
CYCLOTRON RESONANCE MEASUREMENTS IN Bi

masses were determined from the average separations
in 1/H of the derivative maxima. For the bisectrix axis
the cyclotron effective masses were determined from
the position of the combined Landau —spin Rip transi-
tions in conjunction with spin resonance transition.
This procedure has the obvious advantage of being less
sensitive to the effect of a finite relaxation time and the
additional effects that the presence of other carriers can
have on the position of the inAection point. The A-K
behavior with the field normal to the surface and
circular polarization does not permit a discrimination
between holes and electrons. For this one still has to
rely on the location of an inflection point for the two
senses of polarization.

The origin of the unexplained structure associated
with the binary and bisectrix axes is not understood.
Aubrey' has seen, in addition to the holes observed by
Brandt" and Gait et a/. ,

' peaks which he attributes to

a very light hole band. An examination of our data
for the presence of these light holes is inconclusive.
They do not correspond to our unexplained structure.
We have inspected the binary axis data for possible
subharmonics of the heavier mass electron. Such peaks,
which would be related to the departure of the conduc-
tion from parabolicity, have not been found.
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An attempt is made to generalize to polar semiconductors, Kohn's many-particle approach to the theory
of shallow impurity states in nonpolar crystals. Nuclear coordinates are included as dynamic variables.
The impurity state is described as a linear combination of exact many-particle eigenfunctions that cor-
respond to the motion of a polaron through the impurity-free crystal. The resulting effective dielectric
constant is likewise identified as the usual static constant, by considering the interaction between an electron
bound by an infinitesimal impurity charge and a small classical charge fixed at a large displacement from the
impurity. Corrections to the resulting hydrogenic equation arise from the need to include real phonon
states. These corrections are estimated for substances with weak electron-lattice coupling only. The cor-
rections are found small for most III—V semiconductors. They are rather more serious for substances such
as CdAs& and CdS, that have somewhat stronger coupling, suggesting a limitation to the applicability of
the theory. In an Appendix an interpretation of the new formal contribution to the effective dielectric
constant is given in terms of the motion of the ion cores.

I. INTRODUCTION

N a well-known paper Kohn has given a many-
' - particle theory of impurity states in nonpolar
crystals, which gives a rigorous basis to the customary
effective-mass treatment of the problem. ' Recently,
impurity states in polar crystals have become of wide
experimental interest. ' ' The theoretical analysis of
the polar problem has likewise already received
attention. "The present paper attempts to show that

' W. Kohn, Phys. Rev. 105, 509 (1957).
'W. W. Piper and R. E. Halstead, Proceedings of the Inter-

national Conference on Semiconductors, Prague, 1960 (Czecho-
slovakian Academy of Sciences, Prague, 1961).

'Quoted by: W. J. Turner, A. S. Fischler, and W. E. Reese,
Suppl. J. Appl. Phys. 32, 2241 (1961).' H. P. R. Frederikse, Suppl. J. Appl. Phys. 32, 2211 (1961).' R. Kubo, J. Phys. Soc. Japan 3, 254 (1948}.' P. M. Platzman, Phys. Rev. 125, 1961 (1962).

a generalization of Kohn's theory to polar crystals is
possible, at any rate for crystals in which the coupling
between conduction electrons and phonons is weak.

A number of measurements have been made via
electrical properties of the impurity activation energy
in substances with relatively weak electron phonon
coupling: in indium-doped cadmium sulphide (CdS),
for example, by Piper and Halsted, and in CdAs2 by
Fischler and Koenig. ' In both materials investigators
have found rough agreement with the hydrogenic ion-
ization energies providing that the static rather than
the high-frequency dielectric constant was used. 7 The

' In CdS one finds agreement to within 15% with the hydro-
genic formula (reference 2). In CdAs& agreement to within 5% has
recently been found by a direct measurement of the static dielectric
constant. R. D. Brown and S. H. Koenig, Phys. Letters 2, 309
(1962).
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activation energy of GaAs is likewise becoming known;
this substance is currently undergoing intensive study
in a number of laboratories.

