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Short-Range Order Effect on the Magnetic Anisotropy near the Transition Point*
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The temperature dependence of the magnetic anisotropy with tetragonal symmetry is studied classically
for antiferromagnets near T&, by developing a refined statistical theory. It appears that the magnetic
anisotropy has a singularity of (T Tz) —",where T& denotes the Neel point to be determined from the
exchange energy. Because the actual Neel point TN* shifts from TN to the higher temperature by Tz which
is proportional to the anisotropy constant, the magnetic anisotropy at TN* remains finite with an estimate
of ~(T~/Trr)'~ times the powder susceptibility at Tn~. The theoretical results are in good agreement with
the experiments made by Stout et ul. The other short-range order eGects are also discussed. Especially, the
theory predicts that the peak of the powder susceptibility appears above Tz, in agreement with the meas-
ment. In the course of the treatment,
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and its derivative, which play an important role in the present theory, are plotted for 0(x(1.

I. INTRODUCTION Concerning the magnetic anisotropy of orthorhombic
symmetry, a slight generalization will be necessary,
of course, because our treatment concerns the magnetic
anisotropy of tetragonal symmetry. If the magnetic
anisotropy is of cubic symmetry, there will be no singular
feature as discussed in this paper. In ferromagnets the
temperature dependence of the magnetic anisotropy
can be treated in a simpler manner.

The temperature dependence of the magnetic anisot-
ropy of MnF2 and FeF2 are sketched below.

(1) MnFs. ' The experimental curve is shown in Fig. 1.
At high temperatures the magnetic susceptibility paral-
lel to the c axis I» is larger than that perpendicular to
the c axis X~. With decreasing temperature, the mag-
netic anisotropy X»—X& goes up toward a maximum at a
temperature 2T~. It decreases below 2T~ and
changes its sign at 1.1T~.

(2) FeFs.' The general features of this compound are
similar to those of MnF2 except for one point. That is,
the anisotropy goes to zero below T&, namely, at

(9/10) Trr, hence the maximum of X» —X, appears at
a rather low temperature j,.2T~.

The behavior of Xtl —X& at high temperatures can be
predicted from the molecular-field approximation of
Weiss, ' according to which X»—X& is proportional to the
square of the powder susceptibility p' in paramagnetic
regions, and hence the maximum anisotropy should
appear at T~, in great disagreement with the measure-
ments (see Fig. 1). This discrepancy comes from the
fact that the molecular-field approximation neglects the
cluster formation of spins coupled by the exchange
interaction which increases with decreasing temperature
and covers whole spins in the lattice at T~. The anisot-
ropy energy of coupled spins will be given by the
anisotropy energy per spin times the number of coupled
spins which increases roughly as T&/(T TN). Due to a-
large anisotropy energy associated with the cluster, the

~HE temperature dependence of the magnetic
anisotropy of ferromagnets and antiferromag-

nets at low temperature has been well understood
theoretically. But, there is no theoretical contribution
to the temperature dependence of the magnetic anisot-
ropy near the transition point, except a treatment
based on the Weiss approximation which is misleading
in antiferromagnets.

Specifically, we shall consider in this paper the mag-
netic anisotropy of MnF2 and FeF2 near the Neel point
T&, which has been studied in detail experimentally. "
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FIG. 1.The temperature dependence of the magnetic anisotropy.
x[ i XJ, is plotted in units of (3D/5kaTrr)xe (Trr), where xo (T)=EIJt,'/3k' T.

4 F. Keffer, Phys. Rev. 87, 608 (1952).
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spin cluster will orient more frequently along the easy
direction of the magnetization, namely, the c axis, than
along the other directions, even above T~. This effect
tends to make X& larger than X, 1 because X11—X& is
negative below T~, according to the Van Vleck-Neel
theory. As a result the effect of the anisotropy energy on
the magnetic susceptibility proves to consist of two
competing contributions. The first part comes from the
response of spin to the magnetic field as a single spin,
which tends to make X»&X&. The second one comes
from the response of the spin as a member of a cluster,
which tends to make X11&X~. The second part will prove
to be (1/7r) [T~/(T T~)$—'~' times as effective as the
first part. This tells us that the change of sign of X11—X&

will occur at roughly

(~/~) [T~/(T T~)3"—'-&

in agreement with the measured result for MnF2.
The sketch given above concerns the theoretical pre-

