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Electrodynamic Properties of a Quantum Plasma in a Uniform Magnetic Field
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A quantum-mechanical derivation is given of the conductivity tensor of a free electron gas in the presence
of a dc magnetic Geld and of an arbitrary electromagnetic disturbance. The results obtained are applied to
study some simple problems on the dispersion and attenuation of sound waves in metals in the presence of a
magnetic field. In particular, it is shown that both the velocity and attenuation of longitudinal acoustic
waves travelling parallel to the magnetic Geld exhibit oscillations as a function of the magnetic field under
suitable conditions.

I. INTRODUCTION

A GREAT deal of attention has been paid recently
to the study of the response of an electron gas

to an electromagnetic disturbance that varies both in
space and in time. This interest has been motivated by
experimental work on the absorption of electromagnetic
radiation and of sound waves by metals. ' The response
of an electron gas to an electromagnetic field that
varies in space and time as exp(uet —iq r), where ce is
the angular frequency and g the wave vector, can be
conveniently expressed in terms of the longitudinal and
transverse dielectric constants as done, for example, by
Lindhard. ' An equivalent formulation consists in ex-
pressing the results in terms of the electrical conduc-
tivity tensor

e(qadi)

appropriate to the wave vector q
and the frequency co. An example of a special case of
particular interest is the discussion of Reuter and Sond-
heimer' in connection with the study of the anomalous
skin effect in metals. Pippard4 obtained the same re-

sults as Lindhard in his work on ultrasonic attenuation
in metals by using a kinetic method. General formula-
tions for the calculation of the conductivity have been
given by Lax' and by Kubo. '

The present paper is concerned with the electrical
conductivity tensor e(q, oi) of an electron gas in the
presence of a uniform magnetic field of induction B,.
This problem has been discussed recently in the situa-
tion in which q= 0 by several authors. 7 ' In the situation
in which q@0 the conductivity tensor has been ob-
tained' "by solving the Boltzmann transport equation
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versity, Lafayette, Indiana.' See, for example, A. B.Pippard, Reports on Progressin Physics
(The Physical Society, London, 1960), Vol. 23, p. 176.
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under conditions applicable to several cases of interest.
Quantum-mechanical discussions of this problem have
been given by Mattis and Dresselhaus, "by Zyryanov, "
and by Zyryanov and Kalashnikov. "

The purpose of this paper is to discuss the response
of an electron gas in a magnetic field Bs to the most
general electromagnetic disturbance. The procedure
used is that of the self-consistent-field method as de-
scribed, for example, by Ehrenreich and Cohen. " In
Sec. II we show how the calculation is carried out and we
exhibit explicitly the matrix elements that are of in-
terest. Some of their mathematical properties, including
those that insure the gauge invariance of the theory,
are given in the Appendix. Two geometries of particular
interest are discussed, namely, those in which q is
either perpendicular to or parallel to Bp. Finally, we
show that in the semiclassical limit we obtain the same
results as Cohen et alt'. I2

In Sec. III, after making some general remarks about
the attenuation and velocity of sound in metals in the
presence of a magnetic field, we discuss the application
of the results of the present work to longitudinal acoustic
waves propagating in the direction of Bs. We find that
both the velocity and absorption coefficient of acoustic
waves exhibit an oscillatory variation as a function of
the magnetic field. These oscillations have a period
proportional to 80 ' and have the same physical origin
as the oscillations in the magnetic susceptibility of
metals (de-Haas —van-Alphen eRect). The effects de-
scribed above are observable in rather pure metallic
samples and at sufficiently low temperatures. A more
precise description of the conditions for observability
will be given at the appropriate place.

