
Z2&'&. In our model, there is no conserved current and
we should not expect that a zero of. Z2~'& will occur to
cancel the zero of Z.

VI. CONCLUSION

We have explored the possibility that the complex of
fundamental interactions can be understood in terms
of the stable self-generated solutions of the coupled
G-reen's function equations of field theory. Since in this
paper we have not tried to solve any integral equations,
we have made no predictions which conclusively test
the validity of this idea. Rather, we have consistently
made the most naive approximations to the integral
equations in order to reduce them to algebraic equa-
tions. Our purpose has been to show that there is the

possibility of explaining fundamental interactions along
these lines. There remains the more dificult practical
problem of finding more reasonable approximations to
the equations. There are also the basic problems dealing
with stability criteria, the possible appearance of zero-
mass particles, "and the existence of divergences, which
must be understood before these ideas can become a
complete theory.

ACKNOWLEDGMENT

%e wish to thank Dr. S. Coleman for communi-
cating to us some of his unpublished works with
Dr. J. Goldstone.

"J.Goldstone, A. Salam, and S. Weinberg, Phys. Rev. 127,
965 (1962).

P H YSI CAL RKVI EWV VOLUME 128, NUMBER 5 DECEMBER 1, 1962

Classical Radiation Recoil*
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The conditions under which a material system may recoil while emitting electromagnetic or gravitational
radiation are investigated. The lowest order secular eRects in the electromagnetic case arise from an inter-
ference of the electric dipole radiation with the electric quadrupole or magnetic dipole radiations. In the
gravitational case, the lowest order terms involve the interference of the mass quadrupole radiation with
the mass octopole or the flow quadrupole radiations. The investigation of the gravitational radiation recoil
is carried out in complete analogy with the more elementary electromagnetic case, so that this paper should
be accessible to physicists having no previous knowledge of general relativity theory.

1. INTRODUCTION AND NOTATIONS

T is well known that a material system can dissipate'- energy in the form of spherical waves radiated to
infinity. In classical theory, these waves may be either
electromagnetic' or gravitational, '' and if they are
emitted mostly in a preferred direction, then the
emitting system will recoil in the opposite direction, like
a rocket. However, while "photon rockets" have been
largely publicized, the possibility of measuring gravita-
tional radiation recoil is still far beyond our experi-
mental techniques, 4 and even theoretical investigations
have hitherto been restricted to a very special model. '

The main purpose of this paper is to present the
general theory of gravitational radiation recoil. The
calculations will be valid for any kind of motion (rota-

*Partly supported by the Office of Scienti6c Research.
t Permanent address: Israel Institute of Technology, Haifa,

Israel.' H. Lorentz, The Theory of Etectrons (Dover Publications, New
York, 1952), p. 254.' A. Peres and N. Rosen, Ann. Phys. (New York) 10, 94 (1960).' A. Peres, Nuovo cimento 15, 351 (1960).

4 J. Weber, Phys. Rev. 117, 306 (1959).' W. B. Bonnor and M. Rotenberg, Proc. Roy. Soc. (London)
A265, 109 (1961).

tional, vibrational, or other) but with the condition that
the material system remains localized within a finite
volume. Only secular e8ects will be considered, i.e. ,
those eGects which do not average to zero over a long
time interval.

In order to make these interesting questions accessible
to the reader who is not a specialist of general relativity,
we first present, in Sec. 2, the theory of electromagnetic
radiation recoil, using the same tools as will later be
needed in the gravitational case. It is found that the
lowest order effects arise from the interference of the
electric dipole radiation with either the electric quad-
rupole radiation or the magnetic dipole radiation. This
could have been expected on general grounds, because
the recoil force must be bilinear in the various multipoles
(since the Poynting vector is), and the only way to
construct a three-dimensional vector is to contract a
2" pole with a 2"+' pole. (Magnetic 2" poles are homo-
geneous to electric 2"+' poles. )

In gravitational theory, the analogs of the electric
and magnetic 2" poles are the mass and Row 2" poles,
which are defined in the same way, masses playing the
role of charges. However, there can be neither mass nor



pE RE~

is ivenn the ma terial. system 's gand the 4 force on

JppdV=O,A pJpdV=—

AB„dV= — AA BdV,
we obtai

i 3 6 R4 5!)+.. .]JP' 12('J R'/3!)+('J R /
material sources.an two unf ctions of the ma e

'
A an d8 being y

N RECOIL2. ELECTRO TIMAGNETITIC RADIATION RECOI

racteriz whence

5 25 2 5 . . . m (13)2 '~-/3 )+ (4 '~-R'/5 )

ed byar es chaW consider a sye
a currenrent density
e uation

0.'—0
A

8), we note thatstitute t isst' th's result into (,wBefore we subst' t 's

for any function Z

(2)
' lA int eh Lorentz gaugenetic potentiaThe electromagne

(3)A =0,

2472

f cpnserva

(|)

„,f the laws o
re

pd V.