An early analysis of impurity states in polar crystals
was made by Kubo, ' who employed a description of the
system with no correlation between the instantaneous
position of the "extra" electron and the lattice polari-
zation. In a recent paper Platzmann has treated the
problem on the basis of an effective-mass model, with
the Frohlich interaction between electron and lattice. '
Energies are obtained variationally using the Feynman
path integral technique. A treatment considering the
(transformed) electron lattice interaction as a per-
turbation is also carried out.

Kohn's many-particle approach reconciles the use of
an independent particle model on the one hand, and a
dielectric constant on the other. ' His calculation can be
viewed as consisting of two parts. In the first, the wave
function of the system is expanded in terms of the exact
many-particle eigenfunctions +„K of the crystal with
an extra electron but without the extra impurity charge.
The expansion is inserted into the Schrodinger equation
for the system, which includes interactions between the
impurity charge (taken as infinitesimally small) and the
charges of the crystal. There, then, emerges quite
naturally a hydrogenic wave equation, which has its
Coulomb potential reduced in the ratio of an effective
dielectric constant, ~*, that has a formal definition in
terms of the many-particle functions, C„K. In the
second calculation a strongly plausible definition of the
true dielectric constant ~ is given in terms of the
interaction between an electron trapped by the in-

finitesimal impurity charge and a distant classical
point charge, negative and small. ~* and I~: are then
shown to be identical. There is a second paper by
Kohn, with which no contact will be made here, where

the identity of ~*, defined as in the first paper, and ~,

now defined in terms of the interaction of two distant
point charges, is established using Brueckner-Goldstone
linked-cluster theory.

It is helpful to consider the problem, an impurity
fixed in its polar crystal interacting with a moving
carrier, from a classical physics point of view. First,
one notes that since the impurity charge, —qe (q will

always be positive and e, in general, the electronic
charge), is stationary, it is shielded by the full static
polarization. This is not generally true of the moving
carrier, charge e, as its motion may be too rapid for the
ionic polarization to follow. However, some reQection
:shows that, regardless of the extent to which the
moving charge is shielded, the interaction between the
charges will be —qe'/(~R), where Ir is the static dielectric
constant, and R the separation of the charges. One
forms the picture of a polaron with its characteristic
mass and self-energy interacting via the static dielectric

s D. J. Oliver, Phys. Rev. 127, 1045 lt962).
~ W. Kohn, Phys. Rev. 110, 857 (1958).

constant with the fixed impurity. This suggests tha. t it
may be possible to follow Kohn's analysis for nonpolar
crystals, and to describe the impurity state as a com-
bination of a relatively small number of exact eigen-
functions of the impurity-free crystal (polaron states).
At zero temperature these eigenfunctions would cover
a range of propagation vectors, but would contain no
real phonons. Evidently, describing the "extra electron"
by a wave packet may bring about some changes in the
phonon dressing associated with the component eigen-
functions. These changes may be expected to yield
corrections to a hydrogenic equation to an extent
dificult to predict in advance.

In the next section the two calculations of Kohn's
paper' modified to allow for the motion of the ions are
repeated. Coordinates of motion for the nuclei are
introduced into the Hamiltonian and into the general-
ized wave functions. The results are similar to Kohn's
with several interesting new features. A hydrogenic
equation, however, with the expected corrections is
obtained; the dielectric constant which appears is the
static one in accordance with experimental indications,
the effective mass is the corrected polaron mass. These
results are rather in agreement with Platzman's per-
turbation calculation. ' The corrections to the hydro-
genic equation are taken up in Sec. 3. They are shown
to be small when the coupling between the electron and
the lattice is sufficiently weak. The formal definition
of the static dielectric constant in terms of the many-
particle functions contains a new term, as it turns out,
the direct contribution of the ionic polarization. This
term is discussed in the Appendix.

