROSS SECTION

Our starting point is an expression due to van Hove"
for the differential scattering cross section per unit
solid angle and unit interval of outgoing energy e of
the scattered neutron in the first Born approximation
for coherent scattering:

e e&=O,e*+& (2.10)

where 0 is an operator which orders all powers of x to
the left of all powers of y. We now have to evaluate

(e*t,2&= (O,e*+~&. (2.11)

We now make use of cumulants" to express the right
side of this equation as

1

(e et'&= exp Q —(O,M„), (2.12)

where the first few cumulants are given explicitly by

Mt ——(x+y),
~ =(( +y)') —(*+y)',
~ = (( +y)') —3(( +y)')( +y&+2(*+y)',
~ = ((*+y)')—4(( +y)')(*+y)—3((*+y)')'

+»((*+y)')( +»'—6( +y)'

(2.13)

In the case of Bravais lattices, it can be shown that

(*&=(y)=0 (2.14)

This result follows in two steps. Firstly, from the
invariance of a crystal against a rigid body translation
through one of the translation vectors of the crystal,
the thermal average (x u(l; t)) is independent of the
unit cell index l. Moreover, since we are dealing with a
time-independent system, (x.u (l; t)) is also independent
of t. Because of its independence of l, if (r..u(l; t)) is

"M. G. Kendall and A. Stuart, The Advanced Theory of
Statistics (Charles Gri%n and Company, Ltd. , London, 1958)
Chap. 3.

In this expression, we have introduced the Heisenberg
operator

u(l ~ t) e~(t)A)ilu(l ~ 0)e t(t/—2)H (2 7)

while the brackets ( ) denote the canonical ensemble
average of the expectation value of an operator,

(O)=Z 'g;e &~'(E, tO~E,&=Trt, t'80/Tre t)8 .(2.8)

The problem of evaluating S(x,&e) becomes one of
evaluating the correlation function (expL —ix u(l; t)j
&&expLix u(l', 0)j). At this point we can proceed in
one of two ways. We can work with the correlation
function as given, or we can manipulate it into a form
in which simpler correlation functions appear. The
former approach has been employed by van Hove' and
by Kokkedee. ' The latter has been used by Baym. '
We follow the latter approach, but in a somewhat
different form from that used by Baym.

Let (is for the moment define new (noncommuting)
operators x and y by

x= —ix u(l; t), y=ix u(1';.0). (2.9)

Our problem thus becomes that of evaluating the
function (e*ett&. Since x and y do not commute it is not
true any more that e*e&=e*+&.But it is true that
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nonvanishing then it must correspond to a rigid body
translation of the crystal as a whole. However, such a
translation would contradict one of the conditions of
equilibrium for an infinite crystal, or a crystal satisfying
the cyclic boundary condition, viz. , that there is no
net force acting on any atom. " Therefore, (x u(l; t))
must vanish. This result also holds for crystals with
more than one atom per unit cell, provided that each
atom is at a center of inversion symmetry.

Combining Eqs. (2.12), (2.13), and (2.14), we find
that

(e 'es&= exp{—2'(g'+2xy+y')+-', (x'+3x'y+3xy'+y')
+ (1/24) [(a4+4x'y+6x'y'+4''+y4)

—3(x'+2xy+y')']+ }. (2.15)

If the thermal average were being carried out over
the canonical ensemble for the harmonic crystal, then
it is a well-known result that"

(e*es&0——exp{t2(x'+2ay+y')o&. (2 16)

This result means that if the terms past the first one
on the right-hand side of Eq. (2.15) are nonvanishing,
this can only be due to the anharmonic terms in the
crystal's potential energy. That they are, in fact,
nonvanishing follows from an actual calculation.

For a Bravais lattice, an average such as (x"), or
(y") is independent of the lattice position vectors x(l)
a,nd x(l'), respectively, due to the translational in-
variance of the lattice. This result together with the
defining equations, Eqs. (2.9), shows us that

&~)= —&y'&. (2.17)

We now factor the exponential function on the right
side of Eq. (2.15) into

1
p -('+y'&+—D '& —

3& &

2 24

+(y') —3(y')']+ " exp (e&+l(*'y+*y')

1 1
+—(4ay+6~ y +4' )—-[4&*y&'+4&~')&*y&

24 8

+4&»)&y')+2&*'&&y'&]+"

The 6rst factor in this expression does not describe
the correlations between the displacements of the atoms
at x(l) and x(l'). It is, in fact, just the Debye-Wailer
factor corrected for anharmonic effects, and can be
written explicitly as

""= xp{—((~ )')
+A [&(~ «)'&—3((~ u)')']+ j. (2 19)

' M. Born and K. Huang, Dynamical Theory of Crystal Lattices
(Oxford University Press, New York, 1954), p. 21'l.

' H. Ott, Ann. Physik 23, 169 (1935); M. Born, Reports on
Progress ie Physics (The Physical Society, London, 1942—43),
Vol. 9, p. 294.

S(x,co) =
2x

g exp{—ix [x(l)—x(l')]&

+ di e'"' exp[(x u(l; t)x u(l'i 0))]. (2.22)

In the harmonic approximation Eq. (2.22) is exact,
provided that 2M and &x u(l; t)r. u(l'; 0)) are replaced
by 2MO and &x u(l; t)x u(l', 0))0 where the thermal

"A. A. Maradudin and P. A. Flinn (to be published).

Since we have discussed the Debye-Wailer factor in
another paper'7 we omit further discussion of it here.

We are left with the second factor in Eq. (2.18) to
consider. In terms of the displacements it becomes

exp{&it u(l; l)x u(l', 0))
',—i[-&x u(l; l)x u(l; t)x u(l'; 0))

—&x u(l; l)x u(l'; 0)x.u(l'; 0))]
—-', [&x u(l; t)x u(l; l)x u(l; t)~ u(l'; 0))
—3(x.u(l; l)x u(l; t))(x u(l; l)x u(l'; 0))
+(x u(l; t)x u(l'; 0)x u(l'; 0)x u(l', 0))
—3&x u(l; t)it u(l'; 0)&(x u(l', 0)x u(l'; 0))
+3&x u(l; i)x u(l'; 0))'
—-', &x u(l; i)x u(l; t)x u(l'; 0)x u(l'; 0))
+-,'(x u(l; t)x u(l; t)&&+ u(l', 0)x u(l', 0))]

+. &. (2.20)

All terms past the first in the exponent of this expression
must be explicitly proportional to the anharmonic
force constants, since they must vanish if the anhar-
monic forces are set equal to zero.

In the calculations that follow, we work only to the
lowest nonvanishing order in the anharmonic force
constants. This means that we can neglect all terms in
the exponent in Eq. (2.20) past the leading term. This
is the fundamental approximation of the present paper.
It seems as if this is a quantitatively satisfactory
approximation, if we can extrapolate the results of our
Debye-Wailer factor calculation to the present calcu-
lation. In reference 17 it was found that the contri-
butions from the terms in square brackets in the ex-
ponent on the right side of Eq. (2.19) are at least two
orders of magnitude smaller than the anharmonic
contributions to the average ((x u)'). We expect that
a similar result holds for the time-relaxed correlation
functions in Eq. (2.21). We thus find that

(exp[—ix u(l; t)] exp[i' u(l'; 0)])—e '~ exp[(x u(l; t)x u(l', 0))]. (2.21)

This is Baym's result. 7 Equation (2.20) shows explicitly
what kinds of terms are omitted in his analysis through
the linearization of a functional di6erential equation
which appears in his treatment, and provides a starting
point for a more accurate theory.

If we substitute Eq. (2.21) into Eq. (2.6) we obtain
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averages are evaluated in the canonical ensemble of the
harmonic crystal. If we expand exp(u. u(l; t) v. u(l'; 0))o
in powers of its argument in the equation analogous to
Eq. (2.22), the contribution to S(x,cv) from the term
containing (1/u!)(x u(l; t)x u(l'; 0))o" gives rigorously
the cross section for the scattering events in which the
neutron excites and de-excites a total of e quanta of
vibrational energy. Kokkedee' has pointed out that in
the case of an anharmonic crystal it is no longer possible
to write a similar expansion for the scattering cross
section in which the eth term rigorously describes the
e-phonon processes: The various processes are now

generally mixed up in a complicated way. This means
that it is no longer rigorously possible to effect a sepa-
ration of the scattering cross section into one-phonon
peaks plus a multiphonon background: The peaks
describe parts of the background as well. Nevertheless,
if in Eq. (2.22) we expand exp(x u(l; t)x u(l', 0)) in
powers of its argument and keep just the 6rst two terms,
then as long as I'(kj) is small compared to cv(kj) we

can still identify the term containing (u u(l; t) u u(l', 0))
to the first power as the dominant contribution to the
"one-phonon" peaks in the scattering cross section.
The terms in Eq. (2.20) we have neglected in writing

Eq. (2.22) will give rise to higher order corrections to
these peaks. The condition I'(kj)«~(kj) is not overly
restrictive, since if I'(kj) is comparable with &o(kj),
the "one-phonon" peaks would not be distinguishable
from the background. The experimental results of
Larsson et cl.' and Brockhouse et at." show that in
the cases they have studied these peaks are generally
resolvable.

