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F(s./2, x) represents a complete elliptic integral of the

first kind defined by

F(ir/2, x) =
7r/2

(1—x' sin'u) —'"du (A3)

as can be seen easily by replacing sin I in the denomina-

tor of (A3) by 1—u'. Now (A3) is expanded in a power
series by ~', followed by integration over N. The series
thus obtained is subtracted by the series of —

~ ln

&&(1—x'), assuming uniform convergence. The result
becomes

which has a logarithmic singularity at I~:= 1. The princi-

pal part of F(~r/2, x) at the singular point proves to be
given by —-', ln(1 —x')

F(7r/2, x) = —
s ln(1 —x')+ (ir/2) {1+is(is—2/ir)x'

+-', [2(-',)'—1/ir]x4+-', [2(—,', )'—2/(3')]xs+ ). (A5)

The above series is now convergent at ~= 1 because the
singular part which causes a divergence at ~=1 has
been picked up in the first term.

Substituting (A5) into (A2), we have, after integra, -

tion,

9i(x) = (2/ir) ln2 —(2/s. ) In[1+ (1—x)'~']+1
+ s (s —2/~)&+ i'a [2(s)'—1/~]&'

+—'[2 (—')' —2/(37r)]x'+, (A6)
usliig

in[1 —x cos'(k/2)]dk=4ir ln([1+ (1—x)'"]/2).

The series given above reproduces the first three figures
correctly for q (1).
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The distribution of electrons in a semiconductor at high electric field is governed by a Boltzmann equation
which describes the effects of the field, the phonons, and the ionization processes on the electrons. This
equation can be converted to an integral equation for the space and energy dependent collision density by
performing the angular integrations. The integral equation is solved numerically to obtain alpha, the ioniza-
tion rate per unit path length. The resulting alpha shows a dependence on field strength 8 which is roughly
exp( —b/8) at low fields and exp( —c/ss) at high fields, but there are significant differences from the earlier
calculations of WolB and Shockley. These differences result from the approximations used by the earlier
workers to treat the angular dependence. We present graphs of logn vs (1/8) for a wide range of material
parameters. These graphs are useful in interpreting measurements of charge multiplication in terms of the
properties of the material supporting the transport process.

I. INTRODUCTION
' EASUREMENTS of the charge multiplication at

- ~ high electric 6elds in semiconducting materials
can be used to supply basic information about the inter-
action of hot electrons with the material, provided that
one has an adequate model for interpreting the data. A
reasonably satisfactory two-part model exists, based on
the analogy between the processes taking place in the
semiconductor and those taking place in a gas discharge.
The first part relates the charge multiplication to the
ionization rate per unit path length, o.;,"and the second
part relates this quantity, Townsend's alpha coe%cient,
to the distribution function for the hot electrons in the
material. "

' K. G. McKay, Phys. Rev. 94, 877 (1954).' S. L. Miller, Phys. Rev. 105, 1246 (1957).' P. A. Wolff, Phys. Rev. 95, 1415 (1954).
W. Shockley, Czech. J. Phys. B11, 81 (1961) and Solid-State

Electron. 2, 35 (1961).

Calculating the distribution function for the hot
electrons is not a particularly simple task, however, and
different approximations made at this stage result in
different predictions about the field dependence of
Townsend's alpha. Wolff, ' for example, neglects the
band structure of the silicon, which was unknown at
the time of his calculations, and expands the distribution
function in spherical harmonics, retaining only the Pp
and P1 terms. This procedure is justified at high fields,
as Wannier has shown, ' where the energy loss per colli-
sion is so much smaller than the energy gain that the
collisions serve to keep the distribution nearly isotropic.
The result of retaining only the Pp ai1d P1 is a diffusion
theory approximation, in which the electrons undergo
many collisions in transport from one energy to another.
It results in a distribution which, below ionization
threshoM, is quasi-Maxwellian with a temperature re-

' G. H. Wannier, Bell System Tech. J. 32, 170 (1953).
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lated to the mean free path X, the electric field 8 and
the optical phonon energy E& by

T =Q'/3Eii,

where Q= e&. This, in turn, results in an alpha whose
dependence on the field 8 is approximately

n(8) =g exp( —c/8').