2. IMPURITY STATE AND DIELECTRIC CONSTANT

Let there be N valence electrons in the regular
insulating crystal, and let r;, i=1, 2 %+1, be the
position vectors of the (1V+1) loosely bound electrons
taken to be in the crystal. Let R~, be the equilibrium
position of an ion of type s in the unit cell t of the
crystal, u~, the displacement of the ion from R~„and
Xi, its total displacement (Ri,+ui.). Let H(r, ,ui, ) be
the complete Hamiltonian of the impurity-free crystal.
That is, II contains the kinetic energies of both the
normal crystal ion cores and of the ()V+1) electrons,
and the mutual Coulomb interactions between all these
charges. @„K(ri riv+i, ui, ) are the eigenfunc-
tions of H. Like H they contain ion-core coordinates e
in addition to electronic coordinates as dynamic
variabl es.

++n K +n K+n K.

Here E„K are the eigenvalues; the subscripts e, I will

be defined shortly. The O„K will be taken as ortho-
normal when the integration extends over electronic
and nuclear variables.

The functions + K have the following generalized
symmetry:
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+„K(rr+T, r)v+,+T, .u((,. r) . .)
=exP(iK T)@„K(rr, r)v„r, . u„. . ), (2)

Substitution into the Schrodinger equation,

(II+U)+= E+, (7)

where T is one of the fundamental translational vectors
of the lattice, u(~, T) is the displacement from equi-
librium of the ion at (R),—T), and K is in virtue of
(2) the propagation vector of 4„». Equation (2) is a
consequence of the fact that if all the electrons are
advanced by T, and the ion-core configuration as
defined by the u's is likewise advanced by T,

(r; ~ r;+T, u„~u(„T)),

gives a set of equations having exactly the same form
as those given by Kohn. "One now makes the rather
crucial assumption, treated in Sec. 3, that the coeffi-

cients A„K, when m/0, associated with states having
one or more real phonons, are relatively small compared
with the ground-state coeKcients, AOK. Solution by
iteration then yields

(OK
i
Ui)sK") («"

i
U IOK')-

+ZZ A p»~ =O. (8)
K" ~«Z —E.K"—(«"

~

U~«")—(3)+nK —& 4 nK7

(EOK—E)As»+a (OK
i
U

i
OK )

the Coulomb interactions in B and, hence, H itself K'

remains invariant.
Following Kohn one writes

Ep K=Epp+ )s'I),'/(2m*) . (4)

One likes to think that cyclotron resonance truly yields
m* as defined in (4). In an independent-particle model
m~ would correspond to the polaron effective mass,
i.e., it would include the effect of the phonon "dressing"
of the electron.

The impurity atom, assumed to be fixed at the origin
and to carry a positive excess charge (—)Ie), will give
rise to a perturbation U (U= Ui+ Us):

N+1

Ui ———yes Q r f',

U, =q" P Z, ~X(,~-, (Sb)

where —eZ, is the charge carried by an ion-core of
type s.

The eigenfunctions 0 of the crystal with the impurity
are expanded thus:

Pn, K +n»+n K.

)0 J. M. Luttinger and W. Kohn, Phys. Rev. 97, 869 (1955);
or see W. Kohn, in Solid State Physics, edited by F. Seitz and D.
Turnbull (Academic Press Inc. , New York, 1956), Vol. 5, p. 257.

where C„K is to remain invariant under the total
translation T. K is to be restricted to the first Brillouin
zone. The remaining specification of the state is con-
tained in m. From the shallow impurity problem in
nonpolar crystals" one can presume that the inclusion
of conduction bands higher than the first introduces
but small corrections, which will not be considered here.
Accordingly, the index n will be used to indicate,
roughly speaking, the phonon content of the eigenstates
%„K, all of which will be taken to lie in the same
"electronic band. "

Again following Kohn, the set of lowest states, m=0,
will in the vicinity of the energy minimum be taken
to have a quasi-continuous energy spectrum of the
form (cubic symmetry assumed),

The round brackets in (8) indica, te integration over
nuclear as well as over electronic coordinates.