The first two terms in the expansion of S(v.,&u) written
out explicitly are

S(x,a;) =So(&,&o)+Si(u,(d)+ ' ', (2.23)
where"~

So(x,M) =e '~8(&o) P exp{ ix Lx(l) —x(l'—)$)

III. THE ONE-PHONON SCATTERING
CROSS SECTION

If we introduce a function B,„(ll'; ~) by

B,„(ll', (u) = dt e""'(u,'(l; t)u„(l', 0)), (3.1)

then in terms of this function the one-phonon scattering
cross section Si(x,o&) is given by

e
—2M

Si(x,(0) = —g P exp{—iu I x(l) —x(l') j)
ll' xy

XE,B,„(ll'; ~)~„. (3.2)

In this section we obtain an expression for B„(ll'; (0)

which is v ell suited for its evaluation.
We begin by introducing the auxiliary function

A,„(ll'; o)) = dt e'"'(f u, (l; t),u„(l'; 0)$). (3.3)

If we express the thermal average in this expression
explicitly, using Eqs. (2.7) and (2.8), then with the aid
of the cyclic theorem for traces and Cauchy's integral
formula it is straightforward to show that the relation
between B,„(ll', &o) and A,„(ll'; ~) is given by

B„,(ll', (u) =A „,(ll', )(/d(1 ee"—") (3.4)

Since the operator u, (l; 0) is Hermitian (it is real, in

fact), we have the result that

(fu, (l; t),u„(l'; 0)])= 2i Im(u, (l; t)u„(l', 0)). (3.5)

Moreover, since the Hamiltonian operator for the
anharmonic crystal written in terms of momenta and
displacements is real, we can choose the eigenstates of
H to be real, with no loss of generality, since the trace
is invariant against representation. We then 6nd that
Im(u, (l; t)u„(l', 0)) is an odd function of t. The equation
(3.3) for A„, (ll'; ~) thus becomes

and
=X'e—'M8 ((d) A(x/2m)

e
—2M

Si(x,(0) =
2'

dt e""'(v..u(l; t)x u(l', 0)).

P exp{—iv.
I x(l) —x(l')])

(2.24)*

(2.25)

A,„(ll', (o) = —4 Im dt sinort(u, (l; t)u„(l'; 0)). (3.6)

Let us expand the correlation function in Eq. (3.6)
in terms of the eigenstates of II. The expression for
A,„(ll', co) can be then written

A„,(ll', (0)

dt e "sin&et{Z ' Q e eE"

The term So(x,&o) is seen to describe the coherent elastic
scattering of neutrons. It is elastic because of the factor
8((0), and it is coherent because of the factor h(u/2w),
which expresses the Bragg condition. The term Si(u, co)

describes the situation of interest to us, coherent,
inelastic scattering of neutrons by one-phonon processes.
It is with the evaluation of Si(x,~r) that we will be
concerned in the remainder of this paper.

" The function A(k) equals unity if h equals a translation
vector of the reciprocal lattice, and vanishes otherwise.

( /A)(E —E )(jv
I
u (l ~ 0) I

E )
x(E„I

u„(l', 0) I
z ))

=2~It (—~) —/(~)j,
where

(3 7)

1
/ (~)=—& e ""(~-Iu*(l;o) IE-)

Z mn

x(E.Iu, (i'; 0) IE-)~(~—(1/&) (E —&-)) (3 g)
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If we now make use of the fact that (A' ~n (l; 0)
~

E ) The Fourier coe%cients are given by
is real and symmetric

p

p( —oI) = ee""p(~), (3.9)

so that combining Eqs. (3.4), (3.7), and (3.9) we obtain

(E„iu.(l; 0) iE„)=(E„iN, (l; 0) iE,„),

then it readily follows from the definition, Eq. (3.8),
that

f(sI)e sw ~ I—I/erfII

Q e e--(z.~N. (f; o) ~z„)(z„~~„(p;o) ~z„)
PIIZ ""

ep(.&m—@n)

B,„(ll'; oI) = 2Iree""p(oi) (3.10)

It is thus only necessary to determine the function p(ol).
This we do in the following way. "We introduce the

function

f(si) =(Te"~sI,,(l; 0)e "nN„(l'; 0))
—=(Tsi, (l; m)n„(l'; 0)), (3.11)

where u is real, and T is the time ordering operator
which orders a product of time-dependent operators in
order of increasing times from right to left. Thus, we
have that

We now introduce a function of a continuous variable
g(v) which equals gl when

l = I I= 2lrg/plI. (3.17)

To specify g(v) completely, we require that it have a
branch cut along the real axis, be analytic everywhere
else in the complex v plane, and go to zero as v ap-
proaches infinity along any straight line in the upper
or lower half-plane. "We see from Eq. (3.16) that we
can obtain g(v) simply by replacing the discrete
variable 27ril/ph by i. Thus, g(I ) is given by

(TSl, (l; SII)SI„(l'; us))
=(N, (l; el)u„(l'; Ns)), NI)sos
=(u„(l'; es)u. ($) Ni)), Ns)ul. (3.12)

The motivation for working with f(u) is that we can
treat the reciprocal temperature P and the "time" e
on the same footing without the complications which
arise if we work in a complex temperature-time space. "
This is convenient, and after all it is really the spectral
function p(or) rather than the correlation function
(sI, (l; t)si„(l'; 0)) that we require

I.et us write f(u) explicitly as

f(u) =Z ' Tre e~e "~u,(l; 0)e "~N, (l', 0), I)0
=Z ' Tre &~e,(l'; 0)e"HN, (l; 0)e "~, I &0. (3.13)

g(v)= P e e (ee' " E. —1)(E„~N,(l;0)iE„)
pQZ mn

lim
6~01

g(v jse) —g(v —se) 1
=—(e'""—1)p(~),

2Irs PA

so that

p(v) = lim $a(v+se) —g(v —se)]. (3.19)
~PAv ] 2~i ~-+0+

)((E„~N„(l'; 0) j
A )— . (3.1g)

(1/5) (E„—E„)—I

Consequently we see that

lt then follows with the aid of the cyclic theorem for
traces that Comparing Eqs. (3.16) and (3.24) we finally obtain the

(3 ]4)
desired result

f(N+p) = y(u), —p&~&o.
2vrP5

B.„(ll', oI) = lim
1 8 p@~ 6 +0+

g(oI+se) g(M sc)
(3.2o)

This means that we only need to know f(N) for u in the
interval —P &san&0 and we can determine it outside
this interval with the aid of Eq. (3.14).

This result suggests that we expand f(n) in a F
series which is periodic with a period P:

27ri

J (~) Q g esw~lule

l=—oo

ourier The special advantage of Eq. (3.20) as the starting
point for our calculations is that, as we shall see, a
comparatively simple procedure exists for the deter-
mination of the Fourier coeKcients {gi) and hence the
function g(i ).

' See, for example, the review article by A. I. Alekseev, Soviet
Phys. —Uspekhi 4, 23 (1961).The application of this method to
the present problem, however, was stimulated by a recent paper
by J. S. Langer, Phys. Rev. 127, 5 (1962), in which this method
is used in the calculation of the electrical conductivity of the
interacting electron gas in the presence of randomly distributed
impurities.

' K. W. Montroll and J. C. Ward, Physica 25, 423 (1959).

IV. THE PHONON PROPAGATOR

To evaluate the Fourier coefficients of the function
f(n) which is defined by Eq. (3.11) we first express
f(I) 111 tel'Iils of pholloli creatloll and destllictlon

~0 G. Baym and N. D. Mermin, J. Math. Phys. 2, 232 (1961).
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operators. We expand u, (l; 0)=u, (l) as

u, (l) =
~

~ij2 e (kj)
e2xik x(l)

2$M k, j [(o(kj)]'n

X (a k, t+akj). (4.1)

The V&"' coeKcients which appear in the anharmonic
Hamiltonian are the Fourier transforms of the eth
order atomic force constants. They are completely
symmetric in the indices (k,j;), and they are related
to the analogous coefficients defined by Born and
Huang" by

V(') (k,j, ; k,j„.k,j3)In this expression, M is the atomic mass, and X is the
number of atoms in the crystal. cu(k j) is the frequency
of the normal mode described by the wave vector k
and polarization index j.e(kj) is the polarization vector
for the mode (kj). The allowed values of k are uni-

formly and densely distributed throughout a unit cell
of the reciprocal lattice, or equivalently, throughout
the first Brillouin zone of the lattice. The polarization
index j takes the values j=1, 2, 3. The operators u»t
and ak; are phonon creation and destruction operators,
respectively.

