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The Fermi energy, density of states, cyclotron effective mass,
optical effective mass, and other parameters of the Fermi surfaces
of the alkali metals are evaluated for the band structures calcu-
lated previously, using an interpolation formula suggested by the
nearly free electron model. It is shown, however, that the nearly
free electron model in its usual form based on a weak effective
potential cannot provide a consistent description of the alkali
band structures, and that generalization of the model to take
account of the l dependence of the effective potential is necessary.
The calculated Fermi surface parameters are compared with
the results of recent experiments and with analyses by Cohen,
Heine, Dugdale, Collins, and Ziman of earlier experimental work.
The trends in the calculated values agree qualitatively with those
found in experiments and with trends in the band structure

inferred by these authors. This comparison lends support to the
interpretation that differences in the properties of the alkali metals
arise to a considerable extent from differences in their electronic
structure. The calculations predict appreciable anisotropy of the
cyclotron mass, the de Haas —van Alphen effect, and the linear
dimensions of the Fermi surface for all of the alkali metals except
sodium. Values of the parameters are found to be changed con-
siderably by distortion of the Fermi surface from values obtained
in the spherical approximation. The calculated values for the
thermal effective mass, however, are significantly smaller than
the experimental values, except for cesium, so that at least for
the lighter metals the effect of electron-electron correlation and
electron-phonon interaction appears to be to enhance the effective
mass.

I. INTRODUCTION
' 'N an earlier paper' (hereafter referred to as J) we
~ - have presented the direct results of calculations of
the energy bands of the five alkali metals for several
values of the lattice constant. These calculations were
carried out, using the quantum defect method and the
Green's function method, for values of the propagation
vector k along the L100$, L111],and L110j axes within
the Brillouin zone as well as at symmetry points. In the
present paper we use these results and an interpolation
procedure to calculate the Fermi energies of these metals
and the various parameters of their Fermi surfaces. We
compare the calculated values of these parameters and
their trends through the alkali series with recent
experimental evidence relating to the shape of the
Fermi surface and with the conclusions of several recent
theoretical analyses of the metals' properties.

Ke must erst obtain a good interpolation procedure
to describe the nonspherical distortions in the conduc-
tion band for energies near the Fermi energy. As we
have seen in I, a power series expansion in the com-
ponents of k is not convenient to describe this distortion.
A much more successful interpolation formula is, how-

ever, suggested by the nearly free electron model of a
metal, ' although that model in its usual form does not
suflice to describe the distortion of the bands which we
have calculated for the alkali metals.

The nearly free electron model, which treats the
effective crystal potential as weak, has recently at-
tracted renewed interest as the basis of fruitful inter-
pretations of features of the Fermi surfaces of a number
of polyvalent metals as revealed by recent experi-
ments. '4 The reasons for the model's success have been

' F. S. Ham, Phys. Rev. 128, 82 (1962).
2 See, for example, N. F. Mott and H. Jones, Theory of the

Properties of Metals and Alloys (Oxford University Press, New
York, 1936), p. 59.' A. V. Gold, Phil. Trans. Roy. Soc. (London) A251, 85 (1958).

4 W. A. Harrison, Phys. Rev. 118, 1182, 1190 (1960).

clarified by Phillips and Kleinman, ' and by Cohen and
Heine, ' who have pointed out that while crystal po-
tentials are not, in fact, weak, the effective pseudo-
potentials seen by valence electrons may be weak be-
cause the requirement that wave functions of valence
states be orthogonal to those of core states has the effect
of introducing a repulsive pseudopotential that partially
cancels the true potential. Our calculated band struc-
tures of the alkali metals provide an opportunity for a
quantitative test of the nearly free electron model as a
description of the bands. As we shall show, the model in
the simple form usually considered" is not successful
in providing a quantitative description of the alkali
band structure and fails as well in certain qualitative
respects. This failing is, however, not unexpected, for
the usual form of the model ignores the fact that the
correct pseudopotential is different for states of different
angular momentum /, as Phillips and Kleinman have
noted. ' This / dependence has been emphasized by
Antoncik' and is a consequence of exchange interaction
and of the fact that the pseudopotential arises from the
process of orthogonalizing a valence wave function of
given / to core states of the same /. In other words, the
pseudopotential is in fact not a simple potential but an
operator acting differently on states of different /.
Antoncik~ has given expressions for the matrix elements
of such an operator; he shows that the splittings of
states at symmetry points depend on the pseudopo-
tential in a complicated way and no longer are given
simply in terms of a very few Fourier coeKcients of an
effective crystal potential. Our test of this model against
the calculated alkali band structures will thus show that
even if the pseudopotential is weak for the reasons
advanced by Phillips, Kleinman, Cohen, and Heine,
and the band structure correspondingly close to that of
a free electron, one should not expect complete con-

' J. C. Phillips and L. Kleinman, Phys. Rev. 116, 287 (1959).
e M. H. Cohen and V. Heine, Phys. Rev. 122, 1821 (1961).
7 E. Antoncik, J. Phys. Chem. Solids 10, 314 (1959).
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sistency between different ways of evaluating Fourier
coeKcients of an effective potential from splittings at
symmetry points if this is done with the usual simple
formulas. The nearly free electron model may never-
theless provide a useful basis for a qualitative under-

standing of many features of band structures, and ex-
tended suitably to take account of an l-dependent
pseudopotential it may provide an accurate quantitative
description of the bands of many solids. '

In this paper we shall first show in Sec. II the failings
of the usual form of the nearly free electron model as an
interpolation procedure by comparing it with the calcu-
lated bands. We have not, however, attempted to
incorporate an /-dependent pseudopotential into the
model. Such a modification might well prove fruitful as
an interpolation procedure for the alkali metals, as
Cornwell's work' suggests, but it makes the model un-

wieldy for our present purposes in that the bands depend
in a complicated way on an inconveniently large
number of parameters.

The distortionsin the calculated bands are never-
theless similar to those predicted by the nearly free
electron model. This leads us in Sec. III to use the
model to suggest the general form of an interpolation
formula, but we then determine the parameters in this
formula by fitting as closely as possible to the calculated
points in the part of the conduction band near the
Fermi energy. This procedure works quite successfully
as a description of this region of the conduction band,
and it is convenient for the evaluation of the parameters
of the Fermi surface.

In Sec. IV the results of calculations for the Fermi
surface are given, using this interpolation procedure.
We obtain the Fermi energy, the density of states, the
thermal, optical, and cyclotron effective masses, the
various dimensions of the Fermi surface, and its surface
area and extremal areas of cross section. Values of these
parameters, evaluated for the distorted Fermi surface,
are compared with those obtained with the spherical
approximation. We also calculate the contribution to the
"diffusion" component of the thermoelectric power that
arises from the shape of the energy bands.

In Sec. V we discuss the comparison of our results
with experimental information for the alkali metals
relating to the energy band structure, and in particular
with that relating to the shape of the Fermi surface.

Such an extension of the model has in fact been applied
recently to lithium, sodium, and potassium, by Cornwell (reference
9) as the basis of an interpolation procedure. Cornwell had fair
success in adjusting his parameters to fit the energy values at
symmetry points published previously by other workers. However,
this fitting is not as good at all his points as we should like to see
for a quantitatively accurate interpolation procedure. On the
other hand, Cornwell used for sodium and potassium results given
by Howarth and Jones and Callaway, the accuracy of which we
have questioned in I. Thus, it remains an open question how
complicated such an interpolation procedure has to be in order to
reproduce to a desired degree of accuracy an accurately calculated
hand structure for an alkali metal.' J. F. Cornwell, Proc. Roy. Soc. (London) A261, 551 (1961).

We emphasize those experiments made since Cohen and
Heine" gave their review and interpretation of data
available in 1958. We compare our results also with
recent theoretical analyses by Collins and Ziman, ""
and by Bailyn" of the relation between the transport
properties of these metals and the shape of the Fermi
surface, and with a recent survey by Dugdale" of
various experimental correlations that"appear to relate
to the Fermi surface shape. This comparison, while, in
general, supporting an interpretation of the band struc-
ture which agrees with the trends revealed by our calcu-
lations, makes clear that definitive experimental evi-
dence concerning the shape of the Fermi surface in the
alkali metals does not yet exist, apart from some very
recent work on potassium. We point out the desirability
of various further experiments that would help to
elucidate the band structure.

II. NEARLY FREE ELECTRON MODEL

Ke wish to find out whether the nearly free electron
model in its usual simple form' 4 can provide the basis
for an accurate description of our calculated bands and
for an interpolation procedure. Accordingly, in develop-
ing the model we assume that the valence electrons see
a weak effective lattice potential (more strictly speaking,
a pseudopotential obtained from the lattice potential
by orthogonalizing valence wave functions to those of
core states), and we assume that this effective potential
can be approximated as a simple potential function
rather than an operator.

With a weak potential, the wave function of a state
of wave vector k in the conduction band is only slightly
perturbed from a single plane wave exp(ik r) (more
precisely, a single orthogonalized plane wave —or OPW)
except for states near the surface of the Brillouin zone
(BZ). For these latter states the wave function is a
linear combination of the plane waves exp(ik r) and
exp/i(k+K). rj, where K is the reciprocal lattice vector
pointing from the nearest face of the BZ surface to the
opposite face. The energy surfaces are accordingly dis-
torted from their unperturbed form only near the BZ
surface, and here the distortion at k arises from inter-
action via a single Fourier coefEicient of the lattice
potential between a free electron (or OPW) state a at k
and another such state b at k+K.

Accordingly, the secular equation for the energy at
k has the form

BC —E 3C g

ab

"M. H. Cohen and V. Heine, Advances ie Physics, edited by
X. F. Mott (Taylor and Francis, ltd. , London, 1958), Vol. 7,
p. 395"J.G. Collins, Proc. Roy. Soc. (London) A263, 531 (1961)."J. G. Collins and J. M. Ziman, Proc. Roy. Soc. (London)
A264, 60 (1961).