Since in the state%'~K the extra electron is distributed
uniformly throughout the crystal, the expectation value
(OK

~

U
~
OK) will differ by a negligible amount from the

interaction of the impurity charge with the perfect
E-electron insulator. In the same way the second-order
term

(OKi U[«")(«"
i
UiOK)

ZZK" neo

is, essentially, the self-energy of the impurity charge,
i.e., its interaction with its own polarization. " These
terms will appear as additive constants to the various

energy eigenvalues.
To calculate (OK

~
U

~

OK') (KW K'), one Fourier
analyzes Eqs. (5), and draws on Eq. (3) to get

4zqe'
(OK

i Ui OK') =
V

Xg —$—(X+&) (@0»*@0Ke"'"+"' """)
y«P

+E Z. (eo»*C«exPPP (X(.-rr)]
l, 8

yexpt i(I)+K' —K) ri])]. (9)

Here V is the volume of the crystal, and the y are all
nonvanishing vectors compatible with periodic
boundary conditions for U. The factor (X+1) origi-
nates from the equivalence of all crystal electrons.

Now, in view of Eq. (2),

C'0K C 0»' exPLil) (X(.—ri)]
~

~," &Nyl '' &). '

=C'0» C'0» expjip'Px((. -)r)
—(rt+T)]}I.,+),"'~,)-~T, "'(). )"" ('o)

"A more complete discussion of many points raised in the
present section will be found in reference 1."Since it is E rather than Eox that appears in the denominator,
this term could, conceivably, cause a shift in the operative mass
m*.
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That is, the right term in (10) is to be evaluated for a
configuration shifted by T relative to that for the left
term. This allows one to make the following expansion
in reciprocal lattice vectors K„ indicating lattice
periodicity in r& ..

P Z, (CoK*CoK expLsp (Xi,—ri)j)'
L, s

= V-' P p;„(K,K',p) '" '. (11)

The primed parentheses on the left indicate integration
over all dynamic variables except r~. Evidently, one
can also make the expansion

(CoK*CoK)'= V—'Q„p,„(K,K')e'"" ". (12)

Equations (11) and (12) are substituted into (9),
and on integrating over r~, one finds that

(OK~ U~OK') = —47rqe'V ' P„~K—K'—K„~

XL(Ã+1)p.,(K,K') —p, , (K, K', K—K'—K.)j (13)

It will turn out that as for the nonpolar case the
significant matrix elements are those with K and E'
small compared to E„. Accordingly, only the terms
v=O in (15) will be retained. Furthermore, p, „and p, ,
will be replaced by their limiting values as K' and K
approach zero, but remain distinct, a point taken up
in the Appendix. An effective dielectric constant, ~,
is now defined by

lim ((iV+1)p,o(K,K')
K,K'~0; K&K'

—p,o(K, K', K—K')j= 1/~*, (14)

where p, o and p;0 can be obtained by inverting Eqs.
(11) and (12). Equation (14) will be seen as a generali-
zation of Kohn's original definition. ' Thus, finally one
has

(OK~ U~OK')= —4mge'(Vg~) ')K—K'~ '. (15)

If for the moment one drops the terms of second
order in U in Eq. (8), and sets

E—(OK i
U

i
OK) —Eoo=E', (16)

then, with the help of (4) and (15), one finds

This will be recognized as a hydrogenic Schrodinger
equation in E space, with parameters m* for the electron
mass, and ~' for the dielectric constant. Also to be
remembered is the restriction on E to lie in the hrst
Brillouin zone. (See reference 1 for transformation to
real space. )

The argument that is used in the nonpolar problem
can be adapted to make the identity of f~:*, as defined
in (14), and a, the true static dielectric constant,
extremely plausible. H the impurity charge qe is
allowed to become vanishingly small (so that the

relevant region in IC space describing the orbit tends
to zero), then, as in the nonpolar problem, Eq. (17)
becomes, indeed, exact. The accompanying solution of
(17), 'I'o,

'I'o=Zx Aoz'I'oK, (18)

becomes the exact solution of the impurity problem.
The interaction between the impurity charge —qe

and its trapped electron on the one hand, and a small
negative point charge Qe displaced by E from the
impurity on the other, where R is large relative to the
dimensions of the impurity state, will be

Qe'/(aR), (19)

since q is assumed infinitesimal, (19) is to be taken as
the definition of I(:.