Shockley, ' on the other hand, also neglects the band
structure of the silicon, but argues that the electrons
which achieve sufficient energy to cause ionization are
those few which have been fortunate enough to escape
the collisions which randomize the directions of motion.
The distribution function for these electrons is a spike
in the direction of the acceleration, and the number in
the spike which have survived the transport to energy
E without collision is proportional to exp( —E/Q). By
retaining only these electrons in his calculation,
Shockley obtains an alpha whose dependence on the
fieM is roughly

n =c exp (—E,/e &).
A series of careful experiments carried out by Chy-

noweth' and collaborators somewhat before Shockley's
prediction did indicate behavior of this sort, and was
interpreted at that time in terms of the formula above.
Shockley's theory suggested how the coefFicient c was
related to the properties of the material. One can fit
the experimental data to Shockley's formula and obtain
thereby the values of mean free path, ionization cross
section, etc. , on which alpha depends. The values of the
parameters obtained by this procedure, however, raise
some questions, particularly since it is not clear how
valid are the subsequent assumptions which serve to
lead from Shockley's conjecture about the importance
of the electrons in the spike to his final formula for
alpha. Although these questions arise about the final
results, the conjecture itself is a particularly attractive
one, and one is led to wonder if the Q.elds are, in fact,
sufFiciently high to maintain the distribution nearly
spherically symmetric as Wolff's calculation requires,
or are low enough to render the high-energy tail of the
distribution sharply peaked in the forward direction as
Shockley assumes.

The remaining part of this introduction will consist
of an attempt to obtain a qualitative answer to this
question. We discover that the fields of interest for the
charge multiplication work in many materials are of
intermediate strength. We shall thus be forced to con-
sider an approach which relies neither on the spike nor
the diGusion approximation. Such an approach can be
made via an integral equation for the collision density.
This approach forms the subject of the remaining sec-
tions of the paper.

In the second section, we shall define the space- and
energy-dependent collision density and show how

6 A. G. Chynoweth, J. Appl. Phys. 31, 1161 (1960), this paper
refers to earlier works.

Townsend's alpha may be calculated from it. The third
section describes the derivation of the integral equation
for the density from the Boltzmann equation for the
distribution function. Those parts of the derivation
furthest removed from the physics are also furthest
removed from the main description and are to be
found in the Appendix. Certain conservation conditions
which will play an important part in the approximations
will be emphasized in Sec. IV. Section V contains the
results of the calculations and discusses the concepts
which emerge. Comparison is made with the earlier
work of Wolff and Shockley.

To investigate the critical fields for transition from
Shockley's spike to Wolff's diffusion mechanism of
electron transport, let us temporarily assume that the
distribution function for electrons with speed c and
direction cosine p relative to the field direction is com-
posed of two parts, one part being spherically symmetric
and the other part being a spike in the forward direc-
tion. This assumption is merely a way of combining the
essential features of Shockley's procedure with the
essential feature of Wol6's procedure and is not the
distribution function which we shall use for quantitative
calculations later. This assumed distribution function
may be written as

f(c,p) =A (c)+~(c)~(1—p), (1.2)

and by forcing this into the Boltzmann equation, we
can choose the admixture of spiked and spherically
symmetric distributions at each speed to best represent
the true distribution function. The technique of obtain-
ing A (c) and B(c) is to expand (1.2) as an infinite series
of spherical harmonics

21+1
f(c,IJ,)Pi(p)dp

In such an expansion, eo is proportional to the density
of electrons at speed c. This expansion converts the in-
tegro-differential Boltzmann equation into an infinite
set of coupled differential equations for the coefFicients
N~(c). ' The technique is a standard one, and was
applied by Wolff' to a distribution function which he
took to be

f(c,p) =no(c)+pe, (c). (1 3)

In our case, the assumption oi form (1.2) gives

n, = (5/3)e, .

This relationship may be used to decouple the first
two differential equations from the rest, whereupon
they may be combined to give a single equation for the
density eo(c). For constant mean free path X, the solu-
tion which corresponds to Wolff's Maxwellian and to

7 See reference 5 for details.
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Shockley's spike is

with
a= (—'+Q/3Eg) ',

T=Q'/3E +2Q/3.