'3 M. Sailyn, Phys. Rev. 120, 381 (1960)."J.S. Dngdale, Science 134, 77 (1961).
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X = Vp+ (2'/a) '(2/m*) t'

Xbb= Vp+(2~/a)'(2/m*)(1 —t)'
3C,g= Vg,

(2 3)

where V~ is the Fourier coefficient of the effective lattice
potential going with the first nonzero reciprocal lattice
vector Ki ——(2s/4b)(+1, +1, 0). Since X„=xbb for
t=1/2, we find

E(»)—E(» )=2Vi, (2.4)

E(1Vi)+E(Ei ) = Vp+-', (4m'/a'm*). (2.5)

Hence from (2.2), on the [110)axis E should be given by

E= ,'[E(E,)+E(-S )]
—(47r'/o'm*) p —tp —(1—t) ']
+{(4m'/u'm*) '(1—2t) '

+(1/4)[E(»)—E(» ))'}"' (2 6)

On the [111) axis the k vector k=(2pr/a)(t, t,t) is
equidistant from three faces of the BZ surface. The
excited free electron state that mixes with the plane
wave exp(ik r) is then the symmetric linear combina-
tion of the three plane waves obtained from k by
Bragg reRection in each of these faces,

pb
——(1/v3)p exp[4(k+K;) r), (2.7)

We find accordingly

X..= V,+(2~/a)'(3/m*) t'

Xbb ——Vp+2Ui+(2m/a)'(1/m*)[tP+2(1 —t)'), (2.8)

X.b=v3Vi,

and for t=1/2
E(Ei)—E(P4) =4Vi. (2.9)

If the nearly free electron model is applicable, the
same choice of Vp, Vi, and m* (which may differ from
the free electron mass since the unperturbed wave
function is an OPW rather than a plane wave) should
sufFice with these formulas to fit the calculated bands
along both the [110)and [111]axes, and similarly on
the [100). Accordingly, if we eliminate Up oii [111]
using (2.5), E should be given on the [111]axis by

E= p [E(»)+E(»))
+ V,+(4 /~ m*)[2t +(1—t) ——;)

&{[(44r'/a'm*) (1—2t)+ Ui]'+3U '}"'. (2.10)

With Vi given by (2.4), we have been able to choose
m* in all of. the cases we have studied such that (2.6)

whence the energy is given by

E= p'(X«+Xbb)+ p'[(X«—Xbb)'+4l X.b I').'I' (2.2)

For k=(2pr/a)(t, t,0) on the [110) axis (0&t&ip) we
have (in atomic units)

xab Ul 4U12(@pm@/44r2) (2.11)

for X~b at t=1/2, with similar corrections to X„and
Xb b and similarly on the [111] axis. For lithium it
proved impossible to solve for Vi real (as it should be
since the lattice has inversion symmetry) when X,b in
(2.11) is set equal to half the splitting at 1V. Thus, for
lithium, either other terms in the Fourier expansion of
the potential are important, or the potential is too
strong for use of perturbation theory, or the simple form
of the nearly free electron model is inappropriate. For
rubidium and cesium, however, the improved formulas
including the terms of order Vi'(a'm*/4m') lead to
corrections in the desired direction of raising the [111)
axis relative to the [110), but the error remaining is
still half that found previously. Further improvement
might be made if the effect of other terms in the Fourier
expansion of the potential were included; these terms
are not negligible, to judge from splittings of states at
II, and higher states at I' and 3~.

Thus, the nearly free electron model, in its usual
simple form and with neglect of higher order perturba-
tions, is not applicable to give a consistent description
of the distortions of the energy surfaces in the conduc-
tion bands of the alkali metals except for sodium, for
which the surfaces up to the Fermi energy depart negli-
gibly from spheres. Including the effects of other re-
ciprocal lattice vectors seems to improve the model
somewhat, except for lithium, but complicates it greatly.

A serious drawback to use of the usual form of the
nearly free electron model to give even a very approxi-

fits the calculated points on the [110)axis quite satis-
factorily for ~&t& —,'. When we have used these same
parameters in (2.10), however, the resulting expression
gives energy values for the [111)axis consistently lower
than those calculated by the Green's function method.
For lithium at the lattice constant in Fig. 1 of I, (2.10)
gives a value at t=3/8 (roughly the Fermi energy) that
is 0.017 Ry below the calculated value, and 0.015 Ry at
t=5/16. For rubidium (Fig. 4 of I) the corresponding
errors are 0.020 and 0.014, and for cesium (Fig. 5 of I)
0.051 and 0.034. While these errors are not large on an
absolute scale, comparison with the 6gures of I shows
that they alter substantially the relative positions of the
energies of the [110)and [111)axes. Thus, these values
would place the band on the [111) axis close to or
below that on the [110) axis for the same ~k~, for
energies at and below the Fermi energy, thus completely
changing the form of the distortion of the energy
surfaces.

Since the energy splittings at E and P in these cases
are not small compared with the conduction bandwidth,
we have calculated in second order the perturbations to
the energy arising from other reciprocal lattice vectors
of the form K = (2pr/a)(&1, &1, 0), etc. , apart from the
one (or three) already treated. We obtain in place of
(2.3) the expression



ENERGY BANDS OF ALKALI METALS

TABLE I. First Fourier coefficient V& of effective potential, as
obtained from splittings of states at X, I', and H from Eqs. (2.4),
(2.9), and (2.12) of text (E. nergies in rydbergs. )

Li Na K Rb Cs

o (au) 6.65 8.11 10.05 10.74 11.46
V1(E) +0.101 +0.008 —0.016 —0.028 —0.042
V1(P) +0.076 +0.018 +0.020 +0.018 +0.024
Vg(H) +0.052 +0.026 +0.039 +0.038 +0.047

at a few symmetry points. Such a generalization might
provide a useful interpretation of the alkali metal band
structures as Cornwell' has suggested; we have not,
however, investigated this possibility. We can conclude
in any case that attempts to interpret calculated or
experimental band structures in terms of the nearly
free electron model and a simple effective potential
will usually yield inconsistencies.

mate description of the energy bands in the alkalies is
the model's failure to account consistently for the calcu-
lated splittings of the states at E, I', and H. Equations
(2.4) and (2.9) give two formulas for Vt, and in the
same approximation for the lowest states at II we obtain
a third,

6Vt= E(Hr) —E(II,s). (2.12)

In Table I are listed the different values for V~ obtained
from these three formulas for each metal from the
calculated points. Evidently the three values for each
metal differ not only in magnitude, but for potassium,
rubidium, and cesium also in sign. "The discrepancies
are evidently too large to be remedied by going to higher
order perturbation theory.

As we have mentioned elsewhere, "this striking failure
of the nearly free electron model is not surprising when
we consider that the pseudopotential actually should
depend on the angular momentum l of the state under
study. "Such dependence invalidates Eqs. (2.4), (2.9),
and (2.12), since the energy of an s state like H& depends
on the Fourier coefficients of the s pseudopotential,
that of a d state like V~2 on those of the d pseudo-
potential. States like X~, Ã~, or I'4 that are mixtures of
functions of different l have energies depending on com-
plicated averages of the Fourier coefficients for different
K of the pseudopotentials for the different l, as Antoncik'
has shown. Since these pseudopotentials are largely
independent, the splittings in Eqs. (2.4), (2.9), and
(2.12) depend in fact on a number of independent
parameters instead of a single V~. The price of generaliz-
ing the nearly free electron model to include an l-de-
pendent potential is thus to introduce more independent
parameters than can be determined from the splittings

"The fact that the order of the states P1 and P4, and H1 and
H12 is for K, Rb, and Cs the reverse of that to be expected in the
nearly free electron model from the order of the states ÃI and W&
does not imply that the energy gap between the first and second
bands necessarily vanishes at some intermediate point along the
lines D and G on the BZ face connecting Ewith P and H, respect-
ively. From the character tables of Bouckaert, Smoluchowski,
and Wigner LPhys. Rev. 50, 58 (1936)j it can be shown that the
representations of the group of k along D and G that are compatible
with &1 and EI are both compatible with P4 and with both H15
and III2. Since P4 is below PI for all the alkalies, and the lowest
state at H is either H15 or HI&, it follows that for all the alkalies
the gap between the first and second bands at E must shrink to
zero at both P and H. It could vanish at an arbitrary intermediate
point along D or G (or elsewhere on the zone face), but this is
not required by the topology of the bands. The erst two bands will
stick together also along the edge F of the zone wherever P~ lies
below Ii i.

16 F. S. Ham, in Tlze Fermi SNsfcee, edited by W. A. Harrison
and M. B.Webb (John Wiley R Sons, Inc. , New Vork, 1960),p. 9.

III. INTERPOLATION PROCEDURE FOR
CALCULATED BANDS

Notwithstanding the inadequacies of the usual form
of the nearly free electron model, this model does predict
correctly that the constant energy surfaces in the con-
duction band of the alkali metals are nearlyspherical
but bulge in the L1101directions toward the zone faces.
We, therefore, use this model to suggest the general form
of an interpolation formula, but we choose values for
parameters in this formula to give as accurate a de-
scription as possible of the conduction band alone, with
little regard for higher bands. Fitted to our calculated
energies on the symmetry axes, this formula provides
an approximate interpolation to arbitrary directions of
k within the zone and permits evaluation of the changes
in Fermi energy, density of states and other parameters
of the Fermi surface caused by the nonspherical
distortions.

In the nearly free electron model, if the energy gap
at the zone face is small, the distortion of the energy
surfaces in the direction of one zone face arises primarily
from interaction with the I vector associated with that
face. We denote by (2s./a)(1/K2 —I) the component
of k along the normal to the nearest face, and by
(2'/a)to the magnitude of the projection of k on that
face. Then, from Eq. (2.2), the nearly free electron
model leads to an expression for the energy of the con-
duction band near that face of the form

(3.1)

where f(n) is given by Eq. (2.6). The distortion in the
direction of one face thus has axial symmetry about the
normal to that face, and the energy varies quadratically
in the component of k parallel to that face, the coeffi-

cient X being the same as for the undistorted surface.
The surfaces of constant energy thus comprise twelve
axially symmetric bulges —one for each zone face—
seated on a spherical base. If the bulges are small they
do not overlap each other appreciably and may be
treated independently, as for example in calculating the
amount by which the bulges change the density of
states or the cyclotron mass.

We use this same description of the distorted surface
as the basis of an interpolation procedure for our
calculated bands. For the spherical base on which the
bulges are seated we use the constant energy surfaces
as calculated from the spherical approximatiom of Sec.
IV of I. To describe each bulge we use Eq. (3.1), with
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TAarz II. Parameters in an interpolation formula )Eq. (3.2)
of text) for energies of the conduction band of the alkali metals
along the L110jaxis for xr ~& t~& sx, where k= (2m/g) (t, t,0). (Energies
in rydbergs, o and k in atomic units. ) (Sodium is omitted because
the spherical approximation suffices for an accurate description of
the conduction band in this metal. )

the density of states at energy E above that given in
the spherical approximation for the sphere of the same
energy by an amount proportional to the distance the
bulge protrudes beyond the sphere, if X in (3.1) is
chosen as

X= (2x./a)(2s) '(dE, /dk) s,=s. (3.6)

f,ithium 5.338 —0.3888
6.651 —0.4115
8.109 —0,4017

Potassium 8.109 —0.2649
10.049 —0.2943
11.458 —0.3055

Rubidium 9.053 —0.2861
10.742 —0.2958
12.575 —0.3019
10.049 —0.2970
11.458 —0.2958
13.348 —0.2917

+0.2176
+0.1008
+0.0386
—0.06095—0.01610—0.01345
—0.0718—0.0285—0.0203

—0.04245—0.02490

+1.15104
+0.74724
+0.51114
—0.05304
+0.27494
+0.26488
—0.24483
+0.18744
+0.21553

+0.02193
+0.14319

+2.14415
+1.08003
+0.52926
+0.27392
+0.26487
+0.17918
+0.12718
+0.19583
+0.12848

+0.10019
+0.08697

This choice of X is in fact suggested as follows by the
nearly free electron model. In that model the effect of
the Bragg reQection is to change the dependence of
E(k) on u while leaving the dependence on ra unchanged.
For the calculated energy bands, if we consider the
spherical approximation to give the undistorted surface,
we should therefore keep the same dependence on m for
the distorted surface. Let ks be a point on the [110]axis,
and k a nearby point with the same component parallel
to the axis, so that

a For this case we use f(u) =E(N) +uu2+pu4, with Ot = —0.3475,
P = —1.0667.

n(E) =
4x' a&a& i VsEi

(3.3)

if E(k) is given by (3.1), then we have the simple result
noted by Jones'r that, whatever the form of f(n), the
contribution to n(E) of the part of the constant energy
surface cut oQ by the planes u=u& and N=N2)u& is
simply

f(g) chosen to 6t our calculated energies along the
[110]axis. In practice we have used the expression

f(N)=E(N)+ v, ~y~n —( I+v, ) . (3.2)

Here E(N) is the energy of the lower state at N,
~

Vt
~

is
half the energy gap at N, and ( and co are chosen so that
(3.2) gives correctly our calculated energies at the points
with t=1/4 and 3/8, where k=(2x/a)(t, t,0). Values of
these parameters are listed in Table II.