The charge Qe introduces the perturbation

H'=Qe' g ~~r;—R~
—'—Qe'P Z, ~Xi.,—R(

—". (20)

3. CORRECTIONS TO HYDROGENIC EQUATION

In the introduction, considerations were outlined
which suggested that the terms of second order in U in

Eq. . (8) are small compared to the first-order terms.
Indeed, if this is not the case then the perturbation
scheme that has been applied to solve the exact equa-
tions for the A„K's will not give convergent results.
On the other hand, if the second-order terms are small,
then reliable results can be obtained even if the terms
are not known very precisely, since they are corrections
to first-order terms which are well known. In this
section the second-order terms will be estimated for
substances that have relatively weak electron-lattice
coupling (coupling constant n(1). It will turn out tha, t
these terms are, indeed, small providing that the
coupling is particularly weak, as in the III—V semi-
conductors. The estimates are possible because wave
functions are readily available. It is thought that the
second-order terms will remain small even as the
coupling strength is increased somewhat, providing
that orbital radii of the impurity states remain large
compared to characteristic polaron radii. For one thing
it is energetically unfavorable to build by polarization
a potential well about a large crystal volume. In addi-

The procedure now is to calculate the first-order
shift in energy (4'o,H'4o). The calculation proceeds by
essentially the same steps as those given in Kohn's
work. Equation (20) is Fourier analyzed, substitution
is made from both Eqs. (11) and (12), and the integral
over ri is taken. If one omits the term, P I ~

A oI
~

'
X(OK~H'~OK), the self-energy of the charge Qe, one
finds, as E gets very large and q very small, the result:

(+o,H'4 „)=Qe'/(~*A), (21)

where g~ is exactly as defined in Eq. (14). Comparison
with Eq. (19) establishes the identity of ~ and ~*.
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where ~„ is the optical dielectric constant.
In this spirit the Hamiltonian for the impurity-free

crystal assumes the well-known form":

II= —[a'/(2~) jV2+a~ P„b„*b„
+igV '~' P w '[b ~ exp( —iw r)

b„exp(iw—r)], (23a)

g = (4am)'"[5'ops/(2m) j"'. (23b)

The first term is the kinetic energy of the electron in
the periodic potential of the crystal, the second the
energy of the optical longitudinal vibrations of the
lattice, cv being roughly the common frequency for
these modes. b * and b are the creation and annihi-
lation operators for phonons of wave number w'. The
last term is the electron-lattice interaction, which is
proportional to the square root of the usual coupling
constant n. '3

Formally, the second-order corrections also include
excitations of acoustic phonons. It might be empha-
sized that the energy denominators appearing explicitly
in the corrections associated with these excitations do
not contain any poles, since in E is included its decrease
by the first-order (hydrogenic) binding energy. Never-
theless, a detailed treatment of this question would be
rather tricky. " For the present one assumes that the
effects of the acoustic excitations are small as compared
to the more appreciable polar effects being sought.
This can, perhaps, be inferred from the experimental
results in silicon and germanium, where phonon
excitations do not appear to show up.

For every substance there is a characteristic mo-
mentum vector E„,O'Es~/(2m) = Soi. It turns out that
that for the substances of special interest here the

"G.R. Allcock, in AdMnces in I'hysics, edited by N. F. Mott
(Taylor and Francis, Ltd. , London, 1956), Vol. 5, p. 412.