We now state explicitly the assumptions and approxi-
mations made in this work. A metal is assumed to con-
sist of a free electron gas in the presence of a uniform
background of positive ions such that the system is
electrically neutral. No "real metal" effects, such as
those arising from the actual energy-band structure and
from a finite collision time r for the electrons, are con-
sidered (here we assume v-= ~). The conductivity
tensor is obtained by solving the equation of motion of
the density matrix to 6rst order in the electromagnetic

"D.C. Mattis and G. Dresseihaus, Phys. Rev. 111,403 (1958)."P.S. Zyryanov, Soviet Phys. —JETP 13, 751 and 953 (1961).
' P. S. Zyryanov and V. P. Kalashnikov, Soviet Phys. —JETP

14, 799 {1962).
'r H. Ehrenreich and M. H. Cohen, Phys. Rev. 115, 786 (1959).
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II. DERIVATION OF THE CONDUCTIVITY TENSOR

A. General Theory

Let us consider an electron gas consisting of E elec-
trons confined within a cubic box of side I.p and volume
Q=Lp' in the presence of a magnetic field of induction

Bp, and of an electromagnetic disturbance that varies as
exp(io)f —iq r). We define p(r, t) and A(r, t) as the scalar
and vector potentials for the self-consistent field pro-
duced by the disturbance and Ap=(O, Bat,0) as the
vector potential of the dc magnetic field Ba. We have
taken a Cartesian coordinate system with the s axis
parallel to B,. Without loss of generality the x axis can
be chosen so that the wave vector q lies in the y-s plane.

The Hamiltonian for a single electron in the presence
of the self-consistent electromagnetic held and of Bp is

H = (1/2ns) t y —(e/c) Aa —(e/c) Ag'+ eP. (1)

To first order in A

where

and

H=Hp+Hi,

Ho= (1/2~) Lp —(%)Aal'

(2)

H, = —(e/2c) (v A+A v)+e(t). (4)

The operators Hp and

v = (1/m) Ly —(e/c) Aaf

are the Hamiltonian and velocity operators for an elec-
tron in the field Ba. The stationary states of Ha are
characterized. by the wave functions"

Iv)= Ink„k, )=La 'exp(ik„y+ik, s)
Xu. (x+5k„/tis(op), (5)

and by the eigenvalues

' L. D. Landau, Z. Physik 64, 629 (1930).The representation
de6ned by the wave functions (5) shall henceforth be called the
Landau representation.

field intensities, and we assume that the response to a
source field that varies as exp(t'o)t —iq r) varies in
exactly the same fashion (this approximation is often
called the random phase approximation).

The following is a list of some of the symbols used.
in this work and their meaning:

m= mass of the electron.
y= canonical momentum of a particle.

o)a=
I eI &a/me= cyclotron frequency of an electron in a
magnetic held of induction Bp.

o)„=(4aXe'/Qns)'('=plasma frequency of the electrons.
Qv= (4sXse'/MII)'(a=plasma frequency of the positive

ions of the metal.
M=mass of the atom in the metal.
s= number of conduction electrons per atom.

E=number of electrons in the sample under study.
0=volume of the sample.
pa= (Iti'/2tts)(37rsJl(/Q)'I'=Fermi energy at O'K of the

electron gas in. the absence of the magnetic field.
Ep= Fermi energy of the electron gas in the field Bp.

Z, =Z s,
——ko)a(is+-a')+)rssk, s/2tts. (6)

The allowed values of the wave numbers k„and k, are
obtained by imposing periodic boundary conditions on
Iv) with period I.a. The quantum number I can take
any non-negative integral value and u„(x) is a normal-
ized wave function for a simple harmonic oscillator'
corresponding to a particle of mass m and characteristic
frequency cop.

The electron current density induced by the self-
consistent field is obtained by taking the trace of the
product of the current density operator and the single-
particle density matrix. "The density matrix f is calcu-
lated to first order in the fields (J) and A as follows. The
operator f must satisfy the equation of motion

ihr)f/r')t=(H, fj. (7)

In the absence of the perturbation, Hi, f reduces to its
equilibrium value

fa(Ha) = {expI (Ha —Ea)/kTg+1} ',

which is diagonal in the Landau representation dered
by the functions (5) and, therefore, satisfies the con-
dition

fo(Ho) I v) =fa(L) I v).