diction when the anisotropy energy is very small com-
pared to the exchange energy. This is just the case for
MnF2, but not for FeF2. In the former, the anisotropy
energy comes mainly from the magnetic dipole inter-
action, 4 whose magnitude is of the order to 10 'k~T~.
Here k~ denotes the Boltzmann constant. In the latter,
the anisotropy energy comes from the crystalline 6eld
energy, whose magnitude is of the order of 10 'k&Tz. '
This anisotropy energy makes the Neel point shift
appreciably to the higher temperature. Therefore, the
transition may appear at a temperature higher than the
temperature at which X»—X& changes sign. However,
our theory fails to predict a sufhcient shift of T& to
achieve agreement with the measured X»—X& for FeF2,
using a reasonable magnitude of the anisotropy con-
stant. For MnF2, the shift of the Neel point T~ makes
X»—X, finite at the actual Neel point, which is esti-
mated to be —(T~/T~P X,(Tx). Here X,(TN) de-
notes the powder susceptibility at Tz. This estimate is
between 2 and 3 times as large as the measured value.

The effect of the anisotropy energy on the magnetic
susceptibility is rather subtle in an antiferromagnet.
However, the anisotropy field, which sublattices see
separately, will be much stronger. Very recently, Heller
and Benedek found the linewidth of F' resonance in
MnF2 to be strongly anisotropic with respect to the
direction of the applied field in temperature regions from
1.1T& to Tz. This strong anisotropy is closely related
to a strong anisotropy field acting on the sublattice. ~

Assuming the anisotropy energy to be of the crystal-
line-field type, we shall treat the problem classically.
In Sec. II the general expression for the magnetic
susceptibility is given in terms of the spin-pair correla-
tion function, up to the term linear with respect to

' M. Tinkham, Proc. Roy. Soc. (London) A236, 535 (1956).' P. Belier and G. B.Senedek, Phys. Rev. Letters 8, 428 (1962).
~ T. Moriya, Tech. Rept. of Institute for Solid State Physics,

Ser. A, No. 42, 1962 PProg. Theoret. Phys. (Kyoto) (to be pub-
lished)g.

the anisotropy constant. The correlation function is
evaluated in Sec. III, and the temperature dependence
of X»—X& is discussed in Sec. IV. The main result is
given in Fig. 1. In Sec. V the other short-range order
effect is discussed. In particular it may be noted that
the peak of the theoretical powder susceptibility appears
above T~, in agreement with experiment. This is
because a considerable amount of the short-range order,
28%, remains at T~ according to our theory The
relation of the present theory to the others is also
discussed in Sec. V.

Here ( ),„+,means the average over the ensemble
for the system with both exchange and anisotropy
energies, and p is the magnetic moment, gpa[S(S+1)j'~s.

The local susceptibility )c(1—j) is the most funda-
mental quantity for our study because the following
relations can be shown easily:

Z~ x(1—j)+ Z. x(1—«) = (~/&)x

Q, )c(1—3)—P„x.(1—v) = (1/E))t',

(5)

(6)

where 1, j belong to the "+"sublattice and v to the"—"sublattice, and E denotes the total number of
spins. X represents the uniform susceptibility and X' the
susceptibility to be obtained in the case when +, —
sublattices are subjected to a staggered field +H,—II, respectively. The Neel point is then determined by
the temperature at which X' becomes infinite.

The expansion of Eq. (4) up to terms linear in D is
given by

x (1—j)= (p'/kn T) [(cos0& cos0;)+ (D/k&T)

Xg (cos0 ~ cos0, (-,' cos'0 —-', ))+
where ( ) denotes the average over the exchange

II. THE LOCAL SUSCEPTIBILITY FOR THE
SYSTEM WITH ANISOTROPY ENERGY

We assume that the spin S is a classical vector with a
magnitude of [S(S+1))'I' and that the anisotropy
energy is of the crystalline-field type with tetragonal
symmetry. The total energy of the system is given by

jV=Q,.+P
„

+ex =+ Q nn cos'Yg l y

E,„=DP, (-', cos'—0;—s),

where A denotes the coupling constant proportional to
the exchange integral, D the anisotropy constant, y, &

the angle between the directions of two nearest-
neighbor spins, 8; the angle the spin j makes with the
tetragonal axis, and P„„the sum over nearest-neighbor
pairs.

