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A study is carried out of quantum sects in the dependence of ultrasonic attenuation in metals on the
intensity of an applied magnetic field. It is found that the coeKcient of absorption of acoustic waves exhibits
an. oscillatory behavior as a function of the strength of the applied magnetic field. This paper limits its scope
to the case in which co~, the product of the frequency of the sound wave and the relaxation time for the
electrons, is much smaller than unity. The oscillations predicted in this work have an amplitude propor-
tional to (Atop/rp)" for propagation at right angles to the magnetic Geld, and they are negligibly small for
propagation in the direction of the magnetic field. The latter result is in contrast with the one described in
the preceding paper (for cur))1), where giant oscillations oi the attenuation can occur.

here. There remains in the equation of motion of f the
term i'(f fp)/r—, which can be formally taken into
account in the expressions for the conductivity tensor
by replacing ro by pp i/r O—nce .relaxation effects are
included, the power absorbed per unit volume differs
from that in Eq. (I-S3) by an amount

—-,'Re[()Vnz/Qr) ((v)—u) u*],
which is returned coherently by the electrons to the
acoustic wave. The quantity (v) is the average local
velocity of the conduction electrons. This is the so-
called collision drag effect which has been extensively
studied by Holstein, ' and is particularly important at
extremely high ultrasonic frequencies.

Because our interest is centered on quantum effects
we shall consider the case in which the parameters
(oipT) ' and $trp are much smaller than unity. However
in the situations considered here these parameters may
be comparable. In general, cur«1 for ultrasonic fre-
quencies co of the order of several hundred megacycles
per second or less and we shall restrict our considerations
to this situation in the present work.

As in reference 1 the two geometrical arrangements
in which acoustic waves propagate either at right angles
to or parallel to the magnetic field Bp will be considered
separately. In Sec. II we study propagation in a
transverse magnetic field and in Sec. III we give some
results of the analysis of ultrasonic attenuation in a
longitudinal magnetic fieM. The direction of the applied
magnetic field Bp is taken as the z axis of a Cartesian
coordinate system. We can designate a given geometry
by giving the directions of the wave vector q and the
velocity field u of the ions in the form (q,u). For
example, the case of a transverse acoustic wave propa-
gating in the y direction and polarized in the x direction
is designated by the symbol (y,x), and the attenuation
coefficient in this geometry is denoted by p(y, x).

I. INTRODUCTION
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II. ATTENUATION OF ACOUSTIC WAVES IN A
TRANSVERSE MAGNETIC FIELD

The purpose of this section is to study quantum
effects in the absorption of acoustic waves traveling in
a direction perpendicular to the applied magnetic field.

' T. D. Holstein, Phys. Rev. 1D, 479 (1959).
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"N the preceding paper' the authors have given a
- - general analysis of the electrical conductivity tensor
of a degenerate electron gas in the presence of a uniform
magnetic field. The purpose of the present paper is to
discuss those aspects of ultrasonic attenuation arising
from electrons in metals in a magnetic field that have
not been covered in previous semiclassical treatments. ~

The notation used in this work is the same as that
given in reference 1. The coeKcient of absorption y of
sound waves can be obtained from Eq. (I-54) using the
appropriate expressions for the tensors o(q, pp) and F,
when relaxation effects are neglected. However, the
study given here differs from that in reference 1 in that
we take into account the scattering of the electrons by
thermal phonons or lattice imperfections by introducing
a phenomenological relaxation time r. This can be
accomplished if we add a term ib(f fp)/r to the—left-
hand side of the equation of motion LEq. (I-7)] of the
density matrix, where fp is the local equilibrium dis-
tribution function referred to a system of coordinates
that is moving with the positive ions rather than at
rest in the laboratory system. The function fp depends
on the relative velocity of the electrons with respect
to the positive ions and on the local value of the Fermi
energy. It is possible to expand fp about the true
equilibrium value fp, this procedure gives two correction
terms. It turns out that the first correction is equivalent
to adding a fictitious electric field of magnitude mu/er
to the true electric field. The second correction is a
diffusion current that arises, in the case of longitudinal
waves, from the changes in the local Fermi level that
are caused by the successive expansions and compres-
sions of the lattice as the sound wave propagates in
the crystal. These effects have already been discussed
in detail by Pippard, 3 so that further details are omitted
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We take the direction of propagation along the y-axis.
Assuming (Mpr) ' and $ep to be much smaller than
unity, we obtain the following expressions for the
components of the electrical conductivity tensor:

where the nonvanishing components of R are

R z= zapCC(a zazpp+a yz)