We now set f=fa+fr, where fi is a small change in f
from its equilibrium value fa caused by the self-con-
sistent field. . Furthermore, we assume that f, varies in
time as exp(io)t) so that the equation of motion reads

~fi= t Ha, fig+(tHi, fa] (g)

In Eq. (g) terms of higher order than the first in (t) and
A have been neglected. By taking off-diagonal matrix
elements of Eq. (8) in the Landau representation we find

&v I fil v') =Lfa(~. )—fa(~.)7
X(E„-Z„-a~)-i(vIH, Iv &. (9)

The induced current density at position x and time t is

j("(x,&) =Tris""))

—e v ——A s(x—r)f+ac ), (10).
mc i

where H.c. designates the Hermitian conjugate of the
preceding operator, and j,~&'& is de6ned implicitly by
the second equality in Eq. (10). The induced charge
density p"'(x, f) is obtained from a similar relation. The
Fourier components j(')(q,o)) and p(')(q, o)) of the in-
duced current and charge densities are given by the
relations"

' See, for example, L. I. SchiG, Quantum Mechanics {McGraw
Hill Book Company, Inc. , New York, 1955), 2nd ed. , pp. 64-65.

2' See, C. Kittel, Elementary Statistical Physics (John Wiley 8z
Sons, Inc. , New York, 1958), pp. 107—113.

2' In this discussion, since we assumed r= ~, K and K* are each
other's complex conjugates. However, if we wish to include re-
laxation e8ects in our treatment we can do so by adding a phe-
nomenological term iaaf~/r to the left-hand side of Eq. (7). All
equations are formally the same as those presented here except
that o& must be replaced by cv i/r In this case we mus—t sub.stitute
K' for K* in Eq. (12) where K'(q, a&) = K~(q,ao*).
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j&'&(q or) = (or '/4rrc)

X[—A(q, o&) —I A(q, or)+ Ky(q, ~)], (11)
and

pc& (q or) = (o&„'/4rrc') [—K* A(q, or)+Lg(q, o&)]. (12)

In these equations A(q, o&) and @(q,or) are the Fourier
components of the electromagnetic potentials and the
symbols I, K, and L stand for (the tensor I is expressed
in dyadic notation)

must be satisfied. These relations can be easily verified
using the results given in the Appendix.

It is convenient to consider separately the two inde-
pendent geometrical arrangements in which q is either
parallel to or perpendicular to Bp. The general case in
which q makes an arbitrary angle with Bo can be
analyzed in a similar fashion, however, the expressions
one obtains are more complicated than those found in
these simple geometries.

1(q, )= ( /iV) 2 [fo(L")-fo(~.)](E"—L -k )-'

j, ' =(r„E,+a,„E„, (25)

(26)

and

I u
"& =&v*E*+~wu~wL(q,~)= (m"/&) 2 I fo(E")—fo(&.)]

I V'

X(R —~,—@~) '/(~'[exp(iq r)/~)/'. (15) j (&) —0 (27)

B. Propagation in a Transverse Magnetic
Field at 0 K (q pe pe d c lar to 8o)

In this situation we find that the components of the
induced current density can be conveniently expressed

X(~'i V(q) I ~)(" I
exp(iq r)

I
~)*, (14)

f"-(q)= dx I (x+hq/mor~)u„(x), (21)

X"-"'(q)= (~+1)"'f- ..+r(q)~&"'f-, - r(q) (22)-
A few useful mathematical properties of these matrix
elements are displayed in the Appendix.

Equations (11) and (12) are not ostensibly gauge in-
variant. If jo&(q,or) and po&(q, or) are to be independent
of the choice of gauge (A, tIrr), then the conditions

orK —cq —cI q=O (23)
and

o&L—cK*.q=O (24)

The operator V(q) which appears in Eqs. (13) and (14)
is defined by

V(q) =-', exp(iq r) v+ ~ v exp (iq r). (16)

The matrix elements of exp(iq r) and of V(q) are
given by the following equations

(s'k, 'k, '
~

exp(iq r)
~
sk„k,)

=8(k„', ky+q„)8(k, ', k, +q,)f„„(qy), (17).