If we substitute Eq. (4.1) into Eq. (3.11), the
expression for f(u) becomes

A(kl+k2+k3)
23/2 XMt 1/2

C(k)jl., k2j2, k3j3)X,(4.6a)
[co (kl jl)(d (k2 j2)s) (k3j3)]'»

V(4) (k,j, ; k,j2., k3j3, k4 j4)

6 (k,+k,+k3+k4)
2'X 24%

C (k,jl, k,j„k,j3, k4 j4)
X . (4.6b)

[~(k,j,)co(k2j2)co(k3j3)~(k4 j4)]'nI3 e, (kj)e, (k'j')
f(u) = e2xik x(i) 2xik' —x(l')

2$M kk, il' [(u(kj)(0(k'j')j'"
X{Te ~(a k;t+ak;)e "~(a k, +ak; t))

Instead of working with the usual phonon creation
and destruction operators we find it convenient to

(4 2) introduce new phonon operators by

We are thus required to find the Fourier coefficients of
the correlation function

Akj a—kj +akjy

A —kj akj +a—kj Akj ~

(4.7a)

(4.7b)

In terms of these operators the function P(kj; k' '; u)=P'e "(a k +akj)e '(a k' '+ak'j'"—)) (4 3)

The Fourier coefficient of this function, which we
where

denote by A i(kj; k' j'), is given by

S(kj; k' j', u) = {rA „(u)Ak.;.t(0)),

Ak, (u)=e ~Akj(0)e—"~.

(4 6)

(4 7)

1
Ai(kj; k'j')= — $(kj; k'j'; u)e 'x"x'&du. (44)

V( (kljl k2j2 k3j3) (a kj +ak ji)—
klk2k3 717273

X (a k4j4 + ajk)4(4a——k4j4 +ak4j4)

+ g Q V ' (k,jl, k,j2, kxj3, k4j4)
klk2k3k4 7'17'27'374

+ (a k4jx + kaqj—&) (a k,j4 +akj—4) (a k4j4 +ak4j4)—
X(a k„,'+ak„-,)+

=Hp+Hg. (4 5)

In what follows we retain only the cubic and quartic
terms in the anharmonic Hamiltonian Hg.

We call this Fourier coefficient the phonon propagator.
The Hamiltonian of the anharmonic crystal expressed

in terms of crea. tion and destruction opera, tors is (omit-
ting the zero-point energy)

H=Q I)4(v(k j)akjtak;

XAkljiAk4 j4A k4j Ak 4j +4'4' . (4.8)

Van Hove' has pointed out that in general the
expectation value of the eth order potential energy
term in the crystal Hamil. tonian is of the order of
magnitude of Aa&(u/r())" ' per unit volume. Here &o is
some mean vibrational frequency of the crystal, I is a
mean (or preferably, a root mean square) atomic
displacement, and ro is the nearest-neighbor separation
in the crystal. This means that if we denote (u/r()) by
3 we can write the anharmonic Hamiltonian schemati-
cally as

H~ =XV3+X2V4+ (4 9)

The motivation for introducing these new operators
is that both the desired correlation function and the
anharmonic Hamiltonian have a simple form when
expressed in terms of them, and our calculations are
accordingly simplified. We find that

V'" (kl jl, k2 j2, k3j 3)Ak„,Ak„,Ak„,
klk2k8 217273

+ P Q V("(k)jl, k2 j2, k3j3., k4j4)
klk2k3k4 21722824
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p
( 1)n

s (kj;k' j', m) = (TJ,;(u) A, ; '(0) Q
n=o

and this result provides a basis for ordering the various
contributions to f(kj;k'j', n) and hence to A&(k j& k'j')
as to their magnitude.

The evaluation of A &(kj; k' j') has been described in
great detail by one of the authors, "and we will merely
outline the procedure used here. Our starting point is
the ex ansion

where
oui= 2nf//9ft.

We shall refer to «(kj) as the free phonon propagator.
Note that it is an even function of 3.

When the expansion (4.14) is substituted into Eq.
(4.10) the integrals over the P variables can be carried
out directly with the aid of the result

dg e2~HzfP Pg— (4.16)

dpi . . dP„Hzgt) Hg(P„)), (4.10)
Oc

It possesses a simple Fourier series expansion

2oi(kj) ~ esw~lu/P

g;(N) =
pA t=- ~ts+~'(k j)

= 2 «(kj)" """,l~ (4.14)

~'A. A. Maradudin, lecture notes, Physics Department, Car-
negie Institute of Technology, 1962 (unpublished), Vol. II.

where O(tl) is an operator in the interaction repre-
sentation,

(4.11)

The notation (. . )s, means that the average of the
expression enclosed in the brackets is evaluated in the
canonical ensemble of the harmonic crystal, and that
only contributions associated with connected diagrams
are retained in the expansion. In evaluating the indi-
cated thermal average it is only necessary to pair the
A operators two by two different in all possible ways.
In drawing diagrams to represent the contributions
from the various terms in Eq. (4.10), we can order the
vertices corresponding to the three- and four-phonon
interactions from bottom to top in order of increasing
times. Each pairing of two A operators can then be
represented by a solid line joining the corresponding
vertices.

The two steps of taking the thermal average and
evaluating the integrals over the P's are simplified if we
introduce the function

g, (e) =(TA.k t(N)Aj, (0))P——ti(k j)t, t "~" ~k&'

+Lts(k j)+1)e ~"'s" k' =(TAk;(N)Ak, t(0)). (4.12)

All other averages of a product of two time-ordered A
operators vanish. In Eq. (4.12)

e(kj)=(expPAa)(kj)j —1) '

is the mean phonon occupation number. Equation
(4.12) also has the consequence that in drawing
diagrams it is not necessary to direct the phonon lines,
as would be the case if we were working with the a
operators. The function gk;(u) in addition to being an
even function of N also satisfies the condition

«(kj)=
2(o(kj) 1 2ir1

CO) =
Pk toP+oP(k j) Ph

(3) At each vertex conserve the k vectors according
to the rule that the sum of the wave vectors for lines
leaving a vertex equals the sum of the wave vectors
entering the vertex (modulo a reciprocal lattice vector).

(4) At each vertex conserve the cot's according to the
rule that the sum of the co&'s leaving a vertex equals the
sum of the co~'s entering a vertex.

(5) At each vertex insert the appropriate ma, trix
element.

(6) Insert a factor t (—1)"/ts!7P", where the P" comes
from the integrations over the e P-variables.

(7) Insert a combinatorial factor which gives the
number of pairing schemes to which the diagram
corresponds. This factor is the product of the number
of topologically equivalent diagrams that can be drawn
for a fixed arrangement of the vertices, the number of

for l an integer. The result is a function which depends
on N in the form e' ""~&, so that its Fourier coefficient
A&(kj; k'j') can be read off simply.

It is found that the phonon propagator A&(kj;k'j')
is diagonal in k and k', that is,

A&(kj; k'j')=6(k —k')A&(kjj'). (4.17)

This result is a consequence of the invariance of the
crystal against a rigid body displacement through one
of its translation vectors. This invariance means that
the function B,„(tl'; ~) can depend on the vectors x(l)
and x(1') only through their difference. In view of Eq.
(4.2) this means that k=k'. The fact that the polari-
zation index j does not necessarily have to equal j is
referred to as "polarization mixing. "

We can now summarize the rules for computing the
eth order contribution to the Fourier coefficient
~ i(kjj').

(1) Draw all topologically distinct connected Nth-
order diagrams in which a free phonon line labeled by
(kj) enters from the bottom of the page and a free
phonon line labeled (kj') leaves at the top of the page.
Although it is not necessary to direct the phonon lines,
it is convenient to direct all lines up.

(2) With each phonon line labeled (kj) associate a
factor
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different labelings of the (k;j;) at each vertex for each
pairing scheme, and the number of ways of permuting
the order of the three- and four-phonon vertices.

(8) Finally, sum over the independent k's, j's, and
$'s.

The diagrams which contribute to the Fourier
coefficient A&(kjj') are of the following type. A free
phonon line (kj) enters, "things of arbitrary complexity
happen, '"' and a free phonon line (kj') emerges. The
sum of the contributions from all such diagrams calcu-
lated according to the rules of the preceding paragraphs
gives the coefficient A &(kjj'). The general form of these
diagrams is shown in Fig. 1(a). Such diagrams fall into
two categories, improper and proper Adia. gram is
called improper if it can be separated into two parts by
cutting a free phonon line. A diagram is called proper
if it cannot be separated into two parts in this way.
The Fourier coeKcient A&(kjj) can be expressed in
terms of contributions from proper diagrams only. The
contributions to A&(kjj) from all possible proper
diagrams is indicated diagrammatically in Fig. 1(b) and
is given explicitly by

Fro. 1. (a) A schematic
representation of a typical
(improper) diagram which
contributes to the phonon
propagator. (b) A sche-
matic representation of
proper diagram which con-
tributes to the phonon
propagator.

and nondiagonal parts:

G~(kii ') =»j G~(~i )+Gt"(kjj '),

where GP (kjj)=0. Then Eq. (4.20) becomes

(4.21)

Q j, »j,(1—a((kj)Gg(kj)}A)(kjtj')
hajj'at(kj)+Pj, a&(kj)G& (kjj&)A &(kj,j'). (4 22)

Ke can now solve this equation by iteration. To second
order we obtain

a( (kj)G((kjj')a&(k j'),

where G&(kjj ) is a function which is called the proper
self-ejsergy The co. ntribution to A&(kjj') from all
improper diagrams which separate into exactly two
proper diagrams if we cut a single free phonon line is

A, (kjj') =
$
''I 1

a)-'(k j)-G)(kj) a) '(kj) Gr(k-j)—

XGP(kjj') + . . . (4.23)a; (kj') —G, (1 j')
g;, a, (kj)R(kjj,)a, (k j&)G((kjrj')a((k j').