It is important in our interpolation procedure to
preserve the quadratic dependence of the energy on m

even when the energy in the spherical approximation is
not a simple quadratic function of k. This approximation
greatly simplifj. es subsequent calculations. In particular,
in computing the density of states n(E) per unit volume
and unit energy range,

or
k&—kss = k~& = (2x./a) stos

(
k

[ (
kp [

—(2vr/a) w'/2s.
(3.7)

X(E)= (2x/a) 't Es+2E4s'(2x./a) ']. (3.9)

We ignore the energy variation of P in forming the
gradient of E as given by (3.1) with respect to k.

Summing over the twelve bulges, we 6nd then that
with this interpolation procedure the density of states
for the distorted surface is increased over that for the
surface of the same energy in the spherical approxima-
tion by an amount

n(E) —n, (E)= L3/x. 9,(E)](2x./a)'d u, (3.10)

In the spherical approximation E,(k) is a function of
~k~ only, so that

E,(k)—E (ks)+ ( ~

k
~ ~

kp
~ )BE (kp)/Bk,

or from (3.7)

E,(k)~E,(kp)+ (27r/a)w'(2s) 'BE,(kp)/Bk. (3.8)

The coeflicient of ta' here is just X as given by (3.6).
Thus we make this choice of 'A (which is therefore a
slowly-varying function of the energy E) for use in our
interpolation formula (3.1) to describe the surface of
energy K In terms of the coe%cients of Table VI of I,
we obtain from Eq. (3.6)

hn(E) = (4x.9,) '(2m. /a)'(Ns —ur). (3.4) where

Furthermore, the surface area of the part of a sphere
of radius k = (2x/a) s cut off by these planes is
(2xs)(2x/a)'(Ns —u~). In the spherical approximation
the contribution to the density of states from this
portion of the sphere of energy E' is, therefore,

An, (E)= (2x/a) 2s(2x') 'P(dE./dk) s.=s] '(»—nr)

(3 3)

where (dE,/dk) is evaluated at the energy E. Comparing
this expression with (3.4), we see tha. t the bulge increa, ses

"H. Jones, Phil, Mag. 43, 105 (1952).

Au = (1/v2) —s—u„. (3.11)

n, (E)= (2~s) ) r(2~/a) ss- (3.12)

In subsequent sections we shall show how this inter-
polation procedure may be used to compute the
Fermi energy, the area of the Fermi surface and its

Here s=(a/2x)k, and u =LstV2 —(a/2')k ], k being
the radius of the sphere of energy E, and k the length
of the k vector to the extremity of the bulge on the
distorted surface of energy E. If the distorted surface
contacts the zone face, u is zero. For the sphere
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TAsI.E III. Calculated Fermi energy EI and thermal effective
mass (npp/npp) of the alkali metals for several values of the lattice
constant a. L'zs and (mt/mp), are values calculated from the
spherical approximation; E(E) is the energy of the lower state at
lid. (Energies in rydbergs; a in atomic units. )

o Ers Lr L'(N) (m /pnpp) (mp/1np)

5.338
6.651
8.109
6.651
8.109

10.049
Potassium 8.109

10.049
11.458

Rubidium 9.053
10.742
12.575

Cesium 10.049
11.458
13.348

I.ithium

Sodium

—0.365—0.422
—0.429
—0.296—0.369—0.383
—0.251—0.320—0.327
—0.255—0.305—0.313
—0.248—0.285—0.294

—0.402—0.433—0.431
—0.296—0.369—0.383
—0,270—0.322—0.328
—0.283—0.310—0.315
—0.285—0.298—0.299

—0.389—0.412—0.402
—0.219—0.308
—0.349
—0.265—0.294—0.306
—0.286—0.296—0.302
—0.297—0.296—0.292

1.55 2.41
1.32 1.64
1.20 1.29
1.04 1.04
1.00 1.00
1.00 1.00
1.27 1.91
1.01 1.07
0.98 1.02
1.20 2.47
0.99 1.18
0.96 1.08
1.36 2.62
1.06 1.75
0.98 1.26

cross sections, and the various effective masses, for the
nonspherical conduction band.

our interpolation procedure is quite similar to the
"eight cone" model used by Ziman" in analyzing the
properties of the noble metals. Both treat each bulge
separately, using a local energy variation of the form
(3.1), and both assume that in the regions between the
bulges the surfaces are nearly enough spherical so that
complications from the overlap of different bulges may
be ignored. Ziman's work is, however, based directly on
the usual form of the nearly free electron model, while
our procedure is designed primarily to interpolate be-
tween the calculated results on symmetry axes and has
to take account of the fact that the "undistorted" bands
in the spherical approximation are not simply quadratic
ln k.

The assumption that the bulges may be treated inde-

pendently and that they have axial symmetry is clearly
accurate only when the distortions are small. When the
distortion is sufhcient to cause the Fermi surface of the
alkalies to touch the zone faces, there is appreciable
overlap between different bulges, and the accuracy of
this approximation is questionable. Since our calculated
bands show no contact for any of the alkalies except
cesium at lattice constants near the equilibrium value,
this assumption should be quite accurate for most of
our present work. We shall use this assumption even
when contact occurs, since a better calculation would
pose formidable difficulties without changing the quali-
tative behavior of the results.

Is J. M. Ziman, in Advances ie Physics, edited by N. F. Mott
(Taylor and Francis, I,td , London, 1961.), Vol. 10, p. 1.

IV. FERMI SURFACE

A. Fermi Energy

We have evaluated the Fermi energy by obtaining
from (3.10) as a function of energy the difference in

density of states between the distorted energy surfaces
and the bands in the spherical approximation, and then
integrating this difference numerically. This yields the
increase in volume of the distorted surface of energy E
over that of the sphere of the same energy. The Fermi
energy E+ is then the energy of the surface containing
one electron per atom (including spin degeneracy).
These results are given in Table III, along with the
Fermi energy in the spherical approximation Ep&, and
the energy E(Ã) of the lower state at 1V. The Fermi
surface contacts the zone face if E~&E~. For sodium
the bands are so little distorted that we have used only
the spherical approximation to obtain Ep.

In Table IV the same quantities are listed for the
equilibrium lattice constants at O'K, using Barrett' s
values' as an approximation to the latter. Epq is ob-
tained from the parameters of Table VII of I and from
E(i'r) in Table II of I. The difference EF Er s was-
found by interpolation from Table III.

The Fermi surface of cesium is thus found from the
calculations to barely miss contact with the zone face
at the O'K equilibrium lattice constant. Contact occurs
at a 2% reduction in lattice constant below the equi-
librium value, and the area of contact increases rapidly
as the lattice constant is decreased further. For all the
other alkali metals, the distortion at equilibrium is not
nearly enough to cause contact. For rubidium our
calculations indicate that contact occurs for a/ap —0.9,
while for the others contact is not found within the
range of a we have used.

TAszE IV. Fermi energy and thermal effective mass of the alkali
metals for equilibrium lattice constant at O'K. Exs and (np&/mp),
denote the values obtained in the spherical approximation with
the parameters of Tables II and VII of I, and Er and (pnp/mp)
the values for the distorted surface, obtained by interpolation
from Table III. E(N) is the energy of the lower state at X.
(Energies in rydbergs, lattice constant in angstroms and in
atomic units. )

a0 (i.)
ao (a.u. )
I-'~ s
g& yr

E(E)
(mg/mp),
(mf//mp)

3.491
6.597—0.420—0,431—0.412
1.32
1.66

4.225
7.984—0.367—0.367

—0.302
1.00
1.00

5.225
9.874—0.318—0.320—0.293
1.02
1.09

5.585
10.555—0.302—0.308

—0.295
0.99
1.21

6.045
11.424—0.284—0.297

—0.296
1.06
1.76

"C.S. Barrett, Acta Cryst. 9, 671 (1956). We use Barrett' s
values for the lattice constant at 5'K for all the metals except
lithium, for which we use his value at 78 K.

B. Density of States and Thermal Effective Mass

The full density-of-states curve for lithium for
a=6.65 a.u. is plotted in Fig. 1, being typical of that
for bands with appreciable distortion. The smooth curve
represents the spherical approximation, rs, (E), as given

by (3.12), while the peaked curve gives rs(E) for the
distorted surface. The peak occurs at the energy of the
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m
—'= (4or'NV) ' d k a~I~ ~~ (4.4)

04

ce 03
E
CP

0.2

0.1

I

-0.65 -0.35

lower state at N (Ni for lithium) and has a vertical
tangent on its low-energy siue.

It is convenient to describe the density of states at
the Fermi energy in terms of a "thermal effective mass"

I

-0.55 -0.45
ENERGY (RYDBERGS )

au. heFIG. 1. Density-of-states curve for lithium, a = . au.
smooth curve represents the spherical approximation, the peaked

t b d tructure including the nonspherical dis-
tortion. Ey 1s t e ermi enth P i energy for the correct band structure.

where E is the number of electrons per unit volume, and
the integral is over the occupied part of the band. This
mass determines the coefficient

(4 3)

m. 2' 3—=6-
@up a — s(~y)

——1

ds
[ ~,zI

oo,'= 4orNe'/m. ,

of the term —~, ~ if h (—,'/ ') in the real part of the dielectric
constant of a, cubic metal at angular frequency &o (in-
finite relaxation time). This term determines t e rate
of change with frequency of the real part of the dielectric
constant at frequencies well below the interban
absorption edge.

For an alkali metal, we have on transforming to
atomic units and using Gauss's theorem

m, /mo =»(&~)/»o(&~o), (4 1)

, is thewhere m 0 is the free-electron mass, and ep~~E p p~ is
density of states at the Fermi surface of a gas o ree
noninteracting electrons of the same density as that o
the conduction electrons in the metal. In atomic units,

Wt 2'
»(Ep) =

5$p kg 2ork» six~& I
~IE[

(4 2)

C. Optical Effective Mass

The optical effective mass m is de6ned from the
average inverse e ecffective mass of the conduction
electrons" (in cgs units)

oo M. H. Cohen, Phii. Mag. 8, 762 (1958).

where k ~ is the radius of the Fermi surface in the spneri-
cal approxirna ion ~mot' qmof the radius of the spherical base
of the actual Fermi surface).

The thermal effective mass is determined experi-
menta y y ell b the ratio of the electronic heat capacity

as ofof a metal to that calculated for a free-electron gas o
the same density (without electron-electron or electron-

energy bands using (4.2) represents an approximation
to this experimen ah' ' t 1 value when no correction is ma e
ior e ec ron-e eci 1 t - 1 tron and electron-phonon interactions.

le III.Our calculated values of mg/mp are given in Table
For comparison we also give the va u1 e of the thermal
mass given by the spherical approximation,

( / m4)m, =o(Eo+2ko'E4) —'. (4.3

From the difference between (m~/mp) and (m~/mp), we
see that the distortion of the band causes an appreciab e
increase in the thermal effective mass.

so that, as Cohen has shown, "ns, is inversely propor-
tional to the average velocity at the Fermi surface.