Let )((I—j) be the magnetization of the spin 1 induced
by a unit magnetic field acting on spin j. Its formal
expression up to the term linear in the magnetic 6eld is
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which is justified by the isotropic nature of the ex-
change interaction. If we fix the orientation of spin
j in the differential solid angle doi at co(8, q), the average
value of the s component of spin 1 is proportional to
coso, , namely,

(cos8i)„,=f(1—j) cos8, . (9)

By ~~ltiplying, ' (9) by cos8;(d~;/4tr) and integrating
over co;, we have

(cos8; cos8~) = (cos'8;)f(1—j). (10)

The factor Cko;/4ir represents the probability of finding
spin j in d~o; at oi, . In (10)

f(0) =1,
and (cos'8) =-,'.

By making use of (9), we express the second term in

(7) in terms of f:
(cos8i cos8;(—', cos'8 —s)) „=f(j—m)

Xf(1—m) cos'8 (—,
' cos'8 ——',),

where spin I is fixed in dko at (d . By multiplying the
above expression by de /4ir and integrating over o&,„,we
have

(cos8i cos8;(ss cos-'8 —rs) )= (2/15)f(j—m)f(l —m). (12)

If we substitute (10) and (12) into (7), the result be-
comes

y(1—j)= (its/3&ii T)$f(I—j)+s (D/&i~T) g (I—j)$, (13)

where g (1—j) is defined by

g(1—j)=2-f(j—m)f (1—m). (14)

If 1/j, (13) gives the correct expression for 2t(1—j).
If 1=j, a particular consideration is necessary because
the left-hand side of (12) now becomes

(cos'8 (s cos'8 —-') ) (15)

In the case where j=m, (15) becomes 2/15; otherwise
it reduces to the correlation function of a quadrupole
which is a very small effect. ' Hence, we can write safely

x(o) = (i"/3&~T) [/(0)+ s (Dl&aT) j (16)

It may be noted that the effect of anisotropy energy on
X(1—j) is quite different for the two cases 1/j and 1=j
because g(0) deviates appreciably from unity as it
approaches T~, as will be seen later.

system. In deriving the above equation, we used the
relation

((-,' cos'8 ——,') )=0,

III. EVALUATION OF f(l —j)

Our problem is now reduced to the problem of the
propagation of order, which was originally discussed
for the Ising model by Zernike. ' The exact solution has
been given for the two-dimensional Ising ferromagnet
by Kaufman and Onsager. ' See Elliott and Marshall"
for a quantum-statistical treatment based on the Heis-
enberg model with spin ~.

The formal expression for a correlation function
f(I—j) is given by

f(1—j)= (3/Z) ~ cos8; cos8t

X II +(&8)oui)~oui' ' '~&x, (17)

where Z is the partition function, and

E(ro„oui)=exp( —P cosy, i); P=A//riiT. (18)

The function E'(oi„a~i) is bilinearly expanded in terms
of the normalized spherical harmonics of co, Pi (o~):

&(~„~i)=&s+4~2 P (—)') tA, -(~.)4t, (~i), (19)

where the term

(20)

is the spherical Bessel function with imaginary argu-
ment. Xt/Xp decreases as P' with increasing temperature.

The partition function Z is given by the integration of
IIX(M„to,) over all angles of spins. We expand the
product in a power series of ) l, and draw a bond between
a neighboring pair (s,t) if E (co„co&)contributes a factor
) i(l/0) to a term in the series. Then each term in the
series corresponds to a graph with some bonds in the
lattice. Because of the orthogonal property of It«(co),
every term with open polygons composed of bonds
vanishes after integration. Thus the first term of the
series proves to be (47r)~P.s)»~is, ys being the number
of nearest neighbors. The next term comes from the
graph with a closed polygon composed of 3 (fcc) or
4 (sc, bcc) bonds which will be neglected. In this
approximation the integral in (17) now can be eval-
uated. The nonvanishing contributions come from
graphs with open polygons with ends 1,j. If a graph is an
open polygon with ts bonds, its contribution to (17)
proves to be (—)"() i/4)". By summing up such con-
tributions over all possible graphs, we get an approxi-
mate evaluation of (17):

' By the procedure used in Sec. III, we get

Z (cos'0, (—', cos'0 ——',))= (2/15)/(1 —gpss/&o),

where, for a hcc lattice, we estimate yp, r/Xo —(1/15yo)(T~/T)s~ l/IZO.