For Q= EIi, this solution is

~ =jV—
&g

—&/0

(1.4)

II. THE COLLISION DENSITY

Consider a packet of zero-energy electrons released
at the plane Z=O in a uniform electric field. The elec-
trons actually released by the ionization process in the
semiconductor will have, as we shall see later, small but
finite energy, of the order of one-third. the band gap or
so. Our packet of zero energy electrons is an idealization
which should not introduce significant error. As the
packet drifts down the field, the electrons in it undergo
collisions with phonons and with the valence band
electrons. The collision density 3E(Z,E) will be defined
such that the number of collisions of all types which
occur in the slab of thickness dZ located at Z and
which involve electrons whose energy is in the range
dE at E is given by 3f (Z,E)dZdE. Given this collision
density, and given the ratio of cross section for ioniza-
tion to total cross section at energy E,

we can calculate the number of ionizations rr(Z) occur-
ring in the slab at Z.

n(Z) = dE M(Z, E)r(E). (2.1)

which is exactly the shape of the spike proposed by
Shockley.

For large Q/Err, the solution goes over into Wold's
Maxwellian

Is=exp (—3EEg/Q').

This implies that the bulk of the electrons described by
(1.2) are in the spherically symmetric part common to
both (1.2) and (1.3), rather than in the spike.

We learn from this example that the criterion for the
validity of the Shockley spike is that Q&Eit or that
e8&Ea/X. Unfortunately, the fields of interest for the
charge multiplication studies are neither this weak nor
clearly so strong that Q))Eii. It is, therefore, highly
unlikely that either of the simplifying assumptions
(1.2) or (1.3) will be of much use here. We are thus
forced to consider an approach which does not depend
on having a simple form of angular dependence. This
approach will be made via the integral equation govern-
ing the collision density, a quantity closely related to
ns(c). Our solution of the equation will ultimately be
numerical, but from a study of the numerical solutions
useful information and qualitative concepts can emerge.

We shall be interested in an e(Z) which represents a
density of initial ionizations. By density of initial ioniza-
tion, we mean that only the first ionizing event after
the release of the electron is to be counted. This can be
calculated, using (2.1), from a collision density 3f (Z,E)
in which each ionizing event is assumed to remove the
electron from the distribution. That is, M(Z, E) will be
calculated by solving a Boltzmann equation in which
the probability for ionization is replaced by a prob-
ability for absorption so that the electron never survives
the first ionization.

The average distance at which the first ionization
occurs is'

rr (Z)ZdZ rs(Z) dZ. (2.2)

The zero lower limit arises because zero energy electrons
released at Z=0 can reach Z &0 only if they acquire energy from
the phonons. We ignore this possibility here.

9 There is another method of calculating Z, hence of n, which
can be derived from (2.2). This method, to be described at the
end of Sec. III, is of interest in establishing the relation between
Wolff's work and Shockley's and also is more convenient nu-
merically at low fields.' The actual rate of exponential decrease can be determined by
the spatial integral over this region, the value of a(Z) at the point
at which the decrease begins, and the knowledge that the full
integral from zero to infinity is equal to unity.

If the cross section for ionization is at all comparable
with the cross section for scattering, then the first
ionization will occur almost as soon as the electron has
sufhcient energy to make the process possible. Under
these circumstances, the electron will be left with such
a small amount of energy after its Grst collision that we

may consider it to have been returned to zero energy.
Its next ionizing collision will then occur at a distance
Z further down the field. Hence, 0.;, the number of
ionizations per unit length which this single electron
causes will be given by'

(2.3)

In calculating 0. by this method, it will not be
necessary to know m(Z) at very large values of Z for the
following reasons: Firstly, the denominator of (2.2) is
the total number of electrons absorbed (i.e., causing a
first ionization). Since each electron released in the
initial bunch is ultimately absorbed, this denominator
can be made unity by normalizing the distribution to the
release of a single electron at the plane Z=O. This
normalization will be adopted. Secondly, one expects
the spectral shape of kI(Z,E) to become Z independent
as the electrons reach equilibrium under the heating
inQuence of the field and the cooling inQuence of the
phonons. Once equilibrium is reached, a constant frac-
tion of the electrons will be lost each mean free path and
ri (Z) will exhibit an exponential decrease. It will
therefore be necessary to have e(Z) only for those values
of Z between zero and the point at which e(Z) starts
to decrease exponentially. "



