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Two-Component First-Order Wave Equations
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It is shown that a suitable definition of the dotted spinors in terms of the undotted spinors allows the linear-
ization of the two-component second order Feynman Gell-Mann wave equations. The linearized two-
component first-order wave equations are similar to the original Jehle wave equations. They are covariant
with respect to the restricted Lorentz group and are transformed into their complex conjugate wave equa-
tions by a reAection. Then it is shown that the current vector derived from them is a world vector.

l. INTRODUCTION equations for free electrons are written in the momen-
tum representation so that the conservation of energy
and momentum is explicitly exhibited. The definition
of the dotted spinor given in Sec. 2 is found to be
necessary for this statement. Then, it is shown that the
electromagnetic interaction can be introduced into the
free-6eld wave equations exactly as for the Dirac wave
equation and that the Jehle wave equations are corre-
lated to the Feynman —Gell-Mann wave equation just
as the Dirac wave equation is correlated to the Klein-
Gordon wave equation.

EYNMAN and Gell-Mann' ' have postulated two-
component second-order wave equations for the

fermions and obtained the V—A form for the P inter-
action, which has been experimentally verified. We
should like to investigate the possibility of linearizing
the Feynman —Gell-Mann second-order wave equations
in order to incorporate for their two-component wave
functions the advantages of a Dirac-like first-order
wave equation also when the spin and magnetic mo-
ments obtain intrinsic expressions.

The definition that the dotted spinor is the complex
conjugate of the undotted spinor leads invariably to
a four-component first-order Dirac wave equation whose
wave functions are covariant for the Lorentz group. '
But the dotted and undotted spinors are arbitrary and
unrelated spinors (B.J. Sec. III) and the above defini-
tion is made in order to correlate the Dirac wave func-
tions to spinors. A redefinition of the dotted spinors in
terms of the undotted spinors, which allows the con-
struction of two-component 6rst-order wave equations,
and the consequent minor alterations in the usual
spinor calculus are stated in Sec. 2.

These two-component wave equations are covariant
for the restricted Lorentz group and only certain
products of the dotted and undotted two-component
spinors are covariant for the Lorentz group. This is
sufhcient to define a current vector which is covariant
for the Lorentz group, and in Sec. 4 it is shown that the
current vector derived from the first-order wave equa-
tions obtained in Sec. 3 is covariant for the Lorentz
group. The equivalence of charge conjugation and com-
plex conjugation for two-component wave functions is
also suggested here.

Two-component 6rst-order wave equations have bee
proposed by Jehle. ' ' In Sec. 3, first the Jehle wav

'R. P. Feynman and M. Gell-Mann, Phys. Rev. 109, 19
(1958); L. M. Brown, ibid 111, 957 (1958); L. .C. Biedenhar
Nuovo cimento 22, 1097 (1961).' Four-component fermion theories of V—2 P interaction hav
been proposed by E. C. G. Sudarshan and R. E. Marshak, Phy
Rev. 109, 1860 (1958); J. J. Sakurai, Nuovo cimento 7, 71
(1958).' W. L. Sade and H. Jehle, Revs. Modern Phys. 25, 714 (1953
which is hereafter called S.J. Its notation is followed but th
dotted spinor is now defined as Eq. (1) of Sec. 2,' H. Jehle, Phys. Rev. 75, 1609 (1949).' See also C. %'. Ki]mister, Phys. Rev. 75, 568 (1949);J. Serp
ibid. 76, 1538 (1949), Physica 18, 295 (1952); K. M. Case, Phy
Rev. 107, 307 (1957);V. Heine, ibid 107, 620 (1957). .

2. SPINOR CALCULUS

Instead of correlating the arbitrary dotted and un-
dotted spinors by de6ning the dotted spinor to be the
complex conjugate of the undotted spinor (B.J. Sec.
III), let the dotted spinor be defined by

or

where (f*) —= (f )* denotes the complex conjugate of
the spinor P . The higher rank dotted and mixed spinors
are accordingly defined by

(3)

We note that

n
where in Eq. (6) the property (5) of the dotted spinors
has been utilized so that the mixed spinor f"'P is defined
in terms of f i' by the combined use of (4) and (6) and
the spinor (P*)' is defined for obtaining convenient
notation.