' F. Zernike, Physica 7, 565 {1940).' 3. Kaufman and I . Onsager, Phys. Rev. 76, 1244 (1949); see
also a review article, G. F. Newell and E. Montro11, Revs. Mod-
ern Phys. 25, 353 (1953).

II R. J. Elliott and W. Marshall, Revs. Modern Phys. 30, 75
(1958).
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(21)

Here

I' (k)=vk (23)

ys ——Ps exp(ik 6), (24)

where 6 is the vector to the nearest neighbors. See
Fisher and Sykes" for an attempt to 6nd the exact
asymptotic form of Q .

Substituting (22) with (23) into (21), we get, after
summation,

f(l—j)= (1/il')Z~ exp[—ik (l—j)]/(1+~~'»p)
where

Q„(1—j) represents the number of ways by which we

can get from j to I through rs bonds. This should be
done without any overlapping of bonds. Due to the
translational symmetry of the lattice, Q„(1—j) can be
expanded in a Fourier series:

Q„(1—j) = (1/X) Ps I".(k) exp[ —ik. (I—j)]. (22)

Here k is the wave vector of the lattice which is taken
over iV values of the 6rst BriHouin zone of the lattice.
If we disregard the exclusion of overlapping bonds,
I'„(k)is given by"

IV. TEMPERATURE DEPENDENCE OF
MAGNETIC ANISOTROPY

By substituting (13) and (16) into (5) and (6), we

have

V

2 D ++- 1+ Z'g(1 —j) Z g(l —«), (30)
5 k~T P

where P is the sum over j except j=l. f is given by
(27) with (25) and g by (28).

The sum in (30) is carried out with the help of (29).
We shall begin with the evaluation of X. The sum in (29)
should be taken over whole spins, while in the sum

g(1—j) the summand for j= 1 should be excluded.

Hence,

P g(l —j)+Z, g(&—)=[f(0)] '(1+ ) '—g(o).

By this method we obtain

Xp,' 1 1

3k~T f(0) 1+et

n = yp (Xr/), p). 2 D 1 1—+1—g(o) (31)
5 kgT [f(0)]' (1+n)'In deriving (25), we introduced two kinds of errors.

First, we neglected the contribution from graphs with

closed polygons in both the numerator and denominator
of (17). This approximation overestimates f(1—j) of

(17) for sc and bcc lattices for the following reasons. In
the lattice mentioned, the closed polygon contributes a
positive value or factor to the integral. If we insert a
closed polygon into a lattice that includes an open poly-
gon without any overlapping of bonds, the number of

graphs proves to be smaller than that of a lattice with-

out the open polygon. This effect makes the numerator
of (17) smaller than the denominator. Second, we

erroneously took into account graphs with overlapping
bonds, bringing about an overestimation of Q„."'

f(1—j) thus overestimated is now normalized so as to
satisfy (11) by setting

f(l—j) =f(l—j)/f(o).

In order to evaluate y', we shaH refer to the bcc lattice
appropriate for MnF2 and FeF2. Referring to the re-

ciprocal lattice of the sublattice, namely, simple cubic

(sc), we have

yq/yp=cos(kq/2) cos(ks/2) cos(ks/2). (32)

The first Brillouin zone of a bcc lattice is covered by the
k values satisfying —m. &k&, k2&m. , and —2x&k3&2m.
The sum in the expression for x is easily carried out if
we rewrite the sum, for example,

P;J(I—j)—P„f(1—v)

f(1—m) exp[i'. (1—m)],
as

f(0) is larger than unity, as shown above.
Substituting (25) and (27) into (14), we have

g(l—j)= {I/[f(0)]'}(I/») E.
Xexp[—ik (l j)]/(1+—rrv&/&p), (28)

where we made use of

(1/N)P; exp(ik j)= 1 for k=0, and 0 otherwise. (29)

Ãp, ' 1 1

3k~T f(0) 1—cr

2 D 1 1
+1—g(o) (33)

5 k~T [f(0)]' (1—n)'

(27) where r.= (0,0,2s.), and m is taken over whole spins. If
we note that y„=—yo, y' becomes