Proceeding in this way we obtain

A & (kjj') = 8jj a& (kj)
+at(k j)G&(kjj')a&(k j')+a&(kj)

Xgj, G)(kjj&)a((kj&)G((kjrj')a((kj')+ .. (4.18)

Ke see that this expansion is nothing more than the
iteration solution to the 3)&3 matrix equation

In the present case, G&(kjj') is at least O(h'), so that
if we are satisfied with a result which is correct to lowest
order in the anharmonic force constants, we may write

2(o(kj)
Ar(kjj')—»j

p5

X . (4.24)
~p+op(k j)—t'2'�(kj)/phjG~(k j)

This equation is called the Dyson equation for the
phonon propagator. If it were not for polarization
mixing this equation would be a simple linear algebraic
equation whose solution could be written down im-
mediately.

In general, the set of equations (4.19) would have to
be solved numerically. However, in order for the results
of this section to be most useful it is desirable to have
an analytic solution of these equations even if this
solution is an approximate one. Such a solution can be
a,chieved in the following way. We rewrite Eq. (4.19) as

1 1
Ai(kjj')=»"—.

Pk ice&+to(kj)—(1/Pls)G)(k j)

+ (4.25)
ice(+(u (kj)—(1/pA) G( (k—j)

When A&(kjj) is written in this way, we see why
G, (kjj') is called a self-energy. Its diagonal part has
the effect of altering the frequency &u(kj) and hence
the energy of the phonon in the mode (kj).

It should be pointed out that the second term on the
right side of Eq. (4.23) has no diagonal elements, i.e.,j'/ j. This means that for those problems in which

Qj, (»j,—a)(kj)Gt(kjjr)}At(kjg j') =hajj a((kj). (4.20)

Let us now separate the matrix G&(kjj') into its diagonal

A &(kjj') = »pa&(k j) For some purposes, it is convenient to effect an
+a)(kj) Pj, Gg(kjjr)A)(kjr j'), approximate partial fractions decomposition of the

(j j~—1 2 3) (4 19) expression for A &(kjj') given by Eq. (4 24). To lowest
order in the anharmonic force constants, we obtain
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FIG. 2. The erst-order dia-
gram which contributes to the
proper self-energy to O(Xs).

only the diagonal elements of A&(kjj') are required,
as for example in calculating the optical absorption
coefficient of an ionic crystal, the result given by Eq.
(4.24) is quite a good approximation since the cor-
rections in this case are OP.').

Ke now turn to a closer look at the proper self-energy.
By definition G&(kjj ) is the sum of contributions from
all subdiagrams (past zeroth order) in the expansion of
Ai(kjj') that cannot be divided into two parts by
cutting one free phonon line, and which have no free
phonon lines entering or leaving the diagram.

In first order, the only contribution to G&(kjj') comes
from the diagram shown in Fig. 2. Its value calculated
according to the rules stated above is given by

G '"(kjj')
= —12P P P V&4&(—kj; kj'; k,j, ;

—kiji)
~1s71 ~1

X«.(k,j,). (4.26)

The factor of 12 multiplying the sums arises from the
fact that the phonon (kj) can pair with any one of the

k»j»-- -k»j»

k) j)

"k& j

-k»j» P&
4 ~ -»j»

FIG. 4. Instantaneous phonons at three phonon vertices.

given by

G&&'&(kjj') =18P' P P V"&(—kj; kiji, ksjs)
klk2 7172 lll2

XV'"(kj', —k,j, ; —k,j,)a„(k,j,)
X~ l(ksj2)f& 'i+i,+&, , s. (4.27)

It should be remarked that in a Bravais crystal
instantaneous phonons can occur only at four phonon
vertices as long as we retain only cubic and quartic
anharmonic terms in the crystal Hamiltonian. In-
stantaneous phonons at a three-phonon vertex have
associated with them a diagram fragment of the type
shown in Fig. 4. The matrix element associated with
such a vertex has the form V&'& (kiji, —ks js, ks js), and
it can be shown" that this matrix element vanishes for
Bravais crystals, as well as for nonprimitive crystals in
which every atom is at a center of inversion symmetry.

In second order the only contribution to Gi(k jj') of
0()') comes from the diagrams in Fig. 3. Its value is

k»j» l ~I
k& j&

)(kj

kj

The two diagrams shown in Figs. 3(a) and 3(b) are
top ologically equivalent, that is, one can be con-
tinuously deformed into the other. Their contributions
to G&&'&(kjj') are equal, and according to rule 1 above
it is necessary to calculate the contribution from only
one of them and multiply it by two to take account of
both contributions. We have drawn both diagrams only
for illustrative purposes. In the present case the factor
of 2 due to the occurrence of the two topologically
equivalent diagrams cancels the factor of 1/2! which
multiplies the second-order contributions to G&"&(kjj').

(a)
FIG. 3. The two second-order diagrams which contribute

to the proper self-energy to O(A2).

I( kj'
l kj'

four phonons associated with the four-phonon vertex,
while the phonon (kj') can pair with any of the re-
maining three phonons. Since the matrix element
V&'&(kijr, ksjs, ksjs, k4j4) is completely symmetric in
the (k;j,) each of the 12 possible pairing schemes gives
the same contribution to G&&'&(kjj'). The loop at the
four-phonon vertex in the diagram in Fig. 2 describes a
situation in which a phonon is created and absorbed at
the same vertex. Such phonons are calledAsstantaneols
Phosiosss.

FIG. 5. Second-order diagrams which contribute to the
proper self-energy to O(P.').

"See, for example, R. Peierl , sQLuon)uru Theory of Solids
(Oxford University Press, New York, 1955),p. 37, second footnote.
See also reference 21 for an explicit proof.
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Flo. 6. (a) A
fourth-order dia-
gram containing a
self-energy insertion
which contributes to
G, (kj~'). (b) ne
self-energy insertion
which appears in
Fig. 6(a).

The factor of 18 multiplying the sums in Eq. (4.27)
arises from the fact that in Fig. 3(a) the phonon (kj)
can pair with any of the three phonons at the lower
vertex, while the phonon (kj') can pair with any of the
three phonons at the upper vertex. The two remaining
phonons at the lower vertex can pair with the two
remaining phonons at the upper vertex in two ways.
Each of these 18 pairing schemes contributes equally to
Gl "& (kjj').

Equation (4.27) does not exhaust the contributions
to Gl'@(kjj'). There is a contribution associated with
the diagrams in Fig. 5, but this is of fourth order in ).
Since we have retained only terms up to O(X2) in the
anharmonic Hamiltonian, we would not be consistent
in including a contribution of O(X4) in Gl(kjj ).

Before proceeding to simplify Eqs. (4.26) and (4.27),
we remark that we could carry out an additional
simplification in the calculation of the phonon propa-
gator Al(kjj'). This consists of replacing every free
phonon propagator al(k j) in the expansion of Gl(k jj )
by the corrected propagator Al(k jj) and omitting all
diagrams which contain self-energy insertions from the
expansion. This procedure leads to an implicit equation
for Gl(k jj') because the corrected propagators 2 l(kjj)
also contain Gl(kjj'). This procedure would mean that
a fourth-order diagram such as shown in Fig. 6(a)
which would ordinarily be considered in calculating
Gl(kjj') would now no longer be included since the
right-hand line contains the self-energy insertion shown
in Fig. 6(b). Such a procedure is very useful in various
problems, but we will not make use of it in this dis-
cussion. Diagrams contributing to Gl(kjj) and con-
taining no self-energy insertions are called skeletons

dzagf'88$$.

We conclude this section by writing out more
explicitly the contributions to Gl(kjj) given by Eqs.
(4.26) and (4.27). If we refer back to Eqs. (4.12) and
(4.14) we see that the sum over ll appearing in Eq.
(4.26) is given by

by adding to it the statement that with each bubble
diagram fragment corresponding to an instantaneous
phonon (k;j,) we associate a factor $2n(k, j;)+17.
This rule applies equally well to instantaneous phonons
at three phonon vertices in nonprimitive crystals in
which every atom is not at a center of inversion
symmetry.