2510 G. A.

III. THE INTEGRAL EQUATION

There are three types of collisions which are counted
by M(Z, E); collisions with acoustic phonons, which we
shall take to be elastic, collisions producing optical
phonons whose energy we take to be a constant E&, and
collisions with valence electrons, which, for reasons
explained earlier, we treat as absorption of the incident
electron. The temperature of the lattice will be assumed
low enough so that no optical phonons are present.
There is no possibility of the electron acquiring energy
from the phonon field. Under these conditions, it is
useful to regard M(Z, E) as a sum of partial densities
M„(Z,E), where the subscript denotes the number of
optical phonons which the electron has emitted prior
to the collision counted in M(Z, E). An electron which
has energy E after having emitted m phonons of energy
E& has acquired this energy by having drifted a distance

Z= (E+eEg)//e8

along the field. The Z dependence of M„(Z,E) must,
therefore, be a delta function of the above expression,
and the full M(Z, E), when expressed in terms of the
partial densities, must have the form

oo E+nEg
M(Z, F)= Q M„(E)8 Z

n=o
(3.1)

On taking the Laplace transform of this form and
multiplying by exp(SE/eB), we obtain

M(z, E)= dt dp s[E—E(p)7f(z, p, t)/~(p) (3 4)

dp' f(Z,P', t)F(p ~ P')/~(p'), (3 3)

f(Z,p, 0) =~(Z)~(E)/~ (E),

~(E)= dp ~[E—E(p)7. (3.6)

The initial conditions express the localization of the
electron at energy E=0 and location Z= 0. The function
F(p ~ p') represents the probability that an electron
whose momentum is y' before collision appears at
momentum y after the collision.

The distribution f tends to zero at t ~ ~ because the
electron is eventually absorbed. Therefore, if we inte-
grate the Boltzmann equation over all times from t=0
to t= Do, using the initial conditions, and then take the
Laplace transform of the result, we obtain"

1.

Sl'z+P ~.+- g(S,P)

The time dependence of f is governed by a Boltzmann
equation and initial conditions which we assume to be

~f—+Vz +p ~if+
Bt BZ

where

M(g, E)—=M(S,F)Xexp(SE/eh)

= P M„(E)q", (3 2)

where

~(E) g(S,p')F (p p')
dp', (3.7)

A (E)

M(S,E)= dZ e ezM(Z, E), (3.3a) g(S,p) = dt dZ e
—

&(Z,p, t). (3.8)

q= exp( —SE~/e8). (3.3b) Multiplication of (3.7) by exp(SE/eB) and use of the
relations

We shall soon derive an equation for M(g, E). Equa-
tion (3.2) indicates the utility of seeking its solution as
a power series in q, since the coefficients of this power
series, M„(E), determine M(Z, E) through (3.1).

To construct the equation for M (g,E) we consider the
relation between M(Z, E) and the distribution function
f(Z,p, t) Let f(Z, p, t) be t.he probability tha, t a, single
electron of zero energy released on the plane Z=0 at
time t=0 will be found, at the time t, in the slab dZ
with momentum in the range dp. Let v (p) be the mean
free time between collisions for an electron of momen-
tum y. The total number of collisions which the electron'
suffers in dZdp is given by the time integral of the
collision rate, which is the product of the collision
frequency r '(p) with the probability of the electron
being at (Z,p) at time t. Another integration, over all
momenta having the energy E, then giv-s the collision
density M(Z, E)

yields
V= V',E, p=eB

g(~,p) =g(S,P) Xexp(SE/eh),
E'=E(p') (3.10)

Comparison of (3.2), (3.3), (3.4), (3.8), and (3.10)

"The term U,f{Z=Q) which one might expect to be present
actually vanishes because an electron which is able to return to
the plane 2=0 cannot have a Rnite energy when it does so. Hence,
its velocity at that plane must also be zero.

[« '7~+ 1/~(p) 7g(~,p)

5(E)
+ dp' g(n, p')F(p ~ p')/r(p')

A (E)

Xexp[ —S(E'—E)/eh7, (3.9)
where
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indicates that

M(n, E)= dp ~LE—E(p)]g(n, p)/r(p) (3 11)

Let us now assume that the probability F(p~ p')
depends only on the initial and final energy of the elec-
tron. Furthermore, we assume that it consists of two
terms, one describing the elastic scattering by acoustic
phonons and the other describing the emission of an
optical phonon of energy Ez. Then

E(p ~ p') = E~(E E')o~(E—')/or(E')
+o(E+Elt E')up(E—')/or(E')]/A (E), (3 12)

where E and E' are the energies associated with p and
y', and where 0-~, o.o, and O.p are the acoustic, optical,
and total cross sections for electrons of energy E'. In-
serting this into (3.9) and using (3.11) gives

Lea V'p+ 1/r (p)]g (rj,p)
=A '(E)(b(E)+/ax(E)/or(E)]XM(rl, E)
+gXP~p(E+Ert)/or(E+Ez)]XM(g, E+Er)).