"For instance, W. Opechowski, Physica 25, 476 (1959).
rs M. K. Fisher and M. F. Sykes, Phys. Rev. 114, 45 (1959).
~3 Pote added in proof. All terms to contribute to the numerator

of (17) are positive (negative) if j, 1 belong to the same (different)
sublattice(s). This is because the number of steps for going from

j to l is always even (odd). I.(A/kyar Trv) = 1/pp, (34)

The Keel point is given by the temperature with the
divergence of 7c'. By (20) Xt/) p is the I.angevin function

L(P). Hence, T& is determined by
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using (20) and (26). From (34) we get A/k~Tsi 0.3——79,
which agrees well with the corresponding Weiss-
approximation value, 0.375.

The effect of the anisotropy energy is to cause T& to
shift to a higher temperature. The principal part of X'

near T& is approximated. by

(Nfs'/3k' T)Q(0) (1—n) —(2/5) D/kIiT] '

simply given by the first term in (31), which also re-
duces to the result obtained by the Weiss approxima-
tion by assuming f(0) to be unity.

By making use of (25) and (28), we obtain

f(o) = 9 (*), g(0) = Le (x)+2xp'(x) I/4 (*)j', (37)

where

whence T& proves to be determined by

I-(A/&~T~) = (1/&o) —-'I 1/&sf (o)j(D/k~T)
v(*)=

(2m)'

dk~dk~dk3

1—x(vs/vs)'

Now let us look into the uniform susceptibility X.
Equation (31) gives the susceptibility X„along the
s axis which is assumed to be the easy direction of spin
orientation. The susceptibility X& perpendicular to the
easy direction, can be obtained if we replace the factor
s in the second term of (31) by —s. Hence

x=ns, and 9'(x) =d9 (x)/dx.
The behavior of rp(x) and y'(x) can be seen in Fig. 2.

As x moves from 0 to 1, y(x) increases from 1 to
y(1) = 1.3932 (Watson's value" ). p'(x) starts from
0.125 at @=0and increases until it diverges as

y'~m '(1—x) '~s (39)
X» Xf

3kggT

1.4 1.125

(xj 1.000

1.3 $'(x)

0.750

1.2

0.500

0.250

1.0
0 0.2 0.4 0.6 0.8

0.125
1.0

I'ro. 2. Curves for q(x) and y'(x) vs x. The definition
of p(x) is given in the figure.

'4 The Weiss approximation for x11 gives

xn = (EgP/3keT)$1+ ;(D/keT) j/(1+ (A/3ke-T)+ (2/1&)
X/AD/(kaT)'7).

Expanding and retaining the term linear in D, we approximate the
above by
x„=(Ãiis/3keT)P(1+A/3keT) '+ ,'(D/knT)(1+A/3keT) 'j-

The corresponding expressions given in reference 18, (11.16) to
(11.18), are diB'erent from the present result. This discrepancy
comes from the neglect of a relevant higher-order term in the high-
temperature expansion in reference 18.

3 D
X— +1—g(0) . (36)

5k~T Lf(0))s (1+n)s

The first term in the braces of (36) gives the value of
X&1—X& derived from the gneiss approximation, "assum-
ing f(0) to be unity. The powder susceptibility X, is

(x„—x,)7„. xa(TN)y
~ ~(1)T~

(41)

for Tg/Tiv((1, using (37) and (39). Here X,(TN) de-
notes the powder susceptibility at Tz.

By making (X„—X,),h„,fit its experimental value at
T/TN 4.0, we estimate T~/——T~ to be 3.9)&10 '
and get —0.07X,(Tsj) for (X„—X,)r„~,. a result in

"G. N. Watson, Quart. J. Math. 9—10, 269 (1938).

with x approaching unity. A rapidly convergent series of
if(x) for 0~x~1, whence y(x) and y'(x) have been
computed, is given in the Appendix.

We shall now discuss the temperature dependence
of X, ~

—Xi. x'~s can be approximated by Tiv/T within
an error of 1%%u~. At high temperatures, the last two
terms in the braces in (36) are canceled by each other;
hence X»—X& becomes positive. However, with de-
creasing temperature, the last term increases until it
dominates the 6rst two terms, causing X» —X& to be-
come negative very near T&. In Fig. 1 the theoretical
curve for X»—X& vs T is shown, together with the ex-
perimental curve for MnF2. As apparent from the curve,
our theory satisfactorily reproduces the experimental
behavior of the magnetic anisotropy in the vicinity of
the Neel point.