With Eqs. (4.6) and (4.28) we can rewrite Eq. (4.26)
as

Ph' e( kj; kj—'; k,j1, —kljl)
Gl"'(kjj')=-

8Ã &I 11 LM(k j)M(kj')7'"M(kl j1)

x$2n(kl jl)+17. (4.29)

We now make use of Eqs. (4.6) and (4.14) to rewrite
Eq. (4.27) as

PP
Gl'"(k jj')= Q 6(—k+k, +k,)

16K klk212172 lll2

e ( kj; k,j, ; k2—j2)C'(kj;—k,j, ;
—k,j,)

X
I M(k j)M(k j')7'l2M(kl j1)M(k2j,)

2M (kl jl) 1 2ld (k,j,)
X~—l+l1+lq

p5 Ml& +M (k1$1) pk

00

Mll +M (klj1) (Ml, —«)'+M'(k2 j2)

pA nl+n2+1 n1+n2+1

4MIM2 2Ml+Ml+M2 2Ml Ml M2

S»—'F2tE» —S2
(4.31)

l2Mld1+ld2 2Ml+M1 M2

where for simplicity we have put M(kl j1)=M1, etc. If
we substitute this result into Eq. (4.30) we obtain
finally

PA2
Gl&2&(kjj')= g 6(—k+kl+k2)

16K»k2, 7»2

4 (—kj;kljl, k2j2)4 (kj;—k 1jl ', —k2j2)
X

LM(k j)M(kj')7"'M(klj1)M(k2 j2)

nl+n2+1 n1+n2+1 Ã» —B2

X . (4.30)
M 1,'+M'(k2 j2)

We can eliminate the sum over l2 with the aid of the
8-function restriction. The remaining sum over l» is
readily evaluated by contour integration, with the
result that

al (kj)=g2; (0)= 2n (kj)+1.
Z=—oo

(4.28)

This result suggests that we supplement rule 2 above

2Ml+Ml+M2 2Ml M1 M2 2Ml Ml+M2

'll »
—'Q2

2Ml+Ml M2

(4.32)
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From Kqs. (4.29) and (4.32), we see that Gl(kjj') is an
intensive quantity as it must be.

V. RESULT FOR THE ONE-PHONON SCATTERING
CROSS SECTION

From Eq. (3.17) we see that the correspondence
between the discrete variable co~ and the continuous
variable v is

ZCO& ~ P.

The function a(v) can thus be written as

e,. (kj)ev (kj)
g(V) — Q ~2xik [x(l)—x(V}]

2/M k, l M(kj)

X—
Pk v+M(kj) (1/Pk—)G(kj; v)

(5 2)—v+M (kj)—(1/pfi) G (kj; v)

Combining this result with Kq. (3.25) we obtain for
B,v(ll'; M):

B,v(ll', M) =
1—t, i'"" 2%M

e.(kj)e„(kj)
Xp 2xik [x[l)—x(l'}]

M(k j)

X
22ri 2 + M+iB+M(kj) (1/pA)G(—kj;M+9)

M —@+M(kj)—(1/Pfi)G(kj; M —9)

M —is+—M(kj ) (1—/Pa)G(k j;M+27])

~C'( —kj; »ji; k2j2) ~'
X Q a(—I+k,+k,)--

M(k}j})M(k2j,)

22)+)22+1 2[i+222+1
X ' —+

1 2 P &1 2 P

Q] S2Ny —112

(5.5a)
1 ~2 P & 1 &2 I

s(—1+k,+k,)
16llrM (kj)»kx, [ii2

)c(—kj; »jx; k2j2) I'
X

M(k& ji)M(k2 j2)

X{—(222+ 222+ 1)~ (M+M 2+M 2)

+(22)+222+1)8(M Mi M2)

—(22)—222) 5 (M
—Mi+M2)

y(22, —222)5(M+M) —M2)}. (5.ob)

With this result, B„(/I'; M) becomes

B „(li', M)

1 ]2 e, (kj)e„(kj)
~2xik [x[l}—x[V)]

1—e &""XM k, i M(kj)

r(kj;M)
X

LM+M (kj)+i2 (kj;M) j2+I"2(Mj;M)

r(kj; M)+--, (5.6)
LM

—M(kj)—A(kj;M))2+1"(kj;M)

and we obtain finally that the one-phonon scattering
cross section is given by

d'0 &" a' q=——Si(2~,M)
dQd6 5 gp

(5.3)
M+9+—M (kj ) (1/pA)—G(kj;M —i[])

From Eqs. (4.29) and (4.32) we find that

Qg2q ~
—2M

M2z qo 1—t. ~""
~

L2~ e(kj)$2

M(kj)

lim ——G(kj;Mails) = d, (kj; )wMiI'(kj; M), (5.4)
~lH- P fg

where

A(kj;M)

r(kj; M)

L
— (kj)—a(kj; )j+r (kj; )

r(kj, M)
+ , (5.7)

LM+M(kj)+i) (kj]M) j2+1"(kj;M)

8il]M (kj) kl. ii

C(—kj;kj;kiji, —kij&)

M(k& j&)

where the vector k is related to the vector v. by

=2mk+ 22rc. . (5.8)

X52n (k&ji)+1j+
16)VM (kj)

The 6rst term of this expression corresponds to
processes in which the neutron gives up energy A~ to
the crystal, while the second term corresponds to
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6 (—k+kg+kp)
16N(a (kj)»».ihip

IC(—kj; 4ji; kp jp) I'
x- {6((a—ppg

—(u2)
a)(k,j,)co(k2jp)

—5((u+cug+~p)). (5.10b)

At high temperatures e(kj) —& kT/her(k j), and we
obtaind'p;, g&'& N a' q, L'~ e(kj)j2

e
—2M Q

dQdp M 2m qp i co(kj) h(k j; (u)

processes in which the neutron absorbs energy Aa& from I'(kj& ~)
the crystal.

Ke see that our result for the transition probability
has a Lorentzian form, but with frequency-dependent
widths and shifts. This latter circumstance means that
if d, (kj; u) and I'(k j; cu) are not small compared with
cu (kj) the line shape given by Eq. (5.7) will be different
from that described by a Lorentzian function.

If A(k j;&o) and I'(k j; ar) are small compared with
~(kj), then we can approximate Eq. (5.7) as

1—e
—P 4Nco(kj)»», i, i2

c'(—kj; kj;kgjg, —kgjg)

co'(k&j,)

I"(kj;u) (kj))
X

L~—~(kj) —~(kj; ~(kj))j'+I"(kj;~(kj))

Sou�(kj)»,ii (u (kgjg)

+ g &(—k+k+k)
16%v (kj)»», i»p

I
~'(—kj;ki ji; kp jp) I'

X
co(kg jg)(u(kp j2) M My G)g

(5.10a)
Gu

r(kj;~(kj))
X . (5.9)

f~+pp(kj)+6(kj; ar(k j))$"'+I'(kj;~(kj))
In writing this result, we have used the fact that
h(k j;~) is an even function of ~, while I'(k j; co) is an
odd function of co. We see from this result that at the
absolute zero of temperature only those scattering
processes are possible in which the neutron excites a
phonon. This is to be expected since a crystal in its
ground state cannot give up a phonon to the neutron.
In addition, since in the present approximation
I'(kj; co(kj)) is the imaginary part of the self-energy
of the phonon (kj) and accordingly is the reciprocal
of the lifetime of the phonon amplitude, we see from
Eq. (5.9) that the width at half maximum of the peak
in the energy distribution is the reciprocal of the
phonon) s lifetime.

The expressions for the phonon energy shift and width
take simple forms in two limiting cases: the absolute
zero of temperature, and the high-temperature limit.
In the former case e(kj)=0 and we obtain

a(kj; pp)

4(—kj; kj; k&j, ;
—k&j,)

+ P a(—k+kg+kp)
16'(kj)»».i&i2

(
C'(—kj; kg jg, kp jp) ~

'
X-

co'(k&j&)aP(kpjp)

»+~p

GO GDy G02 P

COy G02

1 &2 P + 1 +2 p

I'(k j; (u)

Q)y —Mg+, (5.11a)
M G)y M2 P

VI. PHONON SHIFTS AgD WIDTHS FOR A
SIMPLE MODEL OF A CRYSTAL

The expressions we have obtained in the preceding
section are not without interest in themselves. However,

n( —k+kg+kp)
16Nor (kj)»», i i2

~c(—kj; @jan; kp jp) I'
X

~'(k, j,)~'(k,j,)
x{ (ppz+pp2)~(~+~x+pp2)

+ (»+~p)&(~ —~i—~2)

(My cop)5 (M+M y ppp)

+((oi—~p)8(~ —(op+a)2)). (5.11b)

We note finally that in the approximation we have
kept to in this paper, the quartic anharmonic terms
contribute only to the frequency shift but not to the
phonon lifetime. Moreover, both the cubic and quartic
anharmonic contributions to h(k j; cu) are proportional
to T at high temperatures.