For the distorted energy bands we use our interpo a-
tion procedure, Eqs. (3.1) and (3.2), with X(Er) given
by (3.6), to describe the energy surfaces for E A~-
over one of the bulges. The contribution to the integral
j'dS

~
VoE

I
from one bulge in the Fermi surface between

its extremity at u and the plane u= u2 is then given by

(')'&,(e,) ..
We denote by 6 the difference

/&2—z

I
v E, i'dl, (4.7)

mp a x 4 X Ep 's' 6A
(4.8)

We note that the reduced radius z of the sp erical base
of the Fermi surface is less than zp, thehe reduced radius
of the Fermi surface in the spherical approximation. In

h the latter integral is over the spherical cap cut offw ere e a
by the plane u=u2 from the sphere of radius = m

E =E in the spherical approximation.
This sphere forms the spherical base on whic t e
bulges in the Fermi surface are seated. If the plane u= u2
is chosen to cut the Fermi surface in the region where
h b 1 rges with the base, 6 represents t e in-

f thecrement by which one bulge increases the value o e
integral over the value given for the spherical base by
the spherical approximation. Since there are twe ve
bulges, we obtain finally for (4.6)
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Lithium Sodium Potassium Rubidium Cesium

o (a.u. )
m, /mo
(mS/mO) a

m, /mp
m]/m~
m. iIIP]/m0
m c[|op] /mp
mq[]]]]/mp
A [gyp]/Ap
A []oo]/A o

A [ua]/Ao
S/Sp
(S/So)'
k[i|p]/k»'
k[iool/k&
k {111]/k]P

&Is

6.651
1.64
1.32
1.45
1,13
1.48
1.65
1.82
0.976
0.993
1.011
1.06
1.11
1.023
0.973
0.983

+0.92
+1.98

8.109
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00

+1.46
+1.46

10.049
1.07
1.01
1.02
1.06
1.035
1.063
1.092
0.995
1.001
1.007
1.03
1.06
1.007
0.994
0.994

+1.15
+1.35

10.742
1.18
0.99
1.06
1.11
1.07
1.16
1.25
0.979
0.996
1.013
1.06
1.13
1.018
0.980
0.980

+0.70
+1.24

11.458
1.75
1.06
1.29
1.36
1.46
1.92
2.38
0.94
0.99
1.04
1.12
1.25
1.08
0.94
0.94—0.32

+1.13

TABLE V. Calculated parameters of the Fermi surfaces of the
alkali metals at the lattice constant u indicated: thermal mass
m&, optical mass m„cyclotron mass m„.area A of extremal cross
section of the Fermi surface, surface area S of the Fermi surface,
radius k of the Fermi surface in various directions, and parameters
(I and &I, relating to the "diffusion" component of the thermo-
electric power. Subscripts indicate the direction appropriate to
k, or the direction of the normal to the plane of cross section or to
that of the cyclotron orbit. S0 and A0 denote the corresponding
areas of a spherical Fermi surface, and kJ its radius.

2meH dk
C )

ac 'vg

(4.10)

m, 1 dk

pris 7r
) VoEi

(4.11)

where the line integral is taken around an orbit defined
by the intersection of the Fermi surface with a plane
perpendicular to the magnetic field H, and t]i is the
component of electron velocity perpendicular to H. We
will consider only extremal orbits when H lies along the
[110],[100], and [111]directions. Then for an alkali
metal with a simply connected Fermi surface these
orbits pass directly over two, four, and six of the bulges,
respectively, as sketched in Fig. 2. For the first two of
these orbits V'AE is required by symmetry to be perpen-
dicular to H, and for the [111]extremal orbits the same
is true in the approximation of treating each bulge
separately and assuming each to be azimuthally sym-
metric. Then, on comparing (4.10) with the free-electron
resonance frequency eH/mpr„we obtain for these orbits
the expression for the cyclotron mass m, (in atomic
units)

for a body-centered cubic lattice, we have

(m, /mp), = (2or/8)'[X(Z];)] ', (4.9)

Using our interpolation procedures, with the same
approximations used in deriving the expression (4.8) for
the optical mass, we obtain from (4.11) for the contribu-
tion of a single bulge to pre, /mo

a result identical with the corresponding expression
(4.3) for the thermal mass.

We have calculated 6 by integrating numerically
the first integral in (4.7), using (3.1), (3.2) and Table II
to plot

~

V],Ei' as a function of u. We chose uo such
that the area of the spherical cap was about one-twelfth
the area of the sphere. Both m and VI,E ', as obtained
from (3.1), where found at u=u& to be reasonably close
to their values for the spherical base, and before inte-
grating we made a smooth interpolation to make this
agreement precise. While this procedure obviously has
some inaccuracy, improving it would be difficult and
the results for m, /mp appear reliable within several
percent provided the distortion is not so large that
appreciable contact occurs.

The resulting values for m, /mo are given in Table V.
We have done these integrations for each alkali metal
for only that value of the lattice constant in Table III
which is nearest the equilibrium value. The small change
in m, /mo produced by shifting to the equilibrium lattice
constant can be estimated from the corresponding
change in the thermal mass (Table IV).

(
2or l' 1 " du

rr & or) (ZF) .„[t[](Ep)j

(4.12)

Sin~e J'~tt]i 'du for a spherical surface is simply the
angle subtended by the arc at the center of the sphere,
we obtain finally for our three extremal orbits

(4.13)

where e is the number of bulges that the orbit passes
directly over, and 6, is the amount by which the
integral J'

i
tt]

~

'du over a single bulge exceeds the angle
which this segment of the orbit subtends at the center

D. Cyclotron Mass

The cyclotron resonance frequency" is given (in cgs
units) by

'M. Ya Azbel' and E. A. Kaner, J. Exptl. Theoret. Phys'
(U.S.S.R.) 32, 896 (1956) /translation: Soviet Phys. —JETP 5,
730 (1957)7.

(b) (c)

FIG. 2. Extremal cyclotron orbits in k space for a simply con-
nected Fermi surface in a body-centered cubic lattice. The direc-
tion of the magnetic Geld H is parallel to (a) (110$, (b) L100j,
(c) L111].These orbits pass, respectively, over two, four, and six
of the bulges in the Fermi surface towards the L110$ faces of the
Brillouin zone.
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fc)

(b)

FIG. 3. Extremal cyclotron orbits in k space for a multiply
connected Fermi surface in a body-centered cubic lattice. The
direction oi the magnetic field H is parallel to (a) L110], (b) L100],
(c) L111].In (a) are shown both the open orbits and the neck
orbit.

of the Fermi surface. The values calculated from our
energy bands for these extremal orbits are given in
Table V, where a subscript on ns, indicates the direction
of H thus: m [»p]. We see that our calculations predict
an appreciable anisotropy in m, /tap for all the alkalies
except sodium, with m. [»p](~c[lpp](~ [»&] if contact
does not occur.

The cyclotron masses of these extremal orbits are
quite sensitive to the degree of distortion of the Fermi
surface, and unlike the thermal and optical masses (or
the cyclotron masses of adjacent orbits) they become
in6nite when the Fermi surface just touches the zone
face, since tti(Er) in (4.12) is then proportional to u for
small u (u =0). We calculated above that at the equi-
librium lattice constant for O'K the Fermi surface of
cesium nearly touches the zone face, so that we cannot
safely estimate these equilibrium cyclotron masses for
cesium from Table V. They should be larger than the
values in Table V and should be very sensitive to the
orientation of H. For the other alkalies the charige in
m, /ms from the lattice constant of Table V to the
equilibrium value should be similar to that for the
thermal mass (Table IV).

hen the energy bands are sufficiently distorted that
the Fermi surface contacts the zone face, the character
of these extremal cyclotron orbtis is altered sub-
stantially, as shown in Fig. 3. With H in the L110]
direction, the extremal orbits of Fig. 2 become open
orbits, while a new orbit around the "neck" appears.
In the approximation of our interpolation procedure
(which is of uncertain accuracy for so much distortion),
the cyclotron mass for this neck orbit is given simply as

m, /ms ——(2s/a)'P. (E~)] '. (4.14)

For H along L111], the extremal orbit for the simply
connected Fermi surface now becomes two separate
orbits, each comprising only three of the six arcs in
Fig. 3(c) and corresponding to resonance of a hole ra.ther

than of an electron. For H in [100],the orbit comprises
the same arcs as for the simply connected Fermi surface
but now represents hole resonance.

To illustrate this situation when contact occurs, we
have calculated cyclotron masses for cesium with
a=10.049 a.u. although the accuracy of the interpola-
tion is rather poor in this case. The Fermi energy exceeds
I&(iVi) by =0.012 Ry (Table III), and the neck radius
tti„=(a/2ir)k„ is 0.17. For the neck mass we find
m, „/ms ——1.00, while for the hole orbits ~BI [ispl/ms~
=1.82, and ~m. liiil/ms~ =1.01, both these latter values
being considerably smaller than they would be if the
neck radius were not so large. Thus, with contact, hole
orbits appear, and the anisotropy of the cyclotron mass
is altered from that for the simply connected Fermi
surface.

E. Extremal Area of Cross Section of
Fermi Surface

The extremal area of cross section A of the Fermi
surface determines the period of the de Haas —van Alphen
eRect."For H along $100], L110],1 and L111]we ma, y
calculate easily from our interpolation procedure the
amount by which each bulge in the Fermi surface in-
creases this area over that of the cross section of the
spherical base

2

6~=2 — ~w(Ep) ~du
8

i
w, (EF)

i
du . (4.15)

The ratio of A to that of the free-electron sphere
As ——(2ir/a)'7rsz' is then for a simply connected Fermi
surface

A/A, = (s'/s, ')L1+(~~,/~")], (4.1~)

e being the number of bulges passed over by the
extremal orbit.

Calculated values of A/As are given in Table V,
where the subscript on A indicates the direction of H.
There is evidently a small anisotropy predicted for all
the alkalies except sodium, with A[»p](A[jpp](A[»g).
This amounts to only about 1%% for potassium, 3 to 4%
for lithium and rubidium, and about 10% for cesium.
The values of Table V should be increased slightly in
going to the lattice constant for O'K.

If contact occurs, the interesting cross section for H
in L110] is that of the neck, A„, while for H in I 100] or
[111]it is that of the orbit around the corner of the
zone as sketched in the extended zone scheme of Fig. 3.
These areas should be very different, with A„(A[»&]
&A [Ipp]. As an examPle, from our results for cesium with
a=10.049 au, we find (a/2ir)'A —0.10, (a/2m)'Aliiil—0.18, and (a/27r)'A iissl=0. 78.