If the temperature approaches T~, the magnetic
anisotropy X»—X& has a very large value, with the
negative sign due to the divergent character of g(0).
Actually, the Neel point should appear at the tempera-
ture determined by (35).Thus X„—X, remains finite at
T&. The value of this limit is easily obtained when D is
very small. Equation (35) gives

Tiv*= Tiv+ T~/q (1), (4o)

where Tiv* is the actual Neel point and Tg=2D/Sk~.
If we retain only the singular term, being dominant
very near T&, X» —X& is written asymptotically
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FIG. 3. The theoretical temperature dependence of the powder
susceptibility x.(T) reduced in units of xo(Tiv) ~Ny /3kaTrr (bcc).

rather good agreement with its experimental value
—0.03X,(Tz). Actually, the anisotropy energy for
MnF2 comes from the magnetic dipole interaction; the
predictions given will be more or less different from
those to be obtained on the basis of the magnetic dipole
interaction. It appears that (X„—X|)r„*is three times
larger than the observed value if we estimate D from
the antiferromagnetic data.

As D increases, T~* shifts toward the higher tempera-
ture until it crosses the temperature of sign-change of
X f l XJ.~ This should be the case for FeF2, however, in
order to achieve this crossing, we need T~/Trr&0. 2
which is too large for FeF2.

V. ALTERNATE SHORT-RANGE ORDER EFFECTS

In this section, we shall discuss the approximate
nature of the present theory and the other short-range
order eRect to be predicted from our theory. The anisot-
ropy term will be omitted throughout this section.

system is assumed to be classical and paramagnetic. '~

If we neglect the normalization constant f(0), x(k) will
be overestimated by 40% very near the transition
point.

Temperature Dependence of g

The introduction of the normalization constant gives
rise to a deviation of the susceptibility from the simple
Curie-Weiss law. It appears that the peak of x shifts
toward a temperature higher than the Neel point (Fig.
3). This feature has been observed commonly in the
temperature dependence of x. For MnF~ the observed
peak appears near 73'K which is higher than the tern™
perature of the specific-heat anomaly, 67'K. See
Nagamiya, Yosida, and Kubo' for the other observed
data. The gneiss temperature is estimated to be —1.5T~
from the slope of 1/x vs T in the temperature range
1.5&T/Trv&2. 5 and 1.2T~ —from the slope in the
range 2& T/T~ & 3.

The Short-Range Order

The degree of the short-range order is defined by

o =
i (cos0, cosei) i/(cos'0, )= i f()—I) i, (44)

where j, I are a nearest-neighbor pair. Using (27), (25),
and (37),

~= (1/~) L1—1/~(~') j. (45)

At the transition point 0. is estimated to be 0.283 by us-
ing q&(1) =13932.Li" and Kastelijn and Kranendonk'
estimated the corresponding value to be 0.242 and 0.295

0.3|

0.2

x(k) =Zf x(j) exp(ik. j) (43)

It is this Fourier-transformed susceptibility x(k) that
plays a central part in the diffuse magnetic scattering
of neutrons. The sum rule (42) is correct as far as the

' P. G. de Gennes and J. Villain, J. Phys. Chem. Solids 13,
10 (1960).

The Sum Rule and the Normalization Constant

Our X(j—1) is very similar to the expression given by
de Gennes and Villain" except for an important factor,
f(0). This factor has been introduced. in the present
theory in order to satisfy (16), namely, x(0) =p'/3k&T.
We note that (16) gives a sum rule for the Fourier
transform of x(j), x(k). The sum rule can be obtained
easily as

Qa x(k)=1VfJ,'/3krrT,

if we remember that

0.1

0
I.O

t I

2.0 3.0
T/TN

4.0

'7 Including the quantum correction to the sum rule, we have

Zq x(lt) =[N(gps)'/3ksT jS(S+1)[1+go(2I/3ksT)'S(S+1)+. j
where the exchange interaction is assumed to be given by 2J Z S,.

~ Sg
T. Nagamiya, K. Yosida, and R. Kubo, in Advances in

Physics, edited by N. F. Mott (Taylor and Francis, Ltd. , London,
1955), Vol, 4, p. 1.