Rzu= RCCz= azp(azzauu+azp )
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These relations have been obtained using the expansion
of the I.aguerre polynomials, 5 and retaining only terms
to first order in the parameters (copr) ' and &mp. The
symbols 8' and 8', which have been introduced,
represent the average energy per particle for the motion
in the x-y plane and in the z direction, respectively:

and

W=1V ' Q (e+-', )AMpfp(Z c,),
nlgygz

W, =IV ' Q (A'kP/2m) fp(E„c,).

(5)

The quantity 0-p is the ordinary dc electrical conduc-
tivity op M„'r/47r. . ——

With the modifications considered in the introduction,
namely the phonon drag and diffusion effects, the power
absorbed per unit volume is

Q=-', ReL($/II)eu* 8—(m/er)u* jc'&j (7)

where 8=E+mu/er There exis.t two relations con-
necting jci& and E. The first, which is a consequence of
Maxwell's equations, relates the total current density,
J=jc'~ —(IV/II)eu, to the electric field, and is given by
(I-58). For propagation in the y direction, I' is diagonal,
and its components are

F„=F„=iPap (8)

g —R.jo) (10)

A. Erdelyi, W. Magnus, F. Oberhettinger, and F. G. Tricomi,
IXigher Transcendental Functions (McGraw-Hill Book Company,
Inc. , New York, 1953), Vol. 2, p. 188,

F„„=iM/4n. — .

In Eq. (8) =iI' c'q/4r 7Mapand we have neglected the
ratio s'/c' as compared to unity. The second relation
between j'" and E is obtained from the solution of the
equation of motion of the density matrix as done in
reference 1, taking into account the effects which are
due to the finite relaxation time. This equation can be
expressed in the form

0 zz 47I $ q'vp) 1
(13)

0 ozCI+a p 3 My I M(1+iMT)
—IZizz 0 zz ~ (14)

After some straightforward .but tedious manipulations
one obtains the following expressions for the attenuation
coefficients

sm —(1—iP) (o-pR,.—1)
y(y, x) = Re

Mrsc 1—iPapR, . (15)

Sm 0 pg'~

v(y, y) =—Re
Mrs c a„aped+a,„P

1 (ppr)'—1——
3 1+M T

iP (o.pR„)'
(16)
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y(y, s) = Re
MrS, 1 iPaclR—,. (17)

In these equations s~ and s~ are the velocities of longi-
tudinal and transverse sound waves, respectively.
Using the relation er(&1. together with the assumption
P((1, which is satisfied under a wide range of experi-
mental conditions, we find

y(y, x) = (sm(/2Mrs, ) (W/AMp),

sm 4((Mpr)' W-1 (qopr)'
~(y,y) =

MTsi 1+M~r AMp 3 1+M T

(18)
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y(y, S) = (4SnS&/MTS, ) (W,/AMp) (20)

The quantities W and t/t/', are evaluated using a method
which has been described in detail by Wilson. ' They
exhibit, as functions of Bp, an oscillatory character
whose origin is the same as that of the de Haas —van
Alphen oscillations of the magnetic susceptibility of
metals. The formulas for W and 8", are

Sm (AMo)'" kT
W= (2|-,/5) 1+—(

4 &2fpi tp

(—1)"sin L (2s-Bfp/AM p)
—7r/4j

xp
rc' ' sinhges'AT/AMpf

5(AMp '
+—i, (21)

6&2i.,
A. H. Wilson, The Theory of Metals |,'Cambridge University

Press, New York, 1958), 2nd ed. , pp. 160-168.