(~'ky'k. '
~
V.(q) ~

Nk„k.)= i(ko&o/2m) '&(k„', k„+q„)
X8(k.', k,+q.)X„„' '(q„), (18)

(e'k„'k, '~ V, (q) ~nk„k, )=b(k„', k„+q„)h(k,', k,+q,)
X [(kq„/2m) f„(q,)+ (Ao&o/2m) ~X,.„I+&(q„)], (19)

and

(e'k„'k, '~ V, (q) ilk, k, )=8(k„', k„+q„)
Xb(k, ', k,+q, ) (II/m) (k,+-,'q, )f„.(q„). (20)

The symbol 8(k', k) is zero unless k'=k in which case it
is equal to unity, f„(q) is the two-center integral of
harmonic oscillator wave functions defined by

The components of the conductivity tensor defined by
Eqs. (25)—(27) can be shown to be

o&y 2moro 1 Bfrr~~ ~1—
47/'$+ fg g nkykzoI

(28)

ZRSCOp M 2 A

Our= J n+a, n
4rrgioroq~ iI" nr r r.n n~ —(o&/o&p)~

~*a= —~u'= (i~o/»q) (~/~q) (q'~.u),

(29)

(30)

co& 2A 1 0.'
o-„= 1—- —Q' k.'f ~, ' . (31)

4~i~ mo o iV r, r* n' (or/oro—)'

In Eqs. (28)—(31) the summations extend over all
values of the quantum numbers for which E I, &Ep
&E„+,&,, This restriction is indicated by a prime fol-
lowing the summation sign. One can also show that it
is possible to keep only the restriction E„&,&Ep pro-
vided the sum over n is performed from —e to infinity.
The induced charge density can be found from Eqs.
(25)—(27) by using the equation of continuity.

It is interesting to notice that in the limit in which
Zp/Aoro is very large compared to unity the components
of the conductivity tensor [Eqs. (28)—(31)] reduce to
those obtained by Cohen et al." in the semiclassical
limit. This result is accomplished by replacing the sum
over I in Eqs. (28)—(31) by an integration and making
the substitution n=ep sin'9, where ep is the largest
integer that does not exceed (Eo/koro) —~~. The sum-
mation over e can, therefore be replaced by an integra-
tion over II from 0 to m/2. It is easy to convince oneself
that the largest contributions to the components of the
conductivity tensor arise from large values of I (when,
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a,s in this case, ep))1). We can thus replace f~ „by
its asymptotic behavior for large" e

f„+ „-J L{(4~+2n+2)f)"']=7 (w sin8), (32)

where J is the Bessel function of order n, )=kq'/2mp~p,
and w =

quip/pip,

sp being the velocity of an electron on
the surface of the Fermi sphere. Ke find, after per-
forming the sums over k„and k„ the following approxi-
mate expressions:

s.(w)

In these equations 0-, Wio. y and 0-„are given by

fTxz~&0 xy

~Cup v+1
47ripp iV»,„~. p(k, +q) —p(k, )+A(ppp&p~)

+
&(kg+q) p(kg) 5(Mp&pi)

&ex=
4%$pp ~= ~ 1+(x(Mp/pi)

(33)

0 zz=

g.'(w)
o.„=

47rpp ~=—~ 1+(x(pip/pi)

3M&
(35)

Here

3pp„' p~
'- g. (w)

1—2, (34)
47ripp q&p

=— 1+a(pip/pp)-

pp~p fp~)p m

47ri(pkq) 1V»p&. p(k, +q) —p(k, ) kpp—

+ . (45)
p(k, +q) —p(k, )+hop

r. (w)

4priop =— 1+a((up/po)
(36)

The functions s (w), g (w), and r (w) are those defined

by Cohen et a/."Here we reproduce their defining ex-

pressions for the sake of convenience:

p(k, ) =k'k '/2m. (46)

The sums in Eqs. (44) and (45) are extended over all
sets of quantum numbers nk„k, for which A &, &Ep.

The expressions in Eqs. (44) and (45) can be evalu-
ated in a rather simple way. As an example we give the
result of the calculation of 0.„.The real and imaginary
parts of 0,.are obtained making use of

s.(w) =
~/2

d8 sin'8{J '(w sin8)}P, (37)
(s+i0+)-'= ~(1/s) +i~8(z). (47)

and

r. (w) =

7r/2

d8sin8{J (w sin8))',

n'/2

d8 sin8 cos'8{J (w sin8))'.