Apart from differences in notation, the results we

have presented in this section agree exactly with those
obtained by Kokkedee. '
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their full usefulness is not realized until they can be
translated into numerical results which can be compared
against experimental results.

In order to evaluate the expressions given by Eqs.
(5.10) and (5.11) for a given solid, we have to make
some assumptions about the nature of the forces acting
between the atoms comprising the solid, that is, we have
to adopt some model for the solid. This model must be
su%ciently realistic that the results obtained through
its use refiect, at least to some extent, the properties of
the solid and not merely those of the model, and at the
same time it should be simple enough that the already
difficult numerical evaluation of the expressions in
Eqs. (5.10) and (5.11) is not rendered intractable just
because of the model adopted.

The model we have chosen to work with is a face-
centered cubic lattice with central force interactions
between pairs of atoms. The interatomic forces were
assumed to be sufficiently short ranged, so that inter-
actions between atoms which are more distant than
nearest neighbors in the lattice could be neglected. As
a model for a real solid, it probably describes the
properties of the ideal rare gas solids (argon, krypton,
etc.) most closely. However, it may also be used in a
phenomenological treatment of the properties of metals.

This model has several features which make it an
attractive choice as the basis for a preliminary attempt
at the evaluation of the phonon width and shift.
Firstly, it has been used in previous calculations of
anharmonic properties of solids, " so that a computer
program exists for the calculation of the normal mode
frequencies (~(kj)) and the associated polarization
vectors (e(kj)) for a large number of k values uni-

formly distributed throughout the first Brillouin zone
of the crystal. Secondly, with this model the expressions
in Eqs. (5.10) and (5.11) depend on the interactomic
potential P(r) only through the values of its second,
third, and fourth derivatives evaluated at the separation
between nearest-neighbor atoms in the crystal. For the
present model, these parameters and the atomic mass
can be factored outside the complicated sums over the
k's and j's, which now become pure numbers inde-
pendent of any assumptions about the analytic form
of the interatomic potential function as a function of
the interatomic separation. This means that the sum-
mations over the k's and j's need to be evaluated only
once, and the resulting expressions for the phonon
widths and shifts can then be used for any crystal for
which our model is a reasonable approximation simply
by substituting into them the values of the derivatives
of the interatomic potential and the atomic mass
appropriate to the crystal.

The erst contribution to the shift in the phonon
frequency we consider is the contribution due to the
thermal expansion of the crystal. For the present model

23 A. A. Maradudin, P. A. Flinn, and R. A. Coldwell-Horsfall,
Ann, Phys, {New York) 15, 360 (1961).

this shift, which we denote by 6'P~(kj; cu), is readily
calculated. The normal mode frequencies &u(k j) can be
written for our model as"

(u (kj)= L2&"(rp)/M J'9, (kj), (6 1)

where X(kj) is a dimensionless frequency whic»s
independent of p" (rp) and M. In this expression rp is

the value of the nearest-neighbor separation at tem-

perature T. In reference 17 it is pointed out that a
consistent treatment of thermal expansion effects in

lattice dynamical problems is greatly simplified if the
thermal properties of a crystal are expanded about the
values they have in the lattice configuration which

corresponds to the minimum of the potential energy

If the nearest-neighbor separation corresponding to
the minimum of the potential energy is denoted by ro,

then we can write
rp= (1+p)rp, (6.2)

where e is called the linear expansivity.
If we substitute Eq. (6.2) into Eq. (6.1) and expand

the result in powers of e, we find that to lowest order
ln 6

1 24"( ) '" 4"'( o)
+— prp 7k(kj). (6.3)

2 M y" (r-,)

(6.5a)

(6.5b)

In Eq. (6.5a) pp is the zero-point energy per atom in the
configuration which corresponds to the minimum of the
potential energy. It is given by"

pp
——1.0227A/8&" (rp)/M ]'". (6.6)

That ~ does not vanish at the absolute zero of tempera-
ture is a manifestation of the fact that the equilibrium
value of the nearest-neighbor separation at any tem-
perature corresponds to the minimum of the Helmholtz

'4 C. Domb and C. Isenberg (private communication). We
would like to thank these authors for communicating this result
to us.

We consequently have that

2yll (r~) k/P @lit (- )
6&'& (kj; cu) =— — pr p 'A(k j). (6.4)

2 M y (r-,)

In reference 17 the expansivity e was found to have
the following forms at the absolute zero of temperature,
and at high temperatures, respectively,
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free energy, and at absolute zero this is the sum of the The sum 5(kjj') then takes the form
potential and zero-point energies.

Combining Eqs. (6.4) and (6.5) we can express 2e""(«)
aioi (kj;o/) as ~2

oo [4"'(r )]'
x(kj),

O'K 48 [y//(r- )]8

6&o&(kj Io) [n e(kj)][n e(kj')] sino(-', iraok n)
n, n.n.

[n e(kiji)]'
X Q sin'(-,'7rapki n). (6.11)

pP(ki ji)

(6.7a)

kT [y"'(r- )]'
X(kj), (6.7b)

16 [4"(ro)]'

5&pi (kj; o/)

[n e(kiji)]p
sin'(-', orapki n) = —.(6.12)

I/i, j/ oP(ki ji) 4p '(ro)

COg The sum over ki and ji has been shown to be inde-

pendent of n in reference 23 and has the value
where o/I, = [8/ (rp)/zvI]' ' is the maximum frequency
of the crystal in the harmonic approximation. We note
that 6&o& (kj;o/) is independent of the energy parameter

In all that follows, it is to be understood that all
derivatives of the potential energy which appear in our
analysis are to be evaluated in the configuration which
corresponds to the minimum of the potential energy.
It is not necessary to make corrections for the effects of
thermal expansion in the purely anharmonic contri-
butions to D(kj; Ip) and I'(kj; o/) since these are of
higher order in P than we have chosen to consider. For
typographical convenience we omit the bar over ro in
the equations that follow.

%e now turn to the quartic anharmonic contribution
to the phonon frequency shift. If we use the results of
reference 23 we can greatly simplify the evaluation of
the quartic anharmonic contribution to G, (kjj ) both
at the absolute zero of temperature and at high tem-
peratures. In particular, for special directions of the
wave vector k it is possible to evaluate the expressions
in closed form.

In the high-temperature limit we require the sum

c(—kj; kj', k,j, ; —k,j,)
~( jj')= Z . (6.8)

co'(ki ji)

X[n e(kiji)]' sin'(-', orapk n)

Xslno( —oraoki Il) (6 9)

The vector n is a dimensionless vector with integer
components which is defined by

x(l) =-', ao(e„ri„,n,), (6.10)

where e, m~, e, are three integers which are all even or
all odd. uo is the lattice parameter and the sum over n
runs over the twelve nearest neighbors to a given atom.

The coefficient C(—kj; kj; k,j, ;
—k,j,) is given for

the present model by

c (—kj;kj'; k,j, ; —k,j,)
2y//// (r )

Ln e(kj)][n e(kj')]
n, n.n.

ff we substitute this result into Eq. (6.11) we find that

We thus have the result that

kT y""(ro) 1——G'"(kjj') =
PA 8M y" (ro) [Io(kj)o/(kj')]I"

Xp [n e(kj)][n e(kj')] sin'(-.', 7rapk n). (6.14)

At the absolute zero of temperature the sum we have

to evaluate is

e( kj; kj'; k,j, ;
—k—,j,)

T(kjj')= 2
Ip(ki j,)

2y//// ( )
— 2 Ln e(kj)l[n e(kj')1

n, n.n.

(6.15)

[n e(ki ji)]'
Xsin'(-,'7rapk n) g

&o(kiji)

Xsin'(-,' prapki n). (6.16)

The sum over ki and ji is shown to be independent of
n in rderence 23 and has the value

[n e(kiji)]' M Eeo
sin'(-,'Irapki n) =— . (6.17)

&i, /'/ o/(ki ji) 6A y" (ro)

With this result Eq. (6.16) becomes

y////(r )
T(kjj') = Q [n e(kj)]

3MI y" (rp)

X[n e(kj')] sin'(-', irapk n) (6.18)

y///I (r )
P(kj j')= — P [n e(kj)][n e(kj')]

2M Q" (ro) ~" D.

XSin'(-', oraoki n). (6.13)
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and we obtain 6nally

1 oo P""(ro) 1—G'"(kjj') =
Ph K 24M P"(ro) [p&(kj)pp(kj')'"]

X P [n e(kj)][n e(kj')] sin'(-'n. apk n). (6.19)
a,n.n.

To proceed analytically past this point we must know
the eigenvectors and eigenvalues of the dynamical
matrix explicitly. This is not possible in general.
However, as long as we are interested only in the quartic
contribution to the frequency shift Ao&(kj; p&) we
require only the diagonal elements of —(1/pA)G(kjj').
In this case we can carry out the remaining calculations
in closed form. It follows almost trivially from the
results of reference 23 that

[n e(kj)] sin (ixppk n)=2k (kj), (6.20)
n, n.n.

where X(kj) has been defined in Eq. (6.1).
We thus obtain the results that

for future references we present the expressions obtained
for our model for the case of zero temperature as well.