The differential operator which acts on g can be re-
moved by a series of integrations which are given in the
Appendix. This gives g(ti, p) in terms of an integral over
the expression on the right. Finally, the entire expres-
sion is multiplied by btE —E(p)]/r(p) and integrated
to give, using (3.11), where

(a) '= (1/eh) $E+rTEg], (3.15)

at E' is weighted by the probability of the direct trans-
port from energy E' to energy K The number of colli-
sions leaving the electron at E' is determined by the
collision density at E, for acoustic phonon collision, and

by the collision density at E'+Elt, for optical phonon
emission.

Although (3.13) is a consequence of the original
integro-differential Boltzmann equation, this new form
is a significant advance over the original. The advance
was made possible by the assumption that the scattering
probability depends only on energy. Because of this
single assumption, it has been possible to reduce a
partial integro-differential equation in several variables
to a single integral equation in one variable. Similar
reductions are possible under less stringent require-
ments on the scattering cross section, but they lead to
systems of coupled integral equations which are only
slightly more tractable than the original. "The stringent
restriction on scattering cross section results in an
enormous simplihcation of the problem.

There is one last point to be made here. Having
found that M(Z, E) has the form (3.1), we may calcu-
la, te n(Z) and u using (3.1) in (2.1) and (2.2) as

n(Z) = eh Q =p M„(ZeB nER)r(Ze8 —nEIt, ), (3.14—)

M (tt,E)= dE' T(E,E')
dEEr(E) g M„(E),

n=p
(3.16)

X(&(E')+Lo~(E')/~r (E')]M (~ E')

+ti/0'p(E +Eg)/Or(E +EIt)]M(tt, E'+E~)). (3.13)

00 00

dEr(E) g nM (E).
n=o

(3.17)

The kernel T(E,E') which is given in Appendix A,
is a rather complicated expression which arises from
carrying out the indicated operations but its meaning
is simple. If one considers an electron with initial mo-
mentum p' and final momentum p, then there is some
trajectory in space which the elec.tron would travel
while undergoing this change of momentum. The prob-
ability that the electron can traverse the trajectory
without an intervening collision and, having reached
momentum p, then collide for the first time since
leaving p', depends on the mean free time r(p) and
electron momentum at each point of the trajectory. It
can be calculated when the trajectory is known. The
kernel T(E,E) is just this probability, averaged over
all initial momenta compatible with an initial energy
E', averaged over 6nal momenta compatible with a
final energy E, and averaged over all allowed tra-
jectories compatible with the initial and anal momenta.
The content of Eq. (3.13) is that the collision density
at E is caused by electrons whose previous collision (or
whose initial release into the system) left them with
some other energy E'. Each collision leaving the electron

Expression (3.15) may be interpreted as meaning that
an electron which is absorbed at an average energy E
after having emitted an average number n phonons of
energy Ez will have drifted a distance (a) ' down the
field. This statement forms the starting point of
Shockley's calculation. The average number n of
phonoiis emitted is also given by

dE M(ted=1, E)L1—r(E)].

Inserting this into (3.15) gives

1
(u) '=— dEM(ti=1, E,)

e8 0

X(Er(E)+E~L1—r(E)]). (3.18)

The first spherical harmonic equation which relates the
current density nt (E) to the particle density np(E) can,
for the case of a spatially independent density and a
constant mean free path, be integrated exactly so as to

"H. S. Wilf, J. Math. Phys. 1, 225 (1960).
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In the region F&Ez, this may be written approximately
as

M (E)= T (E& 0) 1+

This equation in turn may be rewritten exactly as
V. RESULTS

That it does so will be proved in Appendix B. It is
this normalization, in fact, which indicates that T is
the probability we have claimed it to be. This normal-

dE' M (E') ization must be maintained scrupulously in any approxi-
0 mation scheme using integral techniques, for 6ctitious

absorption or sources appear once this condition is
dE' T(E,E')$1 r(E'—+1'&)jM(E~'+Eir). relaxed, and the effect of these fictitious sources or

absorptions can, in the case of small true absorption,
completely alter the solutions one obtains.