(38)

(39)

Here 0+ is an infinitesimal positive quantity, (p(1/z)
indicates that in any integration on s' of the right-hand
side of Eq. (47) it is understood that one must take the
principal value of the integral at the singularity x=0,
and 8(z) is the Dirac delta function of argument s.

The imaginary part of O.„turns out to be

C. Proyagation in a Longitudinal Magnetic
Field (q yarallel to Bp)

3co& Go&p

Im(o„)= P ln
8m''vp' ~=p

E (mpi/kq) +,'q——
E (mpp/kq) ——.',q—

In this case the induced current density is again given

by relations such as those of Eqs. (25)—(27). However,

from symmetry considerations (which can also be
verified directly) it follows that while the real part is

&.+ (mp~/Aq)+-', q
+ln (48)

&.+ (mpp/hq) ——,'q

fTxs 0 vy) (40) Re (o„)= (3pi„'op pod/8q'op') A.

and In these equations
(41)0 xy = &yz.

These conditions allow us to write the components of

the induced current density in the form

j,, &'&&ij„&"= (o.„&io.,J) (E,&iE„),

K„=(2m/k')i~'I Zp —(~+-,')A~p]-: (50)

and A is the number of integers in the interval (A+,A ),
where

(42)

(43)

'2 A. Krdelyi, W. Magnus, F. Oberhettinger, and F. G. Tricomi,
IIighe~ Transcendental Functions (McGraw-Hill Book Company,
Inc. , New York, 1953), Vol. 2, p. 199.

The limiting behavior of Im(o„) for long wavelengths
is of particular interest, In this case we can rewrite
Eq. (48) in the form
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Im(o. ,) whose components are

(P—')„„=o„„—r„„.
The tensor F is defined by

(55)

In the present section we have given a rather formal
derivation of the conductivity tensor o(q, o~) for an
electron gas in two geometrical arrangements of special
interest. In the next section we discuss some applica-
tions of this work.

III. ULTRASONIC ATTENUATION AND DISPERSION

A. General Considerations

In this section we discuss a few applications of the
expressions for the conductivity tensor to the propaga-
tion of acoustic waves in metals. The motion of the
ions of a metal acts as the driving disturbance re-
sponsible for the establishment of the self-consistent
electromagnetic field which couples the electronic and
ionic motions. An acoustic wave traveling in a metal
can induce both real and virtual excitations of the
electron gas because it is accompanied by an electro-
magnetic field. In real transitions the electron gas gains
energy irreversibly at the expense of the energy of the
sound wave. This energy loss is the source of the at-
tenuation of the sound wave. The virtual transitions
give rise to dielectric screening of the motion of the
ions and change the characteristic frequencies of the
normal modes of vibration of the lattice from their
values when the electrons are held fixed. In particular,
the frequency of a longitudinal acoustic wave can be
simply evaluated within the framework of the plasma
model considered in this paper. In the absence of a
magnetic field, one obtains the well-known result
co= (zm/3M)"'IIsq of Bohm and Staver. "

The coeKcient of attenuation p of the energy of a
sound wave is defined as the ratio of Q, the power ab-
sorbed per unit volume, to the incident power per unit
area normal to the direction of propagation. The
quantity Q is given by the formula

Q=-' Re(I&"" K). (53)

The electric field E and the electronic current density

j"&=o.E must be obtained self-consistently by solving
Maxwell's equations together with the expressions giv-

ing the total current density as the sum of contributions
from the electrons and from the positive ions. The ionic
current density is simply (S/0)

~
e~ u, where u is the

velocity field of the sound wave. The general expression
for the attenuation coefficient turns out to be

y= (0„'/4z-s) Re(N P.8), (54)

where s is the velocity of sound and 4=u/~u~ is a
unit vector in the direction of polarization of the wave.
The 3)&3 tensor P is the inverse of the tensor P '

ohm and T. Staver, Phys. Rev. 84, 836 (1952).

scq f M ) scq~g„

4z'oi E csqsl 4z.o~

(56)

where F is defined by Eq. (56). The angular frequency
co of a longitudinal sound wave of wave vector q is a
solution of the determinantal equation

ll~„„(q,a&)+S„„(q,co) —I'„„(q,cv)
~~
=0. (59)

s4 J. J. Quinn and S. Rodriguez, following paper LPhys. Rev.
128, 2494 (1962)j.