For the simple lattice model we are using in the
present calculations the coefficient C (—kj; k,j, ; k,j,)
is23

4'"(rp)
C (-kj;k,j, ; k,j,)=- (2') P

2 (2M)'"

XF(—kj;kiji; k2j,), (6.25)

where F( kj; k—iji, kp jp) is a real coefficient which is
given by

F(—kj; k,j„k,j,)
exp(-', oriapn ~)[n e(k j)][n e(k,j,)]

n, n.n.

X[n.e(kpj,)] sin(-', mupk n) sin(-,'~apki n)

Xsin(-', orapkp n). (6.26)

In this expression ~ is the translation vector of the
reciprocal lattice which satisfies —k+k, +k,= ~.

If we substitute Eq. (6.25) into Eqs. (5.10) we obtain
the results that at the absolute zero of temperature

6&'& (kj; o&)
pill/ (r )

x(kj)r"" 16 [@"(ro)]'

~"&(kj' ~(kj))

(6.21b)

To complete our analysis of the thermal expansion
and quartic anharmonic contributions to the phonon
frequency shift, we present here the expressions for
X(kj) obtained for our model for k vectors lying along
the high-symmetry directions in cubic crystals. "
[100]direction: k, = k, k„=k„=0 I'p&(kj; ~(kj))

(6.27a, )
(X+&ii+Xp)»

Ao&i, [y"'(rp)]' 1
6(—k+ki+k, )

256k, (kj) Q"(rp)]' E &i&p, &'up

F'( kj; k,j„.kpj p)
— 1

X
&i(kiji)&(kpj2)

X(k1) = 2 sin(x-apk/2),

'A(kz) =&i(k3) =%2 sin(vrapk/2).

(6.ZZa)

(6.22b) [y'"(ro)]' 1
~(—k+1,+1,)

5Q (kj) [p"(ro)]' X»» ~'~ip

F'(—kj; kiji, k,j,)
X 8(P,—Xi—Xp). (6.27b)

&i(kiji)X(kp jp)X(k2) = 2 sin(xaok/2%2),

X(k3) =v2 sin(~apk/zv2).

[111]direction: k,=k„=k, = k/V3

&i(k1) = 2 sin(mapk/v3),

(6.23b)

In the high-temperature limit we can write the cubic
anharmonic contributions to hi" (kj; o& (kj)) and
I'&'&(kj; &a(kj)) compactly as

(6.23c)

(6.24a) &ip&(kj. po(kj))
X(kz) =X(k3) = sin(prapk/V3). (6.24b)

[110]direction: k =k„=k/V2, k.=0

&i(k1) =[2 sin'(mapk/2%2)+2 sin'(prapk/%2)]'&' (6.23a)

We come 6nally to a discussion of the cubic an-
harmonic contribution to h(k j; o&) and I'(kj; co). In
our numerical calculations we have dealt with the
high-temperature forms of these expressions only,
because the phonon shifts and widths are expected to
be larger at high temperatures than at low, and because
experimental results for these quantities are available
in this limit. However, for the sake of completeness and

6 (—k+ki+kp)
16Vpo(kj)» p, +~i+~.p

I4(—kj;kiji, kpj, )I"-X-—
~'(kiji)~'(kpj~)

o~(k&ji)+op(kij, )X,(6.28a.)
[~(kj)+~(kiji)+~(kpjp)] p
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I'~')(kj; oi(kj))

16K»&s,+~1~~2
0 (—k+kr+kp)

pp(k —j)= —cp(k j). (6.29)

The C coeScients are unaGected by the replacement of
any of the branch indices by their negatives.

If we substitute Eq. (6.25) into Eqs. (6.28) we obtain
finally

tc(—kj; k,j, ; k,j,) ip

X
rp'(kiji)a)'(kpj, )

X8(pp(k j)+re(ki jr)+re(k, j,)), (6.28b)

where we have now adopted the convention that

belief that it is a good approximation for lead. If
anything, it is an inadequate model for lead. Measure-
ments by Brockhouse et al."indicate that the range of
the interatomic forces in lead extends out to at least
fifth nearest neighbors, and the interatomic forces are
certainly not of the central force type. Nevertheless,
despite the known deiciencies of our model as a
representation for lead, the availability of experimental
data, the philosophy that almost any model is better
than no model at all, and the desire to see how closely,
if at all, theory can match experiment, prompted us to
make the present comparisons.

The values of the derivatives of the interatomic
potential which are required to translate our formal
results into numerical results have been obtained in
reference 17. Since the manner in which these values
were extracted from experimental data on the thermal
expansion, compressibility, and lattice parameter of
lead has been discussed in some detail in this reference,
we will not repeat the discussion here, and simply quote
the results:

kT 1 t
y'"(r, )]& 1

128) (kj) $y" (r,)]' X

~1~2 +21+22

F'(—kj; k,j„.k,j,)
6 (—k+ki+ kp)

) '(kiji)&'(kpjp)

ro ——3.472&(10 s cm,

g" (rp) = 1.819X104 erg/cm',

Q'"(rp) = —9.693X10"erg/cm',

Q""(rp) =4.016X10"erg/cm'.

(7 1)

)+&(k
.

)
In expressing the high-temperature results it is con-

(6 30a) venient to introduce the characteristic temperature 0'„
P, (kj)+),(k,j,)+&(k,j,)]„which is defined by"

i'p 5
0 =—-p (7.2)

~lpT Ly"'(r,)]' 1
s(—k+k, +k,)

128 [P"(rp)]' E ~up, +i~+~p

where p2 is the second moment of the frequency
spectrum of the harmonic crystal. In the present case

&'(—kj;kij„.k,j,)x
Pp= +"(rp)/M. (7.3)

0'„defined by Eq. (7.2) is the limiting high-temperature

Xp()i (kj)+p (kiji)+$ (k&j&)) (6 30b) value of the equivalent Debye characteristic tempera-
ture. Its value calculated with the results of Eq. (7.1) is

These expressions provided the starting point for our
numerical calculations. 0. „=143.4 K. (7 4)

VII. NUMERIGAL RESULTS

In the present work it was decided to use our model
to approximate lead. This choice was made primarily
because recently measurements of the phonon widths
in lead have been made by Brockhouse and co-workers. '
Their measurements were carried out at 425'K, which
is more than four times the Debye characteristic
temperature for lead. Thus, our high-temperature
results should be valid in this case.

It should be emphasized that our decision to approxi-
mate lead by our simple model was not due to any

co1,=2.057)(10i3 sec i

so=2.218)&10 '4 erg.

(7.5a)

(7.5b)

~P C. Domb and L. Salter, Phii. Mag. 45, 1083 (1952).
"G.K. Horton and H. Schiff, Proc. Roy. Soc. (London) A250,

248 (1959).

This value is rather higher than the value of 105'K
calculated by Horton and Schifl', 26 and gives some idea
of the internal consistency of our model for lead.

We also quote the values of coi and ~o=1.0227A~J.
obtained for our model:
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%e can now summarize the results for our model as follows. At O'K we have

~'"(kj ~)= —0.007209K (kj), (7.6a)

6&'&(kj; cv) =0.005606), (kj), (7.6b)

6&'&(kj oi(k j)) 0.001322 1 F (—kj; kiji, k2j2)
a(—k+k, +k,)

(ur, X(kj) X ~on, ~'»a X(k,j,)),(k,j,)

X —,(7.6c)
p. (kj)—X(k,ji)—X(k,j,)]p p, (kj)+X(kiji)+X(k2j,)]&

I'&'&(kj; (u(k j)) 0.004152 1 &'( kj; ki—ji, kg j,)
a(—k+ki+k2) — —5(), (kj)—X(k,j,)—),(k,j,)).

cur, li (kg) F ka&sin's, x(kiji)x(kp j,)
At high temperatures we 6nd

(7.6d)

6"& (kj; (v) = —(0.01930) ~X (kj),
O„i

(7.7a)

6&'&(kj; a&) T
= (0.01501) 'A (kj),

GOL, 0 (7.7b)

6'"(kj; (o(kj)) 0.002413 T 1 F'(—kj; kiji, k&j2)
~(—k+k, +k,)

X (kj) (0 V ~a* .+ " + " V(kiji)X'(kpj, )

&(kiji)+x(k~j~)X,(7.7c)
p, (kj)+x(k,j,)+x(k,j,)]p

I'"&(kj; s)(kj)) T ) 1
= (0.007581)

GO I O~~J X &&&2,+6+im

F'(—kj; k,j, ; k,j,)
n( —k+k, +1,)

X'(kij, )'A'(k, j,)
X5(X(kj)+X(kiji)+X(kpj,)). (7.7d)