M(E)= f(E) 1-
——1

f(E')dE', (4.7)

where f(E) satisfies

f(E)= T(E,,O)+ dE' T(E,E')

X[& .(E'+—I-.)]f(E'+E.) (4.8).
The equa, tion for f(E) is exactly what one would have
obtained by ignoring the scattering caused by acoustic
phonons. Equation (4.7) says that M(E) has the same
shape as f(E) and differs only in normalization. The
normalization usually can be ignored or can be ad-
justed by some condition on the number of absorbed
particles, and is, therefore, unimportant. The normal-
ization factor of (4.7) may be interpreted in the follow-
ing way: Suppose each collision with an acoustic phonon
to result in the absorption of the electron. Then (4.8) is
the equation for the exact collision density. Vsing this
exact density, the number of electrons absorbed in
acoustic phonon collisions will be

&0-' E:R/Et
0.00

Equations (4.4) make possible the calculation of
M (E) once the kernel T(E,E') has been calculated.
This kernel contains all the e6ects of the band structure
on the motion of the electrons, and may, in principle,
be calculated, given E(p) and r(p) by means of Eq.
(A.6) of the Appendix. Needless to say, this calcula-
tion in principle becomes nearly impossible in practice
except for the simplest of band structures, the quasi-
free electrons. %e can, assuming constant mean free
path X,is evaluate T(E,E') in this case, to the extent of
expressing T as a finite integral over a single parameter.
T(E,O) can be evaluated exactly for this case and is

T(E,O) =e-'-p(-E/e)

f(&)dE

Thus, for each electron released at zero energy, there
are E absorbed at an energy close to zero. The net
source of electrons for Qow to higher energies is then
1-V. Dividing by 1-E would then give a distribution
containing a single electron. This division by 1-iV is
indicated by Eq. (4.7).

SuperQuous though these considerations may be
when one is not interested in the spatial dependence
of M(Z, E), there is one matter about which one must
be especially careful, both in Eq. (4.4) and in Eq. (4.8).
This is the normalization of the kernel T(E,E'). We
have asserted (but not yet proved) that T is the prob-
ability that an electron released at energy A"' will suffer
its next collision at some energy E.Since the electron will
eventually collide at some, energy, the assertion implies
that the kernel will satisfy the normalization

10

)0-'
2

'AX 'i

0.07

10

go.oa

0.03

12

Fro. 1. Dependence of oX on E;/e Q for various values of Ea/E;.

dE T(E,E') =1. (4.9) r3 W. Shockley, Bell System Tech. J. 30, 990 (1951) and F.
Seitz, Phys. Rev. 73, 550 (1948).
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El = 0,057

10 3

6
Eg/egP

10

I'ro. 2. Dependence of uA, on r for Eg/L~; =0.057.

"This expression (5.2) is exactly the Mo(E) corresponding to
no acoustic phonons and hence to an infinite mean free path for
electrons whose energy is less than Ez. One may ask why it was
necessary to bring in the acoustic phonons at all if the eRect of
their presence is the same as the eQ'ect of their absence. The
answer simply, is that by including them, the task of evaluating
T(E,E') is made significantly easier.

The Ms(E) corresponding to this may be calculated
from (4.4) as"

Ms(E) =Q
' exp) —(E E—p)/Q]. (5.2)

We can also obtain useful closed form expressions which

approximate the true T(E,E') for this situation. These
expressions are useful in programming these equations
for the high-speed digital computer. The evaluation and
approximation are matters of detail which may be
found in Appendix C.

We have programmed Eqs. (4.4), (4.5), (3.&8), and
(3.14) for the IBM 7090 using the approximate T(E,E')
described in Appendix C. The machine was instructed
to iterate (4.4b) until the total number of electrons
absorbed had converged, or for a predetermined number
of iterations, whichever occurred first. We have ob-
tained, in this way the functions m(Z), M(E) and n for
a wide range of the relevant variables. The results of
the calculations of ~ appear as Fig. 1, whose meaning
and use we should like to explain.

TAnLE I.nX vs r for Es/E„=0.057, E~/Q= 6.6.