"In a subsequent paper we hope to investigate in some det, ail
the ground-state polaron functions for weak coupling with
propagation vectors E, O'E'/(2m))Aw. This will allow one to
subtract out explicitly the contribution of the unexcited states
(OK") from the sum Kit", „(OK~ U~eK")(eK" ~U~OK'). (One
may think of this sum as being also roughly representation inde-
pendent with regards only to states ~nK") at about the same
energy, )

tion, the relatively large orbital radius is equivalent
to a slow orbital angular velocity relative to the circular
frequency of the optical lattice modes.

It is thought that the second-order terms can be
estimated suKciently reliably in terms of a one-electron
model. To make the model consistent with the many
electron formalism one must imagine one-electron
crystal functions, say eiK'Xp, where r are the electron's
coordinates and Xp is a nuclear function, as being
multiplied by a function re„(rs,rs, . r&+i,u), which has
the effect of surrounding the electron by a proper
electronic polarization. That is, within an r independent
constant,

Jt'/+1 ge2

Q,'( qe—') g (1/r, )drs tv+i=...——(Ir„'—1), (22)
i=2

TAsLE I. Experimental and calculated characteristics for
representative polar crystals.

A (E„)/A (0)

K~

Eq. (30)

GaAs~ b

0.03
0.06

13.5
11.6
0.10(x

CdAs2' d

0.12
~0 7

10
18.5
0.3'

CdSe

0.08
~05

5.2
9.2
0.4n

a See reference 8.
b H. Ehrenreich, Phys. Rev. 120, 1951 (1960). In attempting to obtain

agreement of the ionization energy with experiment the (yet unknown)
temperature dependence of the dielectric constant may be important.

e See reference 3.
d See reference 7.
e See reference 2.

"H. Frohlich, H. Pelzer, and S. Zienau, Phil. Mag. 41, 221
(1950).

"polaron radius, '"' 1/E„, is smallish compared to the
corresponding orbital radius, so that the ratio A (E„)/
A(0) of Fourier components characterizing hydrogen
like is orbitals is relatively small. Using experimental
values for the effective masses and static dielectric
constants one finds the ratios listed in the second line
of Table I. The next three lines of the table give some
relevant experimental information.

Only second-order terms with E, E'(E„will be
calculated. " In view of the listed ratios, A (E„)/A (0),
it is these which are of principal interest. For E&E„,
and 0.&1, one may write for an eigenfunction 0'pK of
the Hamiltonian given in (23) the first-order per-
turbation expression:

eiK r

Xp
t/r1/2

Zg exp[i(K —w) rjb„*xs
(24)

V " te{Aoi+A'/(2ris)[(K —w)' —E']l
where Xp is again the ground state of the lattice oscil-
lators. To estimate the second-order terms, the excited
polaron functions O' K" are simply replaced by un-
perturbed states, exp[i(K w"—).rfb„*Xs.Excited states
in the unperturbed representation having more than
one phonon will give no contribution to the second-
order terms, providing that the interaction of the
impurity with the ion cores is linearized. One now draws
on Eqs. (5a), (8), (16), and (22). Making some obvious
approximations in integrating over angles, and sub-
stituting first-order (hydrogenic) ionization energies
for E', one finds:

(OKI UInK")(NK"
I
UIOK')

ZZ
x ~ -~ z—z„-—(~K"

I
UINK")

(«I —qe'/(e-r)
I
wK") (wK"

I

—qe'/(~-r)
I
«')

xg
%V I +hoi+ —)'r'/ (2m) (K" w)'-—

qe' —4xqe'
=-0.2(r - — . (25)

rsK„fbi Vlr„IK—K'I Es
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Here ro is meant to be the Bohr radius of the impurity
orbital, and EOthe'reciprocal of ro, (Eoro= 1).

The term in brackets in (25) can be taken as roughly
the equivalent of the first-order term (K~ U~K'), see
Eq. (15). The last line in Table I lists the numerical
value of the factor to the left of the bracketed term.
It is interesting to note that this factor contains
essentially the ratio of impurity binding to optical
phonon energy.