The numerical evaluation of 6&"(kj; co(k j))/~z, and
I'&'&(kj; ar(kj))ja&z, was carried out on an IBM 7090
computer in the following manner. Values for the wave
vector k and polarization index j were chosen and were
then fed into the computer as input data. The computer
then selected a value of ki in a systematic way. It then
formed the vector k—ki and checked to see if it lay
inside the 6rst Brillouin zone or not. If it did it was
called k~, and the summand was evaluated for these
values of the wave vectors and then summed over the
polarization indices j& and j2. Such a contribution to
the sums was called a mortal coetributioe. If the vector
k—k, lay outside the first Brillouin zone the computer
determined the unique translation vector of the re-
ciprocal lattice, ~, which translated this vector back
inside the first zone. The vector ~+k—ki was then
called k~ and the calculation proceeded as in the normal
case. Such contributions to the sums were called
urlklaPp coritributioris. The computer then selected a

slnsT 1 1—cosxT= lim —,(7.8)
g p' S

6(x)= limr"" 7rX

for finite but large values of T. However, it was found
that as T was varied the results obtained showed an
oscillatory behavior and did not seem to be approaching
a well-de6ned limit as T was increased. The number of

new value of k~ and the cycle was repeated. The normal
and umklapp contributions to the phonon shift and
width for each choice of k and j were ta,bulated sepa, —

rately together with their sum, so that the relative
importance of the normal and umklapp contributions
to these quantities could be studied.

The principal diKculty encountered in these calcu-
lations was 6nding a suitable representation for the
Dirac 8 function and the Cauchy principal value which
appear in Eqs. (7.7c) and (7.7d). The first calculations
were carried out using the representations
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ki values used in these calculations was 2048 in the
entire zone.

The number of ki values was increased to 6912, and
diR'erent representations for the 8 function and principal
value were used:

[QQ, Q] t

Phoren Ndths in Lead at 425'K
I [

[t'„0,0] r

1 e (1) x
B(x)= lim ——,] —

[
= lim, (7.9)

p~s+
pr g2+ e2 (gj p~p+ g2+es

where ~ was chosen to be small but 6nite. The results
in this case displayed a monotone behavior with de-
creasing e until e got very small whereupon the results
behaved in an unpredictable way. The origin of these
effects lies in the fact that in order that Eqs. (7.9)
represent adequate approximations to the desired
functions c must be small. At the same time, it cannot
be smaller than the smallest increment in x which
results from our use of a finite number of k values in

carrying out the sums over ki and ks. The optimum
value of e for a given number of k values seems to
depend on the values of k and j for which the calcu-
lation is being carried out, and could only be deter-
mined by trial and error, making this method. a rather
costly one. However, in some cases, it was possible to
carry out the extrapolation to &=0.

In Fig. 7 we show the results obtained in this way,
but using a fixed small value of e, t.= 10 ', for the phonon
widths for longitudinal and transverse phonons propa-
gating in the L100] direction in k space. The theoretical
results are compared against the experimental results
of Srockhouse, et al."Although there is order of rnag-
nitude agreement between the two sets of results it
cannot be said at the present time whether the dis-
crepancies are due to our use of a rather simple model
to describe lead, or are simply a reQection of the errors
introduced by our computational techniques in dealing
with the 8 function. Accordingly, the present numerical
results must be regarded as quite preliminary.

Yet a third method was employed in dealing with the
8 function appearing in the expression for the phonon
width. This method consisted of replacing the vector
ks in the sum by its equivalent ~+k—ki. Since &o(kj)
is a periodic function of k with its periods defined by

(7.10)

where ~ is an arbitrary translation vector of the
reciprocal lattice, and since it is also an even function
of k, the argument of the b function can be written as
co(kj)+co(kij,)+co(k—ki j&). Since k and j are fixed,
this expression is a function of ki only, for fixed ji and
J2'

A program was written for the computer for solving
the equation

0. 5
ka

1.0 0 0.5
k „

both positive and negative values). The summation
over ki was then carried out over the two-dimensional
surface in ki space defined by Eq. (7.11), allowance
being made for the density of transition frequencies
introduced by this method of handling the 8 function.
The surface in ki space generated in this way for a
given k and fixed j, ji, and js was in agreement with
the results of such general statements as can be made
about the shapes of surfaces obtained in this way. '
However, as a method for evaluating the phonon
widths, it proved to be far too lengthy for the computer
available, and was soon abandoned.

Of the high-temperature results we computed for
6&"(kj; co (kj)) we quote only two. These are the values
for transverse phonons propagating in the L100j
direction for values of kap equal to 0.25 and 0.50. The
results are

kap= 0.25:

6&'& (kj;&o(kj))/&ot, = —(0.00306) (T/8„), (7.12a)

kap=0. 50:
&&'&(kj;~(kj))/&d& —(0.00330) (T/——0.„). (7.12b)

If we combine these values with the values of the shifts
due to thermal expansion and four-phonon processes,
which are computed from Eqs. (7.7a), (7.7b), and
(6.22b), we obtain finally:

kap ——0.25:

A(kj; co (kg) )/cot, = —(0.00538) (T/0„), (7.13a)

kap= 0.50:

E' xo. 7. Comparison between theoretical and experimental
results for 2I', the width at half maximum of the peaks in the
energy distribution of neutrons scattered by ion itudinal and
transverse lattice waves propagating in the L100 direction in
lead. 0, experimental points determined by Brockhouse ef al.
(reference 10). g, the results of the present calculations. The
solid line is the best fit of the experimental data by a function of
'tile f01111 sill (vrhap/2).

M(kj)+co(ki ji)+co(k—ki js) =0, (7 11) h(k j; &o (kj))/&o& = —(0.00759) (T/0"„). (7.13b)

subject to the condition that ~+k ki lie —inside the
first Brillouin zone (recall that ji and js can assume

Pr J. M. Ziman, Electrons and Phonons (Oxford University
Press, New York, 1960), Chap. III.
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VIII. DISCUSSION

In summary, we have presented in. this paper a
theoretical and numerical study of the one-phonon
differential scattering cross section for the coherent
scattering of neutrons by an anharmonic Bravais
crystal. It is hoped that the theoretical analysis con-
tained in this paper presents clearly the nature of the
approximations made in this and in previous investi-
gations of this problem.

From the purely theoretical standpoint, there is one
problem which remains to be treated in a more satis-
factory manner than was done in this paper. This is the
determination of the shift in the phonon frequency due
to thermal expansion. In this paper we have used an
approximate method to make this correction. We have
calculated the normal mode frequencies in the strict
harmonic approximation and have then expanded the
lattice and have determined how the frequencies change.
The correct procedure is to expand the lattice first and
to compute the frequencies of the expanded lattice.
This can easily be done formally using perturbation
theory. " The same procedure must be employed in
determining the linear expansivity. We have computed
the free energy in the strict harmonic approximation
and have minimized this with respect to variations of t.
In fact, the free energy must be computed for the
deformed crystal and the value of e as a function of
temperature determined by minimizing the free energy
of the deformed crystal with respect to e. Formal
expressions for e obtained in this way exist."'8 If the
result for c is combined with the expression for the
change in ro(kj) due to arbitrary strains, we obtain
the phonon frequency shift due to thermal expansion.
Such a calculation has recently been carried out, and
mill be described elsewhere. The result of this calcu-
lation which is relevant here is that although we have
used an approximate method to obtain A&slee(k j), the
result is nevertheless correct for the model with which

we work. It is important to know these shifts accurately
because the experimentally observed shifts include both

-'' G. Leibfzied and W. Ludwig, in Solid State Physics, edited by
I'. Seitz and D. Turnbull (Academic Press Inc. , New York,
1961), Vol. 12, P. 275.

these shifts and the shifts due to the three- and four-

phonon processes. To study the latter we have to know
the former. We hope to report on accurate calculations
of these shifts in a subsequent paper in this series.

From the computational standpoint, there is much

yet to be done in developing techniques for the evalu-
ation of the expressions for the phonon widths and shifts
due to three- and four-phonon processes. If we seriously

hope to reproduce or predict experimental results we

must work with more realistic (=more complicated)
crystal models than we have used in our calculations.
This, in turn, means that the computational difFiculties
will increase, and such calculations will probably remain
impractical to carry out unless more effective com-
putational techniques are developed.

In view of the importance of calculations of the
phonon widths and shifts for several different problems
in solid-state physics, investigations into possible new
methods for carrying out such calculations are con-
tinuing. Recently a method has been devised for the
evaluation of phonon widths and shifts which does not
require the explicit utilization of the 6-function and
principal-value restrictions which appear in Eqs. (7.7c)
and (7.7d). A description of this method will be given
in another paper.

The prime goal of theoretical work on the scattering
of neutrons by anharmonic crystals at the present time
would appear to be the reproduction of experimental
results for the phonon widths and shifts. Eventually,
when both experimental and theoretical results improve
it should be possible to use the experimental results to
obtain information about the anharmonic forces in
solids.
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