1.0
0.5
0.25
0.05

1.4 X 10-2
t.~sX ~0-'
0.9 &&10-2
0.36X10 '

Figure 1 is essentially a universal plot of logo. vs
reciprocal electric field. Choice of the ionization thresh-
old E„and photon mean free path X determines the
horizontal entry corresponding to a given electric held
e8. The ratio of phonon energy Eg to ionization energy
F.; selects a particular curve, and the product nX which
the material should display in the given Geld may be
read on the vertical axis, whereupon n is determined.
Thes curves correspond to a situation in which the
ionization cross section rises abruptly at energy E, to a
value equal to the cross section for phonon emission.
The abrupt rise has been chosen to approximate the
behavior of the ionization cross section near threshold,
where the actual cross section shouM be increasing
about quadratically with increasing energy. ' 4 Our
choice of a high-energy limit equal to the cross section
for phonon emission is quite arbitrary. However, other
calculations in which the high-energy limit was varied
(these are summarized in Table I and I'ig. 2) indicate
that alpha depends on the value of the cross section
above threshold so weakly that the curves we have just
described will be useful for an ionization cross section
equal to or arbitrarily greater than one-fourth the
cross section for phonon emission.

The parallel straight lines in the lower portion of
the figure correspond in slope to the predictions of
Shockley's theory although they give a much larger
value of alpha. This occurs because Shockley calculates
as though each electron which collides at intermediate
energy returns to zero energy before attempting another
Aight to high energy. He, therefore, badly underesti-
mates the number of high-energy electrons by discarding
all those which scatter and continue upwards in energy. "
The concave downward curves in the upper part of the
6gure have a form suggesting Wolff's theory but again,
the fit is not precise.

There are several conclusions to be drawn from the
information presented in Table I. This table shows
nX vs r, where r is the ratio of the ionization cross
section to the total cross section above threshold. The
important result is the relative insensitiveness of o,) to r.
The 6rst conclusion is that it will be very difhcult to
obtain r from charge multiplication measurements alone.
Such quantities as "numbers of phonons per ioniza-
tion" which have been taken as a parameter in past
studies of charge multiplication and which have been
adjusted to fit the charge multiplication data may have
to be re-examined.

"This same conclusion has been reached by Moll and Meyer
LJ.J.Moll and N. I.Meyer, Solid-State Electron. 5, 155 (1961)g.
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The second conclusion concerns the nature of the
process by which the electrons reach high energy. If the
electrons which are at high energy are those few which
have had a fortuitously long flight since their last
collision, then M (E), the rate at which electrons collide
at energy E, depends on the chances of avoiding all
collisions, and is independent of whether a given
collision produces a phonon or ionization. Thus, M(E)
will be independent of r and the ionization rate, essen-
tially r times the collision rate, will be proportional to r.
Alpha will then be directly proportional to r, as
Shockley's theory predicts. '

If, on the other hand, electrons at high energy have
suffered many collisions, between each of which they
gained a small net amount of energy (i.e., have gradually
diffused upwards in energy) then M(E) at high energy
will be inversely proportional to r at high energy for the
following reasons: The rate at which electrons are fed
to high energy depends solely on the difficulty of this
diffusion. The rate at which they are removed from
high energy is the ionization rate. In the steady state,
these rates will be equal. Hence an increase of r must
be compensated by a decrease of M (E) to keep the ion-
ization rate equal to the supply rate, which is inde-
pendent of r. Said differently, an increase of the
ionization probability depopulate s the high-energy
region of electrons. Under these circumstances, alpha,
essentially an ionization rate, tends to be r independent
also. This feature appears in Wolff's work. '

Our finding that n) is fairly insensitive to r indicates
then that a diffusion type mechanism is operative in
controlling the Qow of electrons to higher energy. The
collision density M (E) corresponding to the ca,lculations
reported in Table I appear in Fig. 3, where the de-
pression of M(E) at high energy relative to low energy
may be seen to increase with r.

In summary, the situation describing the distribution
of electrons at fields of interest in charge multiplication
studies is this: They are in a distribution which is too
sharply peaked for the Po a,nd P& approximation of.