The result (25) is evidently not quite right for a
number of reasons. The true excited polaron states

contain with fexpi(K" —w) r]b„~xo admixtures
of other states of the same momentum, in particular of
(expiK" r)xo." In addition, Ug, the interaction of the
impurity with the ion cores, has not been included in
calculating the matrix elements. However, owing to
the partial shielding of the extra electron by the ions,
one might expect the latter interaction to numerically
reduce the final result of a more complete evaluation.
Nevertheless, it is believed that (25) is of the correct
order of magnitude, and that it allows one to draw

conclusions as follows.

For a range of III—V semiconductors, typified by
GaAs, that have coupling constants o.(0.1 the per-
turbation scheme suggested here converges rapidly.
The second-order terms are small compared to first-

order ones, being corrections of one or several percent.
Accordingly, the impurity orbitals and the associated
eigenvalues can be found with good reliability. In a
calculation of the ionization energy in, say, GaAs

(0.009 eU) the switch from ~„ to Ii will have an appre-
ciable effect of about 35%, whereas the second-order

terms may be expected to lead to a correction that is

hardly significant. (The change in a calculated effective

mass arising from the phonon dressing of the electron,

nm/6, would also be unimportant here. )
In substances such as CdAs~ or CdS where o. 0.5

the situation is less satisfactory. From the present
estimates one cannot conclude with certainty that the
perturbation scheme converges. Nevertheless, leaning

on experimental information already mentioned one

can, perhaps, expect that there will be a slow con-

vergence, and that the present theory wilj give an

accounting here as well.
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p, o(K, K', K—K')
Z e2(& & ) &ts(+0 ++,e&i& x i '~ls) (A1)

The tight-binding functions, 4'OK, describing a polar
insulator with an extra electron have the general form:

+ox=L '"P e'"' "Wi, (ri r~+i, u)XO(u)i, . (A2)

Here Wi, is a suitable (X+1) electron function, which
concentrates the extra electron in the vicinity of the
crystal ion at R~, . Xo describes the ground-state oscil-
lations of the ion cores, the I indicates the dependence
of both 8' and Xo on all nuclear coordinates, and L is
the number of ions in the crystal. The subscripts ts
attached to &o indicate the dependence, to become
clearer shortly, of Xo on the location of the extra
electron. Since S'~, is assumed to diminish rapidly
when the "extra" electron leaves the vicinity of E&,
the function (A2) possesses a proper correlation between
the extra electron and the ionic configuration. Further-
more, if under the total translation T, Wi, goes into
8"&, T, +t)K will satisfy the symmetry requirement of
Eq. (2)."

If now (A2) is substituted into (A1), cross terms are
neglected, and the integration over all electronic co-
ordinates is carried out, one obtains

fK KIN —L—i ~ Z i(K—K') iR~s—Rt's')

Ls, L's'

X (u)«, e'&x x'&'""du, (A3)

where the integral is over all nuclear coordinate space.
Xo(u) i, is most naturally chosen as the usual ground-

state oscillator function, the oscillations, however,
being about displaced equilibrium positions, there being
a separate equilibrium configuration, /'s', for each
location Ri, of the extra charge concentration. "Thus,
if x&, (l's') is the equilibrium displacement of the ion ls

appropriate for the configuration /'s', it will be assumed
that for sufficiently large R (R=Ri,—Ri, ), xi. satisfies
the inverse square law:

x (.(t's') =x (R) = f,RR ', (A4)

See, for instance, S. J. Nettel, Phys. Rev. 121, 425 (1961).
"For example, for a one-electron function one could choose

8'~, =m (r—X~,), where m(r) is a bound atomic orbital.

APPENDIX

The Static Dielectric Constant

The term p;o defined in (11) and appearing in the
definition (14) of ~~ can be understood in terms of
crystal functions having a generalized tight-binding
form (the functions appearing in "small polaron"
theories"). From (3) and (11), and remembering that
Xi, R(,——+u „io ne has
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where f, is a proportionality constant, which depends
(also in sign), on s, the type of ion being displaced.
R runs over all regular interionic displacements.