22 L. Onsager, Phil. Mag. 43, 1006 (1952).
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2') m

~e= —
/

a i X(Ep)
/viE/du

I Vk&e
~

du, (4.17)
1/K2 —z

over that of the spherical base, when we use our inter-
polation procedure. The ratio of the total area 8 to
that of the free-electron sphere 50 is therefore

5/So ——(z'/s p') [1+(3d e/mrs')]. (4.18)

Values of this ratio calculated with the usual approxi-
mations are listed in Table V. These values are evidently
not accurate to better than several percent, for S/So
should be increased over unity by an amount propor-
tional for small distortion to the square of the degree of
distortion, as represented, say, by [(k~iioi/k p) —1].

Cohen'0 has shown that the ratio of the thermal and
optical masses should satisfy the inequality

m, /m. & (5/5, )2, (4.19)

and thus be greater than unity if the Fermi surface is
simply connected (since 5/So can be (1 only if contact
occurs). Table V shows that our computed values indeed
satisfy this inequality, except that the tabulated values
of S/So for potassium and rubidium are slightly too
high, as is evident also from the discussion of the pre-
vious paragraph when we compare the distortion for
these metals with that of lithium and cesium.

G. "Diffusion" Component of Thermoelectric
Power

If a relaxation time r(k) exists, the "diffusion" com-
ponent of the thermoelectric power" of a metal is
given by

(4.20)Sg;ii= —(7r k T/:5
~

e
~

J."po) $,
"See reference 2, p. 310, .

F. Dimensions and Surface Area
of Fermi Surface

The ratio of the radius of the distorted Fermi surface
to that of the free-electron sphere, kp, is given for the
[110],[100], and [111]directions in Table V at the
lattice constants indicated. These values were obtained
by interpolating to the Fermi energy between the calcu-
lated points along each axis. Only for lithium at these
lattice constants was there a significant difference be-
tween [100] and [111] axes at Zp. Decreasing the
lattice constant to the O'K value would increase only
slightly the amount by which these ratios depart from
unity. At a lattice constant for cesium 2% smaller than
the O'K value, the ratio k~440]/kp would be increased
to 1.14, since the Fermi surface then barely touches the
zone face.

The surface area of the Fermi surface is increased by
a single bulge by an amount

where k is Boltzmann's constant, T is the absolute
temperature, ~e~ is the magnitude of the electron
charge, E~o is the free-electron Fermi energy appropri-
ate to an electron density equal to that of conduction
electrons in the metal, and $ is a number given by

$=Epo ln
S (L&'14 )

ir(k)dS , (4.»)

v being the electron velocity.
If r(k) is a function only of energy, we can take it

from under the integral. Taking the derivative ex-

plicitly, we then obtain

P.'Z/[v&F(]ds / (v Z(ds
(&z) &(&p)

Epo dr
+ I I

(422)
r &dais,

Calling the first term )i, we see that for a distorted
Fermi surface the integral in the denominator of this
term is the same as that determining the optical effective
mass in (4.6). With our interpolation procedure, the
contribution to the integral in the numerator from one
bulge is given simply by

(2z-

ka

1 d f
4+— du,

X(Ep) du'

which can be integrated immediately. Taking the con-
tribution to this result at the limit of integration N~ to
be given by the spherical approximation, we obtain
for )i on summing over the twelve bulges

If the spherical approximation held at the Fermi
surface, $4 would have the value pie given by the
first term in the bracketed expression above, the
other terms vanishing since then u =(1/K2) —sp and
df,(u„)/du= 2)i(Ep)zp-

The calculated values of (i and (48 are listed in
Table V. Obviously ], is very sensitive to the degree of
distortion of the Fermi surface, largely because

~

df(u )/du~ in (4.23) falls rapidly with increasing dis-
tortion from the value 2X(Ep)sp for a spherical surface
to zero when contact occurs. We find that $4 is negative
(that is, this contribution to the thermoelectric power
is positive) for cesium already at the lattice constant
of Table V; when contact occurs for a 2% decrease in
lattice constant we estimate (i=—1.0. Similarly, we

m , F2+ (10/3) lPE4
(4——2vrs p2 S

mp E,+2JPE4

1 df(u )
+4[(1/K2) —s—u ]—2s — — . (4.23)

X(Ep) du



2534 S. HAM

estimate that if our Fermi surface for lithium were
distorted enough to barely make contact, again $i would
be roughly —1.0. The free-electron value for $& is +3/2.

Very similar results were obtained by Ziman" in a
similar treatment of the thermoelectric power of the
noble metals, except that his values for (, remained
positive for a monovalent metal whatever the degree of
distortion. This difference arises primarily because we
have twelve bulges in the Fermi surface for the body-
centered cubic lattice in place of eight for the face-
centered. It also appears that our interpolation pro-
cedure, taking approximate account of the k' term in
the spherical approximation to the bands, leads to
slightly lower values for $i for a given distortion than
we wouM obtain following Ziman and using the nearly
free electron model in a straightforward way.

V. DISCUSSION AND COMPARISON
WITH EXPERIMENT

In comparing our calculated energy bands with ex-

periment, we emphasize that it is the trends through the
series of the alkali metals which we expect the calcula-
tions to predict correctly, rather than the precise value
of any parameter for a given metal. Accordingly the
following discussion is arranged so that each experi-
mental property that is directly related to our calculated
band structure is discussed under one subheading for
the whole alkali series.

Cohen and Heine" have given an excellent survey of
the experimental information available in 1958 that is
relevant to an attempt to deduce from experiment the
shape of the Fermi surface and other features of the
energy band structure of the alkali metals. Their review
covered the magnetoresistance, the Knight shift, the
thermoelectric power, the ratio of electrical and thermal
resistivities at low temperature, the soft x-ray emission,
and the variation with pressure of the electrical resis-

tivity and Knight shift. They showed that these experi-
mental results were all more or less consistent with a
monotonic trend in the band structure. According to this
trend, the Fermi surface of lithium was quite anisotropic
and probably in contact with the zone face, with the p
state at E below the s state; the Fermi surface of sodium
was very nearly spherical; and for potassium, rubidium,
and cesium the anisotropy increased in that order, with
the s state at X increasingly farther below the p state.
This trend, as we have seen, is the same as that found in
our calculations, with the exception that we do not 6nd
sufhcient Fermi surface distortion for lithium to cause
contact.

Since $958, further experimental data have become
available, and several authors have given detailed
analyses of different aspects of these data. We will

review these below as they pertain to our calculations.
Of especial interest, Collins and Ziman" "have studied
the electrical and thermal resistivities and the phonon
drag component of the thermoelectric power on the

basis of a model in which differences in these properties
between the 6ve alkali metals are attributed to differ-
ences in their electronic structure, and in particular to
differences in the shape of the Fermi surface. Assuming
similar lattice spectra for all the alkali metals and taking
account of the dependence of phonon umklapp scatter-
ing on the shape of the Fermi surface, they show that
the observed magnitude and temperature variation of
these properties are generally consistent with our calcu-
lated trend in the band structures. Indeed they estimate
values for the band gap at E which are remarkably
close to our calculated values given in Table II of I.
However, they show that the observed behavior of
these properties is also consistent with the opposite
trend, with the s state at X below the p state for lithium,
and above it for potassium, rubidium, and cesium, so
that they can not deduce a unique model on this basis.

Qn the other hand, in another extensive study of the
transport properties of the alkali metals, Bailyn" has
emphasized the extreme anisotropy of the phonon
spectrum of these metals. "He has shown that the
umklapp processes dominate the normal phonon scatter-
ing processes in the electrical resistivity above a few
degrees Kelvin and that transverse modes of not
especially short q make the dominant contribution to
umklapp scattering. Assuming spherical Fermi surfaces,
he 6nds he can obtain the observed transport properties
of the alkali metals by a suitable choice of the effective
Debye temperatures for various parts of the phonon
spectrum and of the matrix elements for the various
scattering processes. Thus, Bailyn's work shows that
changes in the phonon spectrum and in the matrix
elements can have the same effect on the transport
properties as distortions of the Fermi surface. His con-
clusion that the important phonons have moderately
long q implies that the transport properties should not
in fact be especially sensitive to distortions in the
Fermi surface. Bailyn does not attempt to provide a
realistic calculation for any of the alkali metals, but his
work shows that without more accurate knowledge of
the phonon spectrum of the alkali metals than is at
present available one does not know with any con6dence
how much of the differences in the observed transport
properties can be ascribed to differences in the degree
of distortion of the Fermi surface.

Brooks" has shown that the Knight shift of lithium
and its pressure variation may be accounted for without
assuming a distorted Fermi surface, because the p
character of the wave function increases suKciently
rapidly with decreasing lattice constant even in the
spherical approximation.

Thus, each of the properties of the alkali metals
analyzed by Cohen and Heine and by Collins and Ziman

"The phonon spectrum of sodium has very recently been deter-
mined by the method of neutron spectrometry and this anisotropy
confirmed. PA. D. B. Woods, B. N. Brockhouse, R. H. March,
and R. Bowers, Proc. Phys. Soc. (London) 79, 440 (1962)j.

2' H. Brooks (unpublished); see remark in Appendix of reference
j.o).
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except perhaps for the soft x-ray emission of Li, the
interpretation of which is uncertain (see below), could
be accounted for without assuming a distorted Fermi
surface. There remains, obviously, a great need for
definitive experiments on the shape of the Fermi surface
for these metals. Nevertheless, despite these warnings
that other effects cue be equally important, the fact
that the available experimental data on the alkali metals
are on the whole consistent with a definite trend in the
distortion of the Fermi surface which agrees with our
calculated trend gives considerable support to Cohen,
Heine, Collins, and Ziman's interpretation that much
of the difference between these metals can be traced to
differences in the shape of their Fermi surfaces. Similar
conclusions about the trend in the shape of the Fermi
surface have been reached by Dugdale" on the basis of
a number of suggestive experimental correlations, dis-
cussed below.

A. Electronic Specific Heat

Recent measurements of the electronic component
of the low temperature specific heat C,=pT by Martin'
for lithium and sodium and by Lien and Phillips" for
potassium, rubidium, and cesium for the first time
provide a complete set of values for all of the alkali
metals. In units of (mJ)/(g atom 'K'), the measured
values for p are for Li, Na, K, Rb, and Cs, respectively,
1.63, 1.38, 2.13, 2.59, and 3.63. Using Barrett's values"
for the lattice constants, we obtain from these results
the experimental values 2.19, 1.27, 1.28, 1.36, and 1.63,
respectively, for the ratio mt/mp of the thermal effective,
mass m& to the free-electron mass neo. The values for
lithium and sodium, however, are for samples which
have in part undergone a martensitic transformation
from the body-centered cubic to an hexagonal close-
packed phase. In his work on sodium, Martin" partially
inhibited this transformation by a thermal cycling
procedure; from a small increase in the observed y he
estimated that y for the bcc phase was slightly higher
than for the hcp phase but that the difference was
almost certainly less than 20%.ss ss Since the original
samples contained more or less equal amounts of the
two phases, we conclude that ntt/trtp for the bcc phase of
sodium might be as large as 1.4. For lithium the situa-

"D. L. Martin, Phys. Rev. 124, 438 (1961);Proc. Roy. Soc.
(London) A263, 378 (1961).

'7%. H. Lien and N. E. Phillips, I'roceedhngs of the Seventh
International Conference on Low Temperatur-e Physics (University
of Toronto Press, Toronto, 1960), p. 675. Pote added in Proof. A
revision of their temperature scale has led Lien and Phillips to
suggest (private communication) that 2.08, 2.39, and 3.28
mJ/g atom 'K' should be more accurate values of y for K, Rb,
and Cs, respectively, than those given in their article. Correspond-
ing values of m, /mp are 1.25, 1.25, and 1.47.