Wolff to describe, yet their transport to high energies is
essentially diffusive rather than ballistic as Shockley
had assumed. The stress laid by %olff on the effect of
the ionization cross section on the distribution func-
tion, and the stress laid by Shockley on the especial
importance of electrons traveling along the field direc-
tion, are complementary; neither alone is sufficient to
determine the distribution of electrons.
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x(y) =x(p.,p.,p.) =— d~ r '(p. ,p„~), (A2)
e8

so that
ea V,x(y) =eaax(y)/ap, = 1/r(y)

Then the substitution into (A1) of

gives
g(p) =f(p) expL —x(p) j (A3)

~f(y)/dp. =Q(E)L«~(E)j ' expx(P),

where E=E(p). Integrating this from —eo to p, and ex-

APPENDIX A. THE INTEGRATION OF THE
DIFFERENTIAL EQUATION

The equation following (3.12) has the form

I:« ~.+1/r(p) jg(p) =Q(E)/~(E) (A1)

Define an attenuation coefficient x(y) by
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HE NORMALIZATIONB. PROOF OF THE
CONDITION

T satisfied the normalizationWe asserted that T satis e
condition

dE T(E,E,') =1.

C= (2nzE)')'2,

C'= (2nzE')'i2,

p== (R'+C' —C")/2RC.

(C4a)

(C4b)

(C4c)

A6) as follows.follows directly trom
ves a delta fun tio f o th-'-'()X" [ 1-g

the derivative of the exponen ia
so that

dF. T(E,F')

d *'~[E'—E(p')]A '(F')dp:.dpydpz d s

exp( —(2e BP,m)
—'f(C,C',R) )

C+C' (C—C')'
f=( 2+

(C58,)

-C2+C)2 C2 C)2 2 R2-

2 2R 4

x onent may be performed and
Th o ti le (C4c) to eliminate p.one then may use c

then takes the form

exp
dp. el

dW2 '(p p W) . (82)— (C b)Xln-
C+C' —Ri



IONIZATION RATES FOR HOT ELECTRON S I iU SF M I CONDUCTORS 2517

Then using (C1a.) in (3.6)

A (L~') = Sam (nsE/2) i/',

This approximation allows the integral in (C3) to be
performed with the result

so that

(EE')&/2

(X ~i
g/

(EE') i /2

Z (EL)= (2g,l,)-i(E/E)i/2A(E E). (C7) A(E,E')—='"p — +
g g E'i

We need Z'(E,E') in the limit E'~0. In this limit,
C' —+0, R —&C so that f~C'/2. Then in this limit,

so that

A (E, E' —+ 0) = e
—E/eQ

2 (E~/E) i/'e e—
(EE~)1/2 E El/2+ (E~)1/2

(E& — X ln—X — ~, (C9)
Q L~' E'" (E')'" —)

Z'( j~; Li' ~ 0) = (e gg) 'e L'/'s—/. —
(C8) where Ei is the tabulated exponential integral

It is possible to approximate the expression for
Z'(E,E') in closed form. The approximation to be de-
scribed is motivated by Shockley's observation that an
electron which is scattered so as to be headed in the
direction of the field will be much more likely to reach
a higher energy than is an electron which is scattered
so as to be headed against the field. This latter electron
must be slowed, turned around, and reaccelerated
before it reaches higher energy. It traverses a longer
path and is more likely to suffer a collision in route.

The function f(c,c',R) is proportional to the path
length along a trajectory which carries the electron
from ip'~ =C' to ~p~=C. The parameter R labels the
various trajectories which are consistent with this trans-
port. It turns out that the shortest trajectories are
labeled by the smallest value of E. Since the shortest
trajectories are the one responsible for most of the
transport, an error in the length of the longer trajec-
tories will have little effect on the value of the kernel.
This suggests the utility of expanding f(C,C',R) as a
Taylor series about the smallest value of E contributing
to the integral. This we may do, and, retaining only
linear terms, we obtain

C 2CC' C)
f(C,C',R)

~

C' —C"
~

—2CC' ln—+ ln—~R.c' c—c' c'/

Ei(x) = e '/f///

T(E,Li') = T, (F&,E') dE Z'. (E,E'), (C10)

where T is the approximate T. The effect of this
normalization is to shorten the trajectories which we
have overestimated, and also to increase the number of
electrons transported along the shorter trajectories.
This latter effect is equivalent to the situation in which
the scattering were no longer spherically symmetric
but exhibited, instead, a slight bias for scatter along the
field. The error introduced in this way is expected to be
small. however.

This result, though unappealing, is at least in closed
form. A more careful study of f(c,c',R) reveals that
our approximation overestimates the path lengths
associated with large R, and, hence, underestimates
A(E,E'). The effect is small, but it means that the
approximate T(E,E') will no longer satisfy the normal-
ization (B1). Therefore, it is necessary to divide by
the normalization, which means that we calculate