The suffixes p, v designate projections on the axes
(xyz) of the Cartesian coordinate system that has been
adopted.

In the previous section we discussed separately the
two independent geometries, q parallel to Bp and q
perpendicular to Bp. In each of these cases one can have
either longitudinal or transverse waves (i.e., u parallel
or perpendicular to q). In the case of transverse waves
in a transverse magnetic field one must distinguish the
two possible situations in which u may be either parallel
to or perpendicular to Bp. For each particular situation
expressions for the ultrasonic attenuation can be found
easily from Eq. (54) and the appropriate values of the
components of the conductivity tensor. The study of
propagation of sound waves at an arbitrary angle to Bp
can be analyzed in terms of the two simple geometries
considered here. In the semiclassical limit we have al-
ready shown that the conductivity tensor reduces to
the results of the treatment based on the Boltzmann
transport equation. The attenuation coefficient has
been studied, in this limit and for all geometries of
interest, by Cohen et al." and the use of Eqs. (33)-
(36) together with the introduction of a phenomeno-
logical relaxation time r would merely reproduce the
results of reference 12. For this reason we need not dis-
cuss further the classical aspects of the problem. Thus,
we shall only concern ourselves here with some simple
quantum effects which are independent of a phenomeno-
logical relaxation time r. A Inore thorough study of
quantum effects in ultrasonic attenuation is given in the
following paper. '4

The velocity of sound as a function of an applied
magnetic field can also be obtained from the knowledge
of the components o„„(q,o~) of the conductivity tensor.
If S„„(q,&o) are the components of the electrical con-
ductivity tensor for the positive ions, then the total
current density is

~.=Z.(~"+S")&' (57)

There is another relation connecting J and E which is
a consequence of Maxwell's equations, namely,
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In general, only one solution &a=co(q) of (59) corre-
sponds to the propagation of an acoustic wave. Further-
more ~=co(q) is complex. The real part cot of the fre-
quency co gives the phase velocity of sound s=&vi/q
while the imaginary part co2 is related to the attenuation
coeKcient y=2~s/s. In the absence of a ma, gnetic 6eld
(59) yields the result of Bohm and Staver" for the
sound velocity and the result of Pippard4 for the co-
efficient of ultrasonic attenuation.

ro'=0„'(I—4orio„/(o) '. (60)

Using the expressions (49) and (52) for the real and
imaginary parts of o.„one can find the velocity of sound
and the coefficient of ultrasonic attenuation. The ve-
locity of sound is given by the implicit equation

X(P tt (E„siss/A) '+ (E—„+ioss/A—) ']} '. (61)
n=O

B. Propagation of Longitudinal Acoustic Waves
in a Longitudinal Magnetic Field

The simplest quantum effects in the dispersion and
attenuation of sound waves in metals in a dc magnetic
field occur when we have a longitudinal wave propagat-
ing in the direction of the field Bo. In the semiclassical
theory both the velocity and attenuation coefFicient in
this situation are independent of So. This does not turn
out to be the case in the quantum theory as stated in
the introduction. The oscillatory behavior in s and p
predicted here is therefore a purely quantum-mechanical
effect.

Applying Eqs. (59) and (56) to this particular case
and using S.,=IIs'/47ri&o, we find

Landau states that can be excited above the Fermi
level by phonons of energy Ace. The dependence of A on
Bo can be easily visualized by considering the restric-
tions imposed upon the possible absorption of a phonon
by the laws of conservation of energy and momentum
and by the Pauli principle. In particular, these restric-
tions imply that the electrons that contribute to the
attenuation have a component of velocity in the direc-
tion of $0 equal to the velocity of sound.