2s E. A. Stern, Phys. Rev. 121, 397 (1961).
"Martin concluded that an earlier interpretation by Stern

(reference 28) of available data was incorrect. This had held that
m~/m0 for bcc Na was 1.7 and for hcp Na 1.1.Martin showed that
there is an as yet unexplained slow time variation in the electronic
speci6c heat of cast specimens which may have affected the earlier
data.

tion is less clear. Martin suggests that y may be about
20% higher in the hcp phase than in the bcc phase; if so,
and if 50% of the sample transformed, then rtzt/rNp for
bcc lithium is about 2.0.

Comparing the experimental values of (nt, /ntp) (with-
out making the uncertain correction for the martensitic
transformation) with our calculated ones in Table III
and IV, we see that the trends agree at the equilibrium
lattice constant: Sodium and potassium have the
smallest values, and lithium and cesium the largest.
However, the calculated value for cesium exceeds that
for lithium, the opposite of what is observed, and
except for cesium the calculated values are too small.

We expect the calculated thermal masses to differ
from the observed values, however, because we have
made no attempt to include electron-electron correlation
or electron-phonon interaction in the calculations.
Indeed, if the difference between the calculated and
experimental values is ascribed primarily to these
effects we obtain a measure of their importance. Such
a comparison suggests that these effects increase the
thermal mass of lithium and sodium by some 20 to 40%
but that the increase becomes smaller in the sequence
sodium, potassium, rubidium, cesium and may actually
become a negative correction of some 10% to the
thermal mass of cesium. Alternatively, of course, the
calculations may predict too large a distortion of the
Fermi surface for the heavier alkali metals and thereby
overestimate their thermal mass. This would be the
case if, for example, our treatment of the exchange-
correlation hole places the p state at cV an electron volt
or so too high relative to the s state, as Cohen and
Heine have suggested. "

Theoretical estimates of the effects of correlation and
electron-phonon interaction at realistic metallic den-
sities are at the present time not at all satisfactory.
Quinn and FerrelP' have estimated that correlation
may decrease thethermal mass by some 5% at such
densities, while DuBois' results" indicate an increase.
Fletcher and Larson, " extending the Bohm-Pines
theory, found an increase of some 30 to 50% for all the
alkali metals. For the electron-phonon interaction Quinn
and FerrelP' estimated roughly a 25% enhancement of
the thermal mass for all the alkali metals from the
normal phonon processes, and Quinn" found that
umklapp processes make an additional comparable in-
crease which seems to increase with increasing lattice
constant.

An interesting feature of Quinn and Ferrell's result'P
is that the electron-phonon enhancement in the thermal
mass due to normal phonon processes is proportional to
the dimensionless constant introduced by Frohlich'4 in

n J.J. Quinn and R. A. Ferrell, J. Nuclear Energy 2, 18 (1961).
"D. F. Dubois, Ann. Phys. (New York) 7, 174 (1959); 8, 24

(1959)."J.G. Fletcher and D. C. Larson, Phys. Rev. 111,455 (1958)."J.J. Quinn, in reference 16, p. 58.
e4 H. Frohlich, Phys. Rev. 79, 845 (1950).
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his theory of the superconducting state, which is inde-
pendent of the isotopic mass of the lattice ion. The con-
clusion that the electronic contribution to the specific
heat at very low temperatures should be independent
of the ion isotopic mass is in agreement with Martin' s
observations" that there is no significant difference be-
tween the electronic specific heats of normal lithium and
a sample containing 99.3% of I.is. Thus the absence of
such a dependence does not mean that the electron-
phonon effect on the density of states at the Fermi
surface is necessarily small. Jones" has predicted the
possibility that for a distorted Fermi surface there
might be a contribution to the lattice specific heat
which is linear in the temperature and which therefore
might be mistakenly interpreted as part of the electronic
specific heat. This effect arises from the dependence of
the elastic shear constants on the electron occupation
of states near the zone face, and if it is important it
should be accompanied by an anomalously large tem-
perature dependence of the shear constants. Since this
contribution to the "apparent" electronic specific heat
should vary inversely as the square root of the isotopic
mass, Martin's results show that this effect is not
important for lithium.

Although the thermal masses of the alkali metals are
affected appreciably by correlation and electron-phonon
effects, it is clear from Tables III and IV that these are
not solely responsible for enhancing the thermal mass
above the value calculated in the spherical approxima-
tion. The effect of the distortion in the Fermi surface is
appreciable even for potassium and seems to be as large
or larger than correlation and electron-phonon effects for
lithium and cesium. There is of course also a considerable
difference even in the spherical approximation between
the effective mass at k =0 (ns* in Table VII of I) and the
density-of-states mass [(res&/ms), in Table IVj, at the
Fermi surface. The latter differs from m* because of sig-
nificant fourth-order terms in the k dependence of the
energy.

B. Optical Properties

Cohen' has obtained the values 0.98, 1.01, 1.08, 1.08,
and 1.02 for the optical effective-mass ratios m, v/ms for
Li, Na, K, Rb, and Cs, respectively, from an analysis
of the measurements of Ives and Briggs" of the optical
constants of Na, K, Rb, and Cs and from the ultraviolet
transparency frequency for lithium determined by
Wood and Lukens. '~ Unfortunately all these data are
at wavelengths shorter than that which should corre-
spond to the interband absorption edge, so that, as
Cohen pointed out, the mass values m„all should be
less than that of the conduction band optical mass m .

Our calculated values for m /ms are listed in Table V.

ss H. Jones, Proc. Roy. Soc. (London) A240, 321 (1957).
ss H. E. Ives and H. Briggs, J. Opt. Soc. Am. 26, 238 (1936);

27, 181, 395 (1937)."R.W. Wood and C. Lukens, Phys. Rev. 54, 332 (1938).

For lithium and cesium they are appreciably larger than
Cohen's values, while for potassium ours is slightly less,
and for sodium and rubidium the values are in agree-
ment. We would expect for these latter three metals
that the experimental values from this frequency range
should be smaller relative to our values than they are:
Either the calculation underestimates these masses, or
Cohen s analysis, which makes use of simplifying as-
sumptions which are inaccurate in a range of frequency
where important interband transitions occur, has led to
values that are somewhat too large. Electron correlation
effects may modify the optical mass of electrons in
a real metal, as Wolff" has shown —for a free-electron
gas no such effect occurs —but one would expect such an
eBect to be significant only for a substantially distorted
Fermi surface. It would be most desirable in clarifying
this comparison of the calculated and observed optical
masses to have experimental data for the optical con-
stants of all the alkali metals at wavelengths sub-
stantially longer than the interband edge.

We can estimate from our calculations the wavelength
of the edge for interband absorption from the separation
of the first and second bands in the [110jdirection at
the Fermi surface. Using Figs. 1—5 of I we obtain rough
estimates of this edge for Li, Na, K, Rb, and Cs, re-
spectively, as 3.6, 2.0, 1.2, 1.3, and 1.3, (in eV) or 3400,
6200, 10 000, 9500, and 9500 (in A). The edge for sodium
is of course essentially the same as predicted on a free-
electron model and appears to be in good agreement
with Ives and Briggs' data, as noted by Butcher. "The
predicted edge for lithium occurs in the near ultraviolet,
but no relevant data on the optical properties of lithium
have been published.

An interesting point is that if the Fermi surface of
lithium is actually sufficiently distorted by depression
of the p state at X to account for the soft x-ray emission

(see below), one would expect an optical interband edge
substantially greater than the 3.6 eV we have calculated.
Thus, an experimental determination of this edge wouM

be of especial interest. Similarly, measurement of this

edge for the other alkali metals would help determine
the extent to which our calculations may place the

p state at X too high relative to the s state, and thus
overestimate the gap for the heavier metals, through
an inexact treatment of the exchange-correlation hole,
as Cohen and Heine suggest. "

The possibility, discussed by Cohen, " that one can
deduce that the Fermi surface contacts the zone face
if the ratio m&/m, is less than unity evidently requires

optical data at longer wavelengths before it can be
used fruitfully. At the present time the experimental
values for the thermal mass all substantially exceed
Cohen's values for neo~.

"P.A. Wo11I, Phys. Rev. 116, 544 (1959)."P. N. Butcher, Proc. Phys. Soc. (London), A64, '765 (1951).
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C. Cyclotron Mass

Measurements of the cyclotron mass of the alkali
metals by the Azbel'-Kaner procedure" have only
recently been undertaken. Kip and Grimes" have ob-
tained a value of m, /ms for potassium of 1.21&0.02,
finding no anisotropy within this accuracy. However,
the full interpretation of their data is not yet clear, so
that this value is tentative. Their value is only slightly
less than Lien and Phillips' value of 1.28 for the thermal
mass; agreement between these would be expected for a
spherical Fermi surface if electron correlation and the
electron-phonon interaction affect the cyclotron mass in
an Azbel'-Kaner experiment in the same way as the
thermal mass. "The absence of anisotropy appears to
confirm the result of our calculations that the energy
gap at iV is quite small for potassium and the Fermi
surface accordingly nearly spherical. Although our
calculations predict a 6% anisotropy in the cyclotron
mass for potassium, this arises from a very small dis-
tortion of the Fermi surface, the calculated anisotropy
in the Fermi surface radius being only about 1%.

A smaller value of 0.95+0.09 has been obtained by
Thorsen and Berlincourt4s for m, /ms in potassium from
the temperature variation of the amplitude of the
de Haas —van Alphen effect. This value ought to agree
with the Azbel'-Kaner mass and with the thermal mass,
since Luttinger4' has shown that the amplitude of the
de Haas —van Alphen oscillations should be calculated
from the ". single-particle" excitation spectrum of a real
electron gas, which also determines the electronic heat
capacity, in the same way as from the independent
particle energies for a gas of noninteracting electrons.
The discrepancy between the various experimental
values of the effective masses has not yet been explained.

For sodium, Kip and Grimes" have observed cyclo-
tron resonance in a polycrystalline sample. One sample
gave a result nz, /ms ——1.24, in excellent agreement with
Martin's value" of 1.27 for the thermal mass. For
sodium the interpretation of the data is complicated by
the martensitic transformation.

D. De Haas —van Alphen Effect

Thorsen and Berlincourt4' have obtained a value of
1.74+0.02)&10" cm ' for the extremal cross-sectional
area of the Fermi surface in a single crystal of potassium
at 1—2'K from the measured de Haas —van Alphen
period. This value agrees very well with the value
1.748)&10" cm ' calculated on a free-electron model
using Barrett's value" for the lattice constant at 5'K.

4' A. F. Kip and C. C. Grimes (private communication).
4' W. Kohn, Phys. Rev. 123, 1242 (1961).
4' A. C. Thorsen and T. G. Berlincourt, Phys. Rev. Letters 6,

617 (1961).In this Letter the values given for the measured de
Haas —van Alphen period and the effective mass are in error
because of an error in the calibration of the magnet; the correct
values are 8=5.48X 10~+1%G ' and m~= (0.95&10'%%uo)sro LA.
C. Thorsen (private communication) g.