The integral in (A3) may thus be rewritten as

xp'[ui —xi(l's'), . je"~"" "'i""tdu (A5)

p (K K~) I 1 p Z psq ~ [xs (Ri+Rl
L's', R

(A6)

For fixed s', s is determined by R in (A6).
For about the largest q of interest, qR'&1/10, where

E' is the smallest nonvanishing value of E. This fact
will allow one to replace (A6) by integrals. First, one
notes tha, t since x, (R') is not more than a few percent
of E', q x is rather a small quantity.

Consequently, one can expand (A6):

with q=K K. Xp is the usual oscillator function, but
of shifted coordinates.

When the Cartesian coordinates. I are transformed
into normal coordinates the integral in (A5) becomes a
product over all normal coordinates of Fourier trans-
forms of Gaussian functions, which is again a product
of Gaussians. The final product turns out to be essen-
tially of the form exp —(q'X const). For all crystals apt
to be of interest it is of ord. er exp( —10 ') for about as
la, rge values of q (one over radius of the impurity
orbits), as one needs to consider. Accordingly, the
product will be replaced by unity, a replacement which,
it will be noted becomes exact as q tends to zero. The
result is that (A3) becomes

lim p„p(q) = —47rd P.Z,f,
q~0, q/0

(A10)

This limit is exact, save for overlap terms neglected in
deriving (A3). Presumably these can be reduced or
eliminated by an appropriate choice of the 8'~, without
rendering (A4) invalid for suKciently large R.

Consider now the perfect insulating crystal with a
fixed extra charge e. At a sufhcient distance R from the
charge there will be induced, in accordance with (A4),
an ionic polarization P, (R), which satisfies the
equations:

4n-P, (R) —4~ed P, Z,f,R/R'
= —4md Q. Z,f„(A11)

D (R) eR/R'

becomes independent of s'. Finally, one gets

p,p(q)= 4—+d[sinqR p/(qR p)jg Z f . (A9)

In the theory of weak electron-lattice coupling,
(n & 1), one finds that the ionic polarization surrounding
the polaron satisfies the inverse-square law down to
radii 1/E„(see Sec. 3), and gradually dies out for
smaller radii. "Here one can, therefore, identify R0 with
1/E„. For stronger coupling the inverse square law
holds down to even smaller radii. "One can, therefore,
say that for all q of interest qRp&1. Equation (A9)
supports an assumption made in going from (13) to
(15) in Sec. 2, namely that p,p(K K K K') is suK-
ciently slowly varying that it may everywhere be
replaced by the limiting value given in (14).

In the limit as q tends to, but does not equal, zero
one has

p, p
——I. ' P Z[c soqR —q x, sinq R

——', (q x,)'cosq R+ ]. (A7) (A12)lim p, p(q) =4prP, /D.
q~0, q40

where D is the corresponding displacement field.
Finally, from (A10) and (A11) one has the simple
result,

For nonvanishing q the first term in (A7) is zero. The
terms of order higher than unity in q can be neglected.

If d is the number of crystal cells per unit volume,

By definition,

1—1/~ = 4pr (P~+P,)/D, (A13)

Qa Z,q x, sinq R~ d + Z, q x, (R) sinq RdR, (AS)

where the integral is. over all of E space, and the
summation over all ions s in a crystal cell. The assump-
tion is now made that x, (R) is zero up to some radius
Rp, and satisfies (A4) beyond that. (AS) then becomes
a straightforward integration, and the total result

where P, is the "electronic" polarization. Comparison
with (12), (14), and (A12) gives

(X+1) lim (4'px*sC'px )= 1 47rP./D. (A14—)
K K~~0 KgK'

It is suggestive that one may write the identical
equation in the nonpolar problem. "There 40K, C0K
depend only on electronic coordinates, and there is no
ionic polarization P; additional to P,.