2496 J ~ J ~ QUINN AND S. RODRIGUEZ

and

1 — 5sr t'tcop)'t' kT
W.=—fp 1——

5 2 2(s) tp
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sinhg2rtsr'h T/ taco o]

III. ATTENUATION OF ACOUSTIC WAVES IN A
LONGITUDINAL MAGNETIC FIELD

Kith the approximation co~((1, considered in this
paper, the coe%cient of ultrasonic attenuation in the
case of propagation parallel to the applied magnetic
6eld turns out to be the same as in the semiclassical
limit to a high degree of accuracy. In fact, up to and
including terms of the order of (So&s/f's)' we find no
quantum effects similar to those discussed in Sec. II.
This result differs radically from that found in the case
in which cur&)1. For example, in the latter situation,
the coefficient of attenuation for 0Jp&)co experiences
giant oscillations which have been described in detail

elsewhere. ' When ~7.=1, the expressions for the attenu-
ation coeKcients are unwieldy and we have not been
able to obtain results of the simplicity of those exhibited
in Eqs. (18)—(20). The giant oscillations predicted by
Gurevich et a/. ' have been observed by Korolyuk and
Prushchak' in a Zn sample where the ratio of the
resistivity at liquid helium temperature to that at room
temperature is 3)&10 ' and at an ultrasonic frequency
of 200 ii~lc/sec.

To summarize, there exists two types of oscillatory
quantum effects in ultrasonic attenuation in metals as
a function of an applied magnetic field. The erst, which
is described in Sec. II, is an oscillation in y of small
amplitude Lproportional to (Sees/2to)st') superimposed
on the ordinary semiclassical coeKcient of attenuation.
The second appears in the form of giant oscillations
when the acoustic wave propagates in the direction of
the magnetic field. The erst type of oscillations become
observable when copr and coo/ass are much larger than
unity, while the second type is observable only if
(dpp+M Q T

7 V. L. Gurevich, V. G. Skobov, and Yu. A. Firsov, Soviet
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The effect of the mechanical stresses at a dislocation, via magnetostriction, on the theoretical nucleation
Geld for magnetization reversal is approached by assuming a cylindrical region in which the magneto-
crystalline anisotropy vanishes. The complete spectrum of eigenvalues is studied for this model, and it is
found that the buckling mode yields the lowest eigenvalues for hard materials with reasonable size for the
defective region. The turnover to the curling mode is at a radius of about 300 A. for MnBi and 550 A for
BaFe»O». To obtain the observed value of nucleation Geld in BaFe»O», the radius of the cylinder with
%=0, should be about 350 A., which seems plausible for a dislocation.

l. INTRODUCTION
' 'T has been suggested by Rathenau et at. that domain
- - walls might start to nucleate at regions where the
magnetocrystalline anisotropy constant is low, because
of some structural imperfections. ' This possibility has
been studied for simple one-dimensional models, ' giving
rather encouraging results for hard materials. ' These

*This work will be included in a thesis by C. Abraham to be
submitted to the Hebrew University, Jerusalem, in partial ful-
filment of the requirements for a degree of Doctor of Philosophy.' G. W. Rathenau, J.Smit, and A. L. Stuyts, Z. Physik 133, 250
{1952).

~ A. Aharoni, Suppl. J. Appl. Phys. 30, 70S {1959);Phys. Rev.
119, 127 (1960); C. Abraham and A. Aharoni, ibid. 120, 1576
{1960).' Amikam Aharoni, Revs. Modern Phys. 54, 227 (1962).

are extended here to three dimensions, giving a fuller
description of the calculations mentioned in a recent
review. '

Since measurements for hard materials are usually
carried out on crystals in the form of thin plates, the
calculation reported here assumes the material to be
an infinite slab of width 2a, perpendicular to the z axis,
which is assumed to be an easy axis, and at which
direction the external magnetic field is applied. The
imperfection is assumed to be a region in the form
of a cylinder of radius E, perpendicular to the slab, in
which the magnetocrystalline anisotropy coeKcient I4
vanishes. In cylindrical coordinates one has, thus,
putting the z axis along the center line of the cylinder,