4' J. M. Luttinger, Phys. Rev. 121, 1251 (1961).

This agreement appears to con6rm the conclusion of
Kohn4' and Luttinger4' that the period of the de Haas-
van Alphen effect should be unaffected by electron
correlation effects and the electron-phonon interaction
for a spherical Fermi surface. Anisotropy was not looked
for in Thorsen and Berlincourt's experiments; since it
should be much less than anisotropy in the cyclotron
mass, the result of Kip and Grimes leads us to expect
no de Haas —van Alphen anisotropy for potassium. A
search for such anisotropy is nevertheless very desirable
in general as a means ofestablishing the degree of
Fermi surface distortion.

1Vote added i,rl, proof. De Haas —van Alphen oscillations
have now been observed in rubidium by K. Okumura
and I. M. Templeton )Phil. Mag. 7, 1239 (1962)$ and
by Thorsen (private communication), and in cesium
by Templeton (private communication). The rubidium
results which have so far been reported by Okumura
and Templeton show a small. anisotropy which seems
to agree qualitatively with our calculations. The meas-
ured periods range from 6.26X10 ' G ' to 6.32X10—'
G ' in contrast to a free electron value of 6.24& 10 ' G '.

E. "Diffusion" Component of Thermoelectric
Power

From the observed thermoelectric power at tempera-
tures larger than the Debye temperature, Dugdale" has
given the values —6.7, +2.7, +3.8, +2.3, and+0. 2 for
the parameter $ in Eq. (4.20) for Li, Na, K, Rb, and Cs,
respectively. Comparing these values with those we
have calculated in Table V forthe term (t in (4.23)
arising from the geometry of the energy surfaces, we
see that an appreciable contribution to $ must usually
be made by the energy variation of the relaxation time
r. If r increases moderately with increasing energy,
(say r Ei+' "+t s&) as we might expect, the observed
values of $ for sodium and rubidium fit reasonably with
our values for ft For cesium. we estimated that $r——1.0
for a=11.19 au, where we found that the calculated
Fermi surface barely touched the zone face. At room
temperature, however, the lattice constant (11.67 a.u. )
is greater than that of Table V so that fr= —0.1, which
is already quite close to the observed value of $. The
value of ( for potassium is ra, ther large, and the large
negative value for lithium is very dificult to understand
on the basis of a simple energy dependence of r, since
we found that even if the Fermi surface contacts the
zone face $r can be at most about —1.0.

Thus we are led to the same conclusion for the alkali
metals that Ziman" 4' reached for the noble metals,
that for certain metals r may be appreciably anisotropic
and not a simple function of energy. Although for the
alkali metals we have been able to obtain small negative
values for $t, whereas for the noble metals Ziman found
only positive values, we still cannot come even close to

4' J. M. Ziman, Phys. Rev. 121, 1320 (1961).
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the observed value of $ for lithium if r does not have a
complicated behavior. Deutsch, Paul, and Brooks"
have, in fact, shown recently that it is necessary to
assume an anisotropy in v of a factor of about 3 over
the Fermi surface in order to account for the absolute
magnitude of the Hall coefficients of the alkali metals
and their variation with pressure.

At sufficiently low temperatures, below about 2" to
2'K, MacDonald and his co-workers4'4~ have shown
that the thermoelectric powers of the alkali metals are
again linear in T and may be interpreted as being due
primarily to the "diffusion" component alone. The
phonon drag component is small at these temperatures
because of the small value of the lattice specific heat and
the quenching effect of impurity scattering. The sign
of P remains negative at these temperatures for lithium
and for various alloys of lithium with magnesium,
indium, and aluminum (however, it is positive at higher
concentrations of magnesium and indium). The sign of
f is also negative for cesium, for some specimens of
rubidium, and for alloys of potassium with rubidium
and cesium. The magnitude of $ for all the alkali metals
is quite sensitive to impurities. Thus, in theresidual
resistivity range it appears necessary again to appeal to
a complicated behavior of v, rather than simply to the
properties of the band structure to explain the thermo-
electric power.

Despite the de.culty of giving a detailed theory of
the thermoelectric power, it is suggestive that the two
alkali metals which we believe to have the most dis-
torted Fermi surfaces, lithium and cesium, have the
algebraically smallest values for (. As Dugdale" has
pointed out, this correlation extends as well to copper,
silver, and gold, for which we have good evidence that
the Fermi surface contacts the zone face and for which
the high-temperature values for $ are —1.6, —1.1, and
—1.5, respectively. "Moreover, our calculations predict
that the anisotropy of the Fermi surface of cesium in-
creases rapidly with decreasing lattice constant, and
Dugdale and Mundy" have found that the therrno-
electric power of cesium at O'C changes sign at a pres-
sure of 400 atm. While these correlations suggest that
a negative value of P implies contact, an adequate
theory of the relaxation time may show that a sub-
stantial negative value of $ can occur without contact.

F. Pressure Variation of the Electrical
Resistivity

Dugdale" has pointed out that there is an experi-
mental correlation between the parameter $ in the high-

4'T. Deutsch, W. Paul, and H. Brooks, Phys. Rev. 124, 753
(1961)."D.K. C. MacDonald, W. B. Pearson, and I. M. Templeton,
Proc. Roy. Soc. (London) A256, 334 (1960); Phil. Mag. 6, 1431
(1961)."D.K. C. MacDonald and A. M. Guenault, Proc. Roy. Soc.
(London) A264, 41 (1961).

48 D. Shoenberg, Phil. Mag. 5, 105 (1960).
4' J. S. Dugdale and J. N. Mundy, Phil. Mag. 6, 1463 (1961).

temperature thermoelectric power and the pressure
variation of the interaction constant characterizing the
ideal electrical resistivity p; of the alkali and noble
metals. If p; has the form

(5.1)

where 0~ is a temperature characteristic of the electrical
resistivity due to phonon scattering, then d lnE/d lnV
can be obtained either from the value of d 1np;/d lnV at
high temperatures on the assumption that —ding~/
d lnV is given approximately by the Gruneisen param-
eter, or from a plot of d lnp;/d lnV against d lnp;/d lnT
over an intermediate temperature range in which
the latter quantity varies. '4 Dugdale shows that
d in''/d lnV at atmospheric pressure is negative for the
noble metals (Cu: —1.0; Ag: —0.9; Au: —0.7) and for
lithium (—2.3 to —3), the same metals for which $ is
negative, and positive for sodium (+2.0), potassium
(+3.1), and rubidium (+0.7), though small for rubidium
(data for cesium are uncertain). This behavior accords,
as Dugdale notes, with what one might plausibly expect
from a simple model in which E is changed by two
opposing influences: E decreases as the kinetic energy
of the electrons increases, for a spherical Fermi surface;
E increases with increasing distortion of the Fermi sur-
face, more rapidly the closer the distorted surface is to
the zone face. For sodium and potassium, with nearly
spherical surfaces, the former influence evidently pre-
vails; the large negative value of d lnK/d ln V for lithium
suggests considerable distortion for lithium with contact
probable; rubidium apparently has an intermediate dis-
tortion. Dugdale notes also that further empirical corre-
lations appear between the magnitudes of the reduced
high-temperature resistivities of these metals, and also
between their ratios of the temperature 8~ in (5.1) to the
actual Debye temperature, all of which accords with the
presumed differences in degree of distortion of the Fermi
surfaces of these metals.

The relative degree of Fermi surface distortion among
the alkali metals to which Dugdale is led by these con-
siderations agrees broadly with our calculations, as do
the changes of distortion with pressure. However, the
calculations predict greater distortion for cesium than
for lithium, the reverse of the empirical conclusion, and,
no contact for lithium even for a substantial decrease
in lattice constant. From Table VI of I and Table III
we see that the calculated kinetic energy at the Fermi
surface (the difference between the Fermi energy Er and
the ground-state energy Eo) increases with decreasing
lattice constant. For sodium the Fermi surface remains
very nearly sphericalwith decreasing volume, corre-
sponding to the fact, evident from Fig. 10 of I, that the
gap at X remains small for sodium over a considerable
range of volume. The distortion of the calculated Fermi
surfaces of the other alkali metals increases substantially
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with decreasing volume, as seen from Table III by
comparing the Fermi energy E& with the energy E(X)
of the lowest state at Ã and from the change in the
gap at E in Fig. 10 of I. This increase of distortion is
most rapid for cesium and somewhat less rapid for
rubidium and lithium. For potassium the distortion is
small at lattice constants equal to or larger than the
equilibrium value but increases rapidly for smaller
values.

Dugdale" has noted further that when the interaction
constant E is plotted from Bridgman's high-pressure
measurements a,s a function of reduced volume V/Vs,
minima occur for cesium, rubidium, and potassium at
values of V/Vs of 0.92, 0.8, and 0.75, respectively.
Dugdale" and Cohen" noted that the relative order of
these minima corresponds to the relative increase in
distortion which is presumably necessary for each of
these metals for contact to occur. From Table III we

see that our calculations do predict that contact occurs
in this order of relative compression. For cesium we

found that contact occurs at a=11.19 a.u. , while the
equilibrium lattice constant at 20'C is 11.67 a.u. Thus,
V/Vp —0.88 is predicted for contact to occur at room
temperature, in good agreement with the position of the
minimum in E for cesium. For rubidium and potassium,
however, our calculations would indicate that contact
requires greater compression than is obtained if the
minimum in K is assumed to occur at contact. It is an
open question what relation this minimum in fact bears
to the occurrence of contact, and the two might well be
correlated in some way without coinciding. Dugdale
showed that sodium also has a broad minimum, at
V/Us —0.8, whereas our calculations show no significant
Fermi surface distortion for sodium for much greater
compression. Thus changes in other parameters of the
Fermi surface, the phonon spectrum, or the scattering
probabilities may be as important as distortion of the
surface in fixing the minimum, as Bailyn's work"
suggests.

The situation with lithium is of considerable interest,
since the empirical correlations suggest that the Fermi
surface contacts the zone face, yet the calculated surface
does not make contact even for a 20%%uo decrea, se in the
lattice constant (Fig. 8 of I). Despite the large gap at
X at equilibrium and its rapid increase with decreasing
lattice constant, the energies of states on the L110j axis
in the conduction band are not enough depressed rela-
tive to $111j and L100j to cause suflicient distortion
for contact. Cohen and Heine's suggestion" that a more
accurate treatment of the exchange-correlation hole
might lower the energy of p states relative to s states
by about one electron volt might suKce to cause contact;
however, states on L1007 and L111jat the Fermi surface
also have a preponderant p character, and it is not clear
that $110j states would be lowered by a sufliciently
large amount relative to other states at the Fermi sur-

"M. H. Cohen (private communication).

face for contact to occur. It does appear very hard to
understand on this basis how the state E» could lie
0.65 eV below the Fermi surface, as the straightforward
interpretation of the soft x-ray emission spectrum would
seem to require (see below).