Before showing how this redefinition of the dotted
spinors in terms of the undotted spinors enables the
construction of suitable two-component first-order wave
equations we shall consider its effect on the B.J. spinor
calculus and note that it remains essentially unchanged
wherever only dotted or undotted spinors occur in as.
relation (B.J. Secs. III—VI); for example t B.J. (IV, 5),
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and (24) we finally obtain

~l 'A~k o~~k k~l o rrklg tr

&Ld &B .+&kb &tk. — ~klan'i'.Ij g II )

(25)

(26)

However, on account of different rules for obtaining
the dotted spinors from the undotted contravariant
and covariant undotted spinors given in (1), we now
obtain

(9)

in place of B.J. (I, 8).
An explicit representation of the 0-'s is obtained by

noting that the Eqs. B.J. (VIII, 1) and (VIII, 2) re-
main unaltered here and that one side of B.J. (VIII, 3)
should now be multiplied by —1.

so that $B.J. (IV, 10), (VI, 3)j
0 1~

I~ —1 Oi

+12+12

(10)

%2(T p( ) c+kZ (pe)lkp~= pl/ )

v2o' "q(r)k+se pk)fp=lilp",

(27)

(28)

3. JEHLE WAVE EQUATIONS

We should now like to show that the Jehle" two-
component wave equations,

then LB.J. (VII, 3)j

A gp —0 gpA k)

0 )p= 0' pX-
k — k

(13)

(14)

The connection between the world tensors and spinors
is obtained by equating the invariant quadratic form
g"'AkAi to the invariant $B.J. (VII, 4)$

A""A f,„y—'y""A,.A——),„———(2/y) —
~
A ),„~, (15)

on account of (11), so that in place of B.J. (VII, 5) we
now have

06,1J~l ~ «,Xp, lj, v~k. ~l ~ kl
pv Xp g (16)

The alterations in the remaining B.J. Sec. VII are
straightforward and for convenience we note that the
B.J. Sec. VII Eqs. (6)—(12) now become

A'= —~"~A&„,

PIJ.V po &kPv&l po.Pkl)

Tkl &kpv&l pap.
p, V po')

&k &Lpa' $ ~ p$ 0 + ~ p+ tr

&khI2&l po. +) p+ po

—Ag„B~&=A kBk,

&isX&k p&kp'A&l. . gklgs

(17)

(18)

(19)

(20)

(21)

(22)

(23)

respectively. Since ok"& also is Hermitian, Eq. (23) can
be written in the form

&l. &k'Ali+&k. &fili gklp. lr (24)

and by raising and lowering the indices of o s in (23)

For a Hermitian second-rank spinor A I„LB.J.
(VII, 1)] we have again by means of (4) and (6)

Ak„= (Akk)*= —A„)„

so that if t B.J. (VII, 2)]

p * p

0 kV 8— gk8 V ~kv ~

In momentum representation' Eqs. (27) and (28)
become

V2o "",(Pk )pk)p'&=i, m—C&"

%2o k"p(Pk )q k)f' = im—cP",—
(29)

(30)

where P = —t.5.
Now the second-order free electron wave equation

can be stated in the equivalent forms:

or
L& (~)+v']4 =0,

(P' —m'cs)/=0,

Pkg =ihBkp, Pkp~ = —r7iB kit *.

(31)

(32)

(33)

The original Jehle free-electron wave equation repro-
duces (31) but not (32) on account of the changed sign
of the mass term there, while Eq. (27) for e=0 does not
reproduce (31) but Eq. (29) reproduces Eq. (32). So
that the definition of dotted spinor as the complex
conjugate of the undotted spinor leads to second-order
wave equations of the form (31), the definition of the
dotted spinor by means of Eq. (1) leads to second-
order wave equations of the form (32) and a physical
significance of the definition of the dotted spinor in
terms of the undotted spinor is obtained. It also becomes

By momentum representation we mean the application of Eq.
(33) to Eqs. (27) and (28) and not the Fourier transformation of
Eqs. (27) and (28).

describe the electron field. Then it is sufficient to show
that after suitable operations have been performed they
lead to the Feynman —Gell-Mann second-order wave
equations. Equations (27) and (28) differ from the
original Jehle wave equations because of the different
significance of the dotted spinor here but, as for the Jehle
wave equations, Eq. (28) is the complex conjugate of
Eq. (27). This becomes evident by noting that on
account of Eqs. (1)—(6)
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necessary to choose either Eq. (31) or Eq. (32) to be
the fundamental second-order free electron wave equa-
tion and then to perform the transformations (33) to
obtain the corresponding wave equation in the other
representation.