"Y.Y. Li, Phys. Rev. 84, 721 (1951)."P. W. Kastelijn and J. Van Kranendonk, Physica 22, 317,
367 (1956); the same method has been given in T. Nakamura,
Busseiron-Kenkyu 63, 12 (1952).

Fro. 4. Theoretical curve for ir vs T/T~. (bcc) The degree of the
short-range order o. is defined by Ecf. (44).
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respectively, for an antiferromagnet with spin
using the quantum-statistical treatment. It may be
interesting to note that the Kastelijn-Kranendonk
theory predicts that the peak of x shifts toward a
higher temperature than Tz, but I.i's theory does not,
both for spin —,'. lt is also noted that the short-range
order to be obtained by their methods decreases with
increasing spin quantum number, namely, with de-
creasing quantum nature.

The general characteristic of our (T is a sharp rise
near the transition point, as can be seen in Fig. 4.
Because of this, the specific heat shows an infinite peak
of 1/(T —Tr, )"' at the transition point. This singularity
at the transition point has been predicted also by
Brout's theory of the Ising ferromagnet, ' but his
theory erroneously predicts a different temperature for
the singularity of specific heat and ferromagnetic
susceptibility. However, our theory treats these two
effects consistently.

Comparison with the High-Temperature
Exjpansion Formula

Q'e examine further the accuracy of our theory by
comparing it with the exact high-temperature expan-
sion. If we expand p(n') in a power series of n.' and
substitute the resulting series into (45), o. is written

The exact coefficients are 1 and 12 for the respective
powers of Xi/)ip. A similar expression for g is obtained
from (31):

y = (le'/3kiiT) [1—8 (Xr/), p)+56 ()„/)~p)'
—448 ()ii/) p)'+ —. j. (47)

The exact coefficients are 1, —8, 56, and —392 for the
respective powers of )ii/)ip.

If we assume the normalization constant f(0) to be
unity, o- becomes identically zero in the paramagnetic
region, corresponding to the Weiss approximation. The
power series of x to be obtained from the Weiss ap-
proximation does not reproduce correctly the third
term in the brackets in (47). Thus the introduction of
the normalization constant serves to improve the Weiss
approximation.

VI. CONCLVSIONS

The molecular field approximation fails to predict the
temperature dependence of the magnetic anisotropy in
antiferromagnets near T~, even if we use the ordinary
local-field method with a higher approximation, e.g. ,
the Bethe-Peierls approximation, This is because these
approximate methods do not take into account the
cluster formation of spins, which develops with de-
creasing temperature and covers the whole lattice at

T&. An elementary theory has been presented in which
the spin correlations are taken into account.

The effect of the anisotropy energy on the suscepti-
bility is to bring about two kinds of important singulari-
sies at Tv One. of these has the character 1/(T Tv—)s
which appears in the susceptibility for the staggered
field y', making the transition point shift by Tg. The
shift T~ is linear with respect to the anisotropy con-
ttant. This effect can be predicted from the local-field.
approximation. The other singularity has the character
1/ (T Tv) '—~', which appears in the uniform susceptibility

p, giving p an antiferromagnetic tendency. This effect
cannot be predicted from the local-field approximation.
Due to the shift of the Keel point, the term with the
singularity 1/(T T&)'~'—remains essentially finite only
at the actual Neel point. The finite value has proved to
be of the order of (Tg/T~)"' times the powder suscepti-
bility at T&~, in agreement with experiment.

Although the present statistical theory gives nearly
the same Neel point as that obtained from the Weiss
approximation, correlations are taken into account.
This is accomplished by introducing a normalization
constant into the expression for the local susceptibility.
The local susceptibility thus obtained will be satisfied
by a sum rule. The resultant improvement of the sta-
tistical approximation causes the peak of the powder
susceptibility to shift toward a temperature higher than
T~, in agreement with experiment. The degree of the
short-range order predicted amounts to 28% at Tiv,
accompanying a singular behavior of the specific heat
as 1/(T T~)'i'. How—ever, the present method fails in a
two-dimensional lattice, because the normalization
constant diverges logarithmically at the transition
point in this case. This failure may be attributed to the
transition that occurs at lower temperatures.