For weak magnetic fields when cup((o) we have
A=oo/o~o and obtain the well-known result' p=orco/2oo
for the coeKcient of absorption of sound in the absence
of a magnetic field. At higher magnetic fields when
co(coo, at most one Landau level contributes to the
energy dissipation because under these conditions
A —~=~/ooo(1. In Fig. 1 we give a schematic plot
of the ratio of the attenuation y to the attenuation po
in the absence of a magnetic field as a function of
(Eo/A~o) ', Tw—o —ra.nges of values of (Eo/Ao&o) —-,'are
shown. In the region to the left we have taken (Eo/Aooo)
=8X10' and o~/o~o

——10 '. The attenuation exhibits
spikes of width oo/ooo and height coo/oo (the width in
Fig. 1 is grossly exaggerated), that occur at integral
values of (Eo/Aooo) —-', to a high degree of approximation.
In the region to the right we show the case in which
Eo/Aooo=1. 6X10s and o~/o&o

——0.2. Here the spikes have
a width of 0.2 and a height of 5. The average value of
p over a cycle (i.e. , over an interval of unity in the
variable Eo/Ao~o) is equal to yo. These giant oscilla, tions
which have been observed by Korolyuk and Prushchak"
were predicted originally by Gurevich et al." using a
method which is rather different from the one used in
this paper. However, the procedure used in the present
work has the advantage that it can be used to obtain
the temperature dependence of the amplitude of the
giant oscillations; in fact, a straight forward (but
lengthy) calculation gives

y = (orroo/2so)A. (62)

The quantity A, which has been defined as the number
of integers in the interval between A+ and A Lsee Eq.
(51)g, is proportional to the number of electrons in

IO-

IO3

10-

10

II II II
Eo I

0

FxG. 1. Schematic
plot of ultrasonic at-
tenuation as a func-
tion of E'0/Puoo. The
marks on the hori-
zontal axis occur at
integral values of
(Eo/Mo) —z (see text
for additional de-
scription).

'~ J.J.Quinn and S.Rodriguez, Phys. Rev. Letters 9, 145 (1962).

Inspection of the result (61) reveals the oscillatory
character of s as a function of Bo. More details of this
work have been given elsewhere. ".The coefficient of
ultrasonic attenuation is given approximately by

(y/yo) —1= (4m-AT/Aoo) Q (—1)"sin(sou/&oo)
n=l

cos (2orisi o/AMo)

(63)
sinh(2m'AT/Atoo)

In real metals the situation can become more compli-
cated because of the inhuence of the collision mecha-
nism and of the actual band structure of the solid. In
particular, if the Fermi surface of the metal has sections
in several energy bands, oscillations in y can occur hav-
ing widely different periods. The broadening of the
Landau levels due to their finite lifetime can wash out
the oscillations in the region where ~=coo. However, at
high magnetic fields when co«coo the large fiuctuations

2 A. P. Korolyuk and T. A. Prushchak Soviet Phys. —JETP
14, 1201 (1962).

27 V. L. Gurevich, V. G. Skobov, and Yu. A. Firsov, Soviet
Phys. —JETP 13, 552 (1961).
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in y/yo should become observable in highly pure ma-
terials and low temperatures.

Most of the discussion in this paper has been centered
on the calculation of transport coefficients for a de-
generate electron gas at O'K. At a temperature which
is finite but much smaller than the Fermi degeneracy
temperature our results hold to a good degree of ap-
proximation. The eGects discussed here are probably
observable if kT«A(op«Ep and in pure samples so that
the collision broadening of the Landau levels is negli-
gible as compared with their splitting &Gap.
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n'=0
(AS)

(A6)

APPENDIX

(A7)

we find other sum rules that turn out to be useful,
together with (AS) and (A6) in establishing the gauge
invariance of the theory. Another property of f„„
which is also necessary for this purpose is obtained by
taking off diagonal matrix elements of the commutator

(A1)dx exp (iqx) u„(x)N„(x).

Taking derivatives with respect to q of (AS) and (A6)
The purpose of this appendix is to give a few mathe- and using

matical properties of the matrix elements f„„(q) This. 8f„ /Bq= (0/2m(up) lX
quantity is defined by Eq. (21) and can also be ex-
pressed in the form

Using the expressions for N„(x) given in reference (19)
it is easy to prove that We And

)HO, exp(iq r) 1=&iI V(q). (AS)

(A9)