Now multiplying Eq. (29) L (30)] by v2at „(P&—&y&)
tt~gg & „(Pi gy~)]—, we obtain the required second-
order two-component wave equations for the electron

L(P g+)2 zzzzc2]ga —a ka al v P&kp.P
'

(34)

$(P Xp)' —zzz'c']P—= a""„a'"F('gP&. (35)

By operating in the momentum representation and,
therefore, in accordance with the acceptance of (32)
we can now multiply the left-hand side of (27) by
42o' „(B~+iepi) and its right-hand side by v2—o' „
X (cj~—iepi), which is essential for obtaining the correct
form of the electromagnetic interaction term in the
second-order wave equations as shown in Eqs. (34)
and (35).

We conclude that the Jehle two-component wave
equations (27) and (28) or (29) and (30) are the
linearized forms of the Feynman —Gell-Mann second-
order wave equations (34) and (35) and that in the
momentum representation they are correlated to each
other as the Dirac equation is correlated to the Klein-
Gordon wave equation.

4. LORENTZ COVARIANCE AND
CHARGE CONJUGATION

Equation (29) or Eq. (30) is covariant with respect
to the restricted Lorentz group (B.J. Sec. VIII)
and we should now like to show that the combined
wave equations (29) and (30) are covariant for the
Lorentz group. It is known (B.J. Sec. VIII, footnote 15)
that the combined original Jehle wave equations and
their charge conjugate wave equations are covariant
for the Lorentz group. Thus, in the present formulation
charge conjugation is shown to be equivalent to com-
plex conjugation. This simplification results in an
economy in the number of wave functions needed to
describe the electron and positron fields and is sup-
ported by field theories where the operator wave func-
tions f fP ] are assigned the dual role of the emission
of an electron and absorption of a positron (absorption
of an electron and emission of a positron).

To represent inversions in the spin space, as in B.J.
Sec. VIII, let the reflection c' =cp $B.J. (VIII, 5)]
be coordinated with the spinor charge conjugation
transformation

O'P= P, C(x) =- z*,

-(cl amP ) cl C(amji ) alP

(38)

(39)

where x is a scalar. When the transformations c ' and
C are applied simultaneously to Eqs. (29) and (30),
they become

or

v2a""'pcs (P„, Xvp„)—C(P&) =C(zzzzcg"'),

%2a'" cg (P. —Xq )CQ&)=C( iz—Ice"),

&2a "p(P Xy —)Pl'= z'zzicP",—,

v2a"'"'p(P 'Ay )P&=—z'zzzcP"',

(40)

(41)

(42)

(43)

v2a ~„p(Pi, Xyp)$&=im—cfp,

%2o"„,(Pi—Xq g)P&= —zzizcP„.

(45)

(46)

A consequence of the covariance of the combined wave
equations (45) and (46) with respect to the Loren'tz
group is that the current vector

jk qual,
pa&. Pp (47)

whose definition follows directly from Eqs. (45) and
(46) and which satisfies the continuity equation

g~k 0

respectively, and the covariance of the combined equa-
tions (29) and (30) for the Lorentz group is obtained.

We note that in the above procedure the C operation
has been applied to the spinor giP, where x is a scalar
quantity and not to the spinor f only a,s in B.J. Sec.
VIII so that the transformed spinor of xi/ is C(xi/) and
not xC(P). This definition introduces a change in sign
in the right-hand sides of Eqs. (42) and (43) which is
necessary if they are to be equated to Eqs. (29) and (30).
On the other hand if the charge conjugation operator is
defined by

.'" ~ C'(4" -- )=z" "'(4" --)*, (4'4)

where m and e are the numbers of the dotted and un-
dotted indices, respectively, of the spinor f" '„,... and"
it is restricted to apply to spinors P only in quantities
of the form xf we again obtain Eqs. (42) and (43) when
the transformations c' and C' are simultaneously
applied to the Eqs. (29) and (30). Thus, the operators
C and C' give equivalent results and, perhaps, the only
reasons to prefer C to C' are its simpler form and its
equality to complex conjugation.

On lowering the indices, Eqs. (29) and (30) become

P~„.~ C(P~,.)= —(P*)~„..= Q',.)*,

C(A ) = Qn )C=CQ)C(n.):
(36)

(3&)

is a world vector,

j"=qc'iC(P"'a''„, P&) = c"~j '. (49)