APPENDIX

A rapidly convergent series for y(x),

p(x) =
(2ir)'

dkIdkgdkg
X (Al)

1—x cos'(ki/2) cos'()'r, /2) cos'(kp/2)

for 0~x~1, will be given below. Integra, ting (A1)
twice, we get" "

p(x) = (1/7r') Pf~/2 x'i' cos(kp/2)/dh, . (A2)
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F(s./2, x) represents a complete elliptic integral of the

first kind defined by

F(ir/2, x) =
7r/2

(1—x' sin'u) —'"du (A3)

as can be seen easily by replacing sin I in the denomina-

tor of (A3) by 1—u'. Now (A3) is expanded in a power
series by ~', followed by integration over N. The series
thus obtained is subtracted by the series of —

~ ln

&&(1—x'), assuming uniform convergence. The result
becomes

which has a logarithmic singularity at I~:= 1. The princi-

pal part of F(~r/2, x) at the singular point proves to be
given by —-', ln(1 —x')

F(7r/2, x) = —
s ln(1 —x')+ (ir/2) {1+is(is—2/ir)x'

+-', [2(-',)'—1/ir]x4+-', [2(—,', )'—2/(3')]xs+ ). (A5)

The above series is now convergent at ~= 1 because the
singular part which causes a divergence at ~=1 has
been picked up in the first term.

Substituting (A5) into (A2), we have, after integra, -

tion,

9i(x) = (2/ir) ln2 —(2/s. ) In[1+ (1—x)'~']+1
+ s (s —2/~)&+ i'a [2(s)'—1/~]&'

+—'[2 (—')' —2/(37r)]x'+, (A6)
usliig

in[1 —x cos'(k/2)]dk=4ir ln([1+ (1—x)'"]/2).

The series given above reproduces the first three figures
correctly for q (1).
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The distribution of electrons in a semiconductor at high electric field is governed by a Boltzmann equation
which describes the effects of the field, the phonons, and the ionization processes on the electrons. This
equation can be converted to an integral equation for the space and energy dependent collision density by
performing the angular integrations. The integral equation is solved numerically to obtain alpha, the ioniza-
tion rate per unit path length. The resulting alpha shows a dependence on field strength 8 which is roughly
exp( —b/8) at low fields and exp( —c/ss) at high fields, but there are significant differences from the earlier
calculations of WolB and Shockley. These differences result from the approximations used by the earlier
workers to treat the angular dependence. We present graphs of logn vs (1/8) for a wide range of material
parameters. These graphs are useful in interpreting measurements of charge multiplication in terms of the
properties of the material supporting the transport process.

I. INTRODUCTION
' EASUREMENTS of the charge multiplication at

- ~ high electric 6elds in semiconducting materials
can be used to supply basic information about the inter-
action of hot electrons with the material, provided that
one has an adequate model for interpreting the data. A
reasonably satisfactory two-part model exists, based on
the analogy between the processes taking place in the
semiconductor and those taking place in a gas discharge.
The first part relates the charge multiplication to the
ionization rate per unit path length, o.;,"and the second
part relates this quantity, Townsend's alpha coe%cient,
to the distribution function for the hot electrons in the
material. "

' K. G. McKay, Phys. Rev. 94, 877 (1954).' S. L. Miller, Phys. Rev. 105, 1246 (1957).' P. A. Wolff, Phys. Rev. 95, 1415 (1954).
W. Shockley, Czech. J. Phys. B11, 81 (1961) and Solid-State

Electron. 2, 35 (1961).

Calculating the distribution function for the hot
electrons is not a particularly simple task, however, and
different approximations made at this stage result in
different predictions about the field dependence of
Townsend's alpha. Wolff, ' for example, neglects the
band structure of the silicon, which was unknown at
the time of his calculations, and expands the distribution
function in spherical harmonics, retaining only the Pp
and P1 terms. This procedure is justified at high fields,
as Wannier has shown, ' where the energy loss per colli-
sion is so much smaller than the energy gain that the
collisions serve to keep the distribution nearly isotropic.
The result of retaining only the Pp ai1d P1 is a diffusion
theory approximation, in which the electrons undergo
many collisions in transport from one energy to another.
It results in a distribution which, below ionization
threshoM, is quasi-Maxwellian with a temperature re-

' G. H. Wannier, Bell System Tech. J. 32, 170 (1953).