It is possible that the strong empirical correlation
noted by Dugdale and others between the properties of
lithium and those of the noble metals occurs not because
contact occurs for lithium as it is believed to occur for
copper, silver, and gold, but because lithium, alone of
the alkali metals, has both a large gap at the zone face
and the p state below the s state, as is also believed to
be true for all the noble metals, '4" with a consequent
enhancement of the p character of states at the Fermi
surface and particularly of those near the zone face.
Collins and Ziman" "have shown that both umklapp
and impurity scattering can be rather different in form
for predominantly p or s states, and both Collins" and
Bailyn" have shown that umklapp processes dominate
phonon scattering in the electrical resistivity except at
very low temperatures. The relative importance of this
dependence of umklapp scattering on the character of
the states at the Fermi surface, on the degree of dis-
tortion of the Fermi surface itself, and on the shape of
the phonon spectrum will obviously be dificult to sort
out with certainty until definitive experiments on these
properties have been completed.

G. Soft X-Ray Emission

The soft x-ray emission spectra" of metallic sodium
and potassium conform quite well in shape to what one
expects from a free electron model for a monovalent
metal. The E spectrum of lithium, however, has long
been puzzling, for instead of showing a sharp drop in
intensity from a maximum at the short-wavelength
edge, the spectrum has been found to have a peak nearly
one-electron volt below the edge and to fall gradually
to zero above this peak. Recently, Crisp and Williams, "
using a photomultiplier technique for accurate and rapid
detection, have found that the lithium spectrum in fact
does have a high-energy edge of more or less the ex-
pected width extending to 75% of the peak intensity
and that below this edge the spectrum rises more
gradually to the peak. The peak occurs about 0.65 eV
below the midpoint of the edge.

This result of Crisp and Williams accords with Cohen
and Heine's interpretation" that the strange shape of
the spectrum occurs because the Fermi surface of
lithium touches the zone face and that the peak occurs
at the energy of the lower state at E.This interpretation
requires then that the Fermi energy exceed E(X&.)
by 0.65 eV (0.048 Ry)!

"B.Segall, Phys. Rev. 125, 109 (1962)."D. H. Tomboulian, in Handblch der I'hysik, edited by S.
Fliigge (Springer-Verlag, Berlin, 1957'), Vol. XXX, p. 246."R.S. Crisp and S. E. Williams, Phil. Mag. 5, 525 (1960).
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We find surprising so large a value for the difference
between EF and E(Xi ) for, as we have discussed above,
the calculated Fermi surface for lithium resists making
contact with the zone face even for a substantial com-
pression and the accompanying large increase in the gap
at E.Even for the highly distorted Fermi surface of ce-
sium with a=10.05 a.u. (Table III), we find Ei E(E—)
only 0.012 Ry. Values of 0.05 Ry do occur for the cor-
responding difference E~ E(Ls—) in the noble metals;
however, for these the situation is different because the d
bands midway in the energy range spanned by the s-p
band tend to "repel" levels in the latter band quite
strongly in selective direction of k and thereby enhance
the distortion. "We consider it unlikely that a better
treatment of the exchange-correlation hole would cause
so large a depression of the p state Er, for the reasons
mentioned in the previous subsection, although it seems
possible that this might cause sufficient distortion for
contact to barely occur. Thus, if further experiments
substantiate Cohen and Heine's interpretation of the
lithium spectrum, there will arise a theoretical problem
in accounting for so great a distortion.

The x-ray bandwidths agree in their trends from
metal to metal with the calculated difference (EF Es). —
The experimental values are, however, made uncertain
by the presence of a low-energy tail due to lifetime
broadening, and our calculated values do not include
the effect of electron-electron or electron-phonon inter-
actions. Crisp and Williams' bandwidth for lithium is-

4.2 eV including the tail, and the "reduced width"
without the tail is 3.0&0.1 eV. Tomboulian" gives
3.05~0.15 eV for the "reduced width" for sodium, and
Crisp' finds 1.62%0.04 eV for potassium. " From
Table II of I and Table III we obtain the corresponding
calculated values 3.5, 3.3, and 2.3 eV.

H. Magnetoresistance

The magnetoresistance has appeared to offer a
promising source of information about the Fermi surface
of the alkali metals. "' In particular, if the transverse
magnetoresistance should fail to saturate as a function
of magnetic field at high fields and low temperatures
(&or) 1) for certain directions in a single-crystal speci-
men, we would be able to conclude that the Fermi
surface touched the zone faces and that open orbits
existed. Garcia-Moliner" has interpreted the low-field
data on polycrystalline specimens as indicating that the
Fermi surface of lithium is quite anisotropic, that of
sodium nearly spherical, and that of potassium of an
intermediate anisotropy.

Recent measurements by Bowers" at helium tem-

'4 R. S. Crisp, Phil. Mag. 5, 1161 (1960)."A. Value of 1.9&0.2 eV for the "reduced width" for potassium
was obtained by R. H. Kingston t Phys. Rev. 84, 944 (1951)]
using a different extrapolation in the tail.

ss F. Garcia-Moliner, Proc. Phys. Soc. (London), 72, 996 (1958).
5~ R. G. Chambers, in reference 16, p. 100.
's R. Bowers, Bull. Am. Phys. Soc. 6, 145 (1961),and (private

communication).

peratures (oir 0—.4) on a specimen of lithium that was
a single crystal at room temperature showed no ani-
sotropy. However the interpretation of this result is
complicated by the martensitic transformation, the
effects of which on a single crystal are not known.
High-field measurements by Luthi" on polycrystalline
lithium present difFiculties of interpretation, ""in part
also apparently related to this transformation. Bowers
has observed anisotropy in a single crystal of sodium
but the situation here is obscured by other anisotropies
having nothing to do with the Fermi surface. "

It is now clear from the discussion of the thermo-
electric power and from Deutsch's work. "on the Hall
effect that a quantitative analysis of the low-field
magnetoresistance must take account of an appreciable
anisotropy in the relaxation time even for sodium.
Moreover an analysis like that of Garcia-Moliner"
must be extended to include anisotropic terms propor-
tional to the Kubic harmonic E6, since E4 alone does
not describe an anisotropy in which L110] directions
are an extreme. ""Thus, interpretation of the low-field
magnetoresistance of the alkali metals ih terms of the
distortion of the Fermi surface will be no more simple
or straightforward than that of the other transport
properties, but good single-crystal measurements are,
nevertheless, desirable.

VI. CONCLUSION

Our calculated trends in the shape of the Fermi sur-
face and its parameters for the alkali metal series agree
qualitatively except in their pressure variation with
those which Cohen and Heine inferred from their inter-
pretation of experimental data. Lithium and cesium
have the most distorted Fermi surfaces but represent
opposite extremes in the sequence of distortion, since
their band gaps at N are large but of opposite sign.
Sodium ha, s a, spherical Fermi surface and very small

gap. The gap and distortion are small for potassium and
larger for rubidium. However, differences with Cohen
and Heine arise in the extent of the distortion for indi-
vidual metals, the most significant being that the calcu-
lated Fermi surface of lithium does not contact the
zone face even under a substantial compression. Indeed,
our Fermi surface for lithium is less distorted than that
for cesium, whichvery nearly touches the face at the
O'K equilibrium lattice constant. While there is reason
to expect that a more nearly self-consistent crystal
potential might decrease the calculated distortion for
the heavier metals and increase it for lithium, it is very
difficult to see how the Fermi surface could be so dis-
torted that the Fermi energy exceeds the lowest energy
at E by 0.65 eV, as is required if Cohen and Heine's
interpretation of the soft x-ray spectrum of lithium is
correct.

The calculated trends agree very well with one of the
alternative sets of inferences of band structures made

I B. Liithi, Helv. Phys. Acta, M, 161 (1960).
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from experimental data by Collins and Ziman on the
assumption that differences in the transport properties
of the alkali metals arise primarily from differences in
electronic structure. The trends agree also for the most
part with inferences made by Dugdale from various
empirical correlations; however, these correlations
suggest that contact occurs for lithium.

Kip and Grimes' tentative results on the cyclotron
resonance of potassium appear to provide the first con-
clusive experimental evidence on the Fermi surface
shape of an alkali metal. The observed isotropy shows
that the Fermi surface of potassium is at most only
slightly distorted from a sphere, in agreement with our
calculations. The calculations, however, slightly over-
estimate this distortion in predicting a 5% anisotropy
in the cyclotron mass, corresponding to a 1% anisotropy
in the Fermi surface radius.

Apart from Kip and Grimes' work on potassium,
definitive experiments on the Fermi surface shapes of,
the alkali metals are still lacking. Moreover, Bailyn's
studies have shown that differences in the transport
properties may be due to differences in the phonon
spectra or in transition matrix elements rather than to
differences in Fermi surface shape. The over-all con-
sistency with which the interpretation that the latter
differences are the important ones accounts for different
experimental properties, however, lends support to this
interpretation. The general agreement of our calculated
results with the band structures required by this
interpretation gives it further support, and conversely
this agreement supports the view that changes in the
band structures for more nearly self-consistent crystal
potentials will not be large. Nevertheless, we still very
badly need conclusive experiments on the Fermi surface
shapes for each of the alkali metals. In particular, the
question of Fermi surface contact in lithium and cesium
at equilibrium remains unsettled, as does that of what
pressure causes contact for each metal.

Our calculated values for the various parameters of
the Fermi surface show that these are changed sub-
stantially for a distorted surface from the values calcu-
lated in the spherical approximation. For example, the
thermal effective masses (m~/neo) for lithium through
cesium, respectively, at equilibrium (O'K) were found
to be 1.66, 1.00, 1.09, 1.21, and 1.76 in contrast to the
values 1.32, 1.00, 1.02, 0.99, and 1.06 which we obtained
in the spherical approximation. The distortion also
leads to anisotropy in the cyclotron effective mass and

in the extremal area of cross section of the Fermi surface
measured by the de Haas —van Alphen effect, as well as
in the linear dimensions of the Fermi surface. We find
~ [110]+I' [100]+~ [111] and ~ [110]+~ [100]+~ [111] if con
tact does not occur. Our calculations predict roughly
20% anisotropy in the cyclotron mass for lithium, an
even larger anisotropy for cesium, 5% for potassium,
and 15% for rubidium. For the anisotropy in the area
of cross section we find 3.5, 0, 1.2, 3.4, and 10% for
lithium through cesium, respectively.

Comparison of our values of the thermal effective
masses with the experimental values indicates that
electron-electron correlations and electron-phonon inter-
actions enhance the mass by some 20 to 40% for lithium
and sodium but that the correction decreases for the
heavier metals and may become negative ( 10%) for
cesium. Alternatively, the calculations may overesti-
mate the distortion for the heavier metals.

The calculations show that the geometrical contribu-
tion to the "diffusion" component of the thermoelectric
power of an alkali metal can be positive for a sufficiently
distorted Fermi surface. However, agreement with ex-
periment requires that the relaxation time be appreci-
ably anisotropic and not a simple function of energy.

The results of the calculations show clearly that
experiments on the anisotropy of cyclotron resonance
and the de Haas —van Alphen effect for the alkali metals
should provide very useful information concerning the
extent of Fermi surface distortion. Our results also
make clear the inadequacy of present data on the optical
properties of the alkali metals. Optical studies are
needed particularly at wavelengths longer than the
interband absorption edge and also are needed to deter-
mine this edge, which we calculate to be at 3.6, 2.0, 1.2,
1.3, and 1.3 (eV) for lithium through cesium, respec-
tively. Measurement of this edge for lithium would be
of especial value in checking the accuracy of the band
calculation, in helping to answer the question of Fermi
surface contact, and in seeking the explanation of
lithium's puzzling soft x-ray spectrum.
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