p]e i'a ia tjons becau
6 0 can there orenta. ' ne

PepjA

pw d P
d ngular mom

h ravitatio»
npf llnear an

st prder term
ass quad

sint eg

the total How of

hat the lowes
nce of the mas

z o re resents
0-

the interferenc
h h h

e due to
ass octopo e

h th

diation wit ei

a d w

d tio . The ep''fiow quadrup
hi h lo

nents p us o
t in Sec. , in

electr omagne
the reaction o

hat

tte o t e

From (1) an
lar correspon ing

'
are a e

(7)

case.
bers with p

v' r. 4 is devoted to v
same num

a brie rev'll, Sec. 4 is
f ravitationa r

(g)dV.J A

A possi e p

E(+1

kin the retarded

c=6=4Ã6p= . s

8 we so ve 4) for A", taking
d to

'
l solution

(9)

ge

re4 —
2

—Amdt ~ res

'ces. An index place a
1 d'fkrenti tion o

b lft i siso denoted by ees are a

'b t to l

derivativ

6 l

= 'T p 8t'.
uenceo oura

ur ose, we ca

e otet aFinally, w
localized wit

A =2(Ar84 — .avP ~e&h

J($+R)jd—V/R,R)—

matioe reqN

2 3, this equation
'

2

i A and X

s For A

x
'

ar ument otime interva

iable o in
rem. isns of the ab~ mea

d l

we sha m

ocities an a
ex ansionis

this paper, w

tht h

t in the form

1 rge. ) Assuming a

property, in

nottoo arg .1) 'n

h field equationssatisfies t e e

A-=4 X-.

netic field isThe electromagne
'

F =Ap —A p,ap

"
o = — " 'JaZad V,"JpZd V=—

1 and (2). In particularin virtue ot (1) and

Ao ——— (L2'J /3!

(14)

n Phys. Rev. 11,5 1318and P.. G Bergmann, y .6 J Boardman a
(1959). 5! . .}dV. (15)+t 4'~a4J (BR'R"/BR")/5'J . .



CLASS I CAL RADIATION RECOIL 2473

The first term gives no contribution to the recoil, as may
be seen with the help of (1), (8), and (14). We finally
obtain, from (8), (13), and (14)

field. We shall write

T~= Ts+gT~, (22)

iJ'(x) [4 'Jk(X) (BR'Rm/r)Rk)/5 ~7

+jk(x)L2 'Jk(x)R /3!7}dsxd'x, (16)

where we have omitted the contribution from higher
order terms (hitherto denoted by three points). By
repeated use of (1) and (14), this can be brought to the
form

where the subscripts m and g stand for "matter"
and "gravitational field, "respectively. ,T P is a compli-
cated function of the V ~ (and only of them). It contains
terms which are quadratic in the first derivatives of
V P and also some second derivatives of V P, the
coefficients themselves being algebraic functions of
V P.'' Fortunately, the exact form of,T P is not
required for our purpose.

We now introduce the following notations":

R'm (2/15) lak (4+km gmk gkmRnn) (17) A'=g'+V' (23)

where iDk= 1' ijozkdV J'jkotV and gmn J' sjm&ndV

We now introduce the magnetic dipole moment

~mn — (jm+n jn+m)dV (18)

and the electric quadrupole moment

()mn — JO (gmgn r gmngkgk)d V (19)

from which we obtain, with the help of (14)

1 mn (jm&n+ jn&m (2/3)gmn jk~k)dV (20)

3. GRAVITATIONAL RADIATION RECOIL

With these notations, (17) can 6nally be written

Itm sDkL(1/5) s()km+ (1/3) 2~km7 (21)

It is interesting to compare this formula with the one for
the rate of energy loss, which is given by the squares of
'Dk, 'Qk™,and 'Mk (no interference). r

Tap Tpy p a (25)

The left-hand side is the divergence of the matter part
of the stress-energy tensor, and is therefore equal to the
force density acting on matter from all the fields rot
included in T P. It is just the gravitational force
density. Thus, the total gravitational force acting on
our material system is

~sr =st A-sV-&+A-vV-s
+A (s AprA„„—As„Ar„) V""n7. (5 )

Fs7 is the grani'tatiorial geld and has 40 independent
components, instead of only 6 for the electromagnetic
field. Incidentally, let us note that the mathematical
meaning of the equivalence principle simply is that in
the Einstein equations (4'), g ~ and V ~ never appear
separately, but only in the combination g p.""We
shall, however, not make use of this important property
in the present work, but only of the fact that, T P

satisfies
16m- sT ~s= (16m. OT~' —Cl Vs')Pp,—. (24)

(This holds identically in the V s.) It then follows from
(2') and (4') that

We now consider a material system characterized by
a stress-energy tensor T P which satisfies the conserva-
tion law

K = Iip~ T»dU. (6')

T Pp ——0. (2')

The gravitational potential V P is a symmetric tensor
which satisfies the De Donder gauge

VaP 0

and the Einstein field equations

(3')

(4')

7L. Landau and E. Lifshitz, The Classical l'heory of Fields
(Addison-Wesley Publishing Company, Reading, Massachusetts,
1951),p. 206.

These equations actually are nonlinear, because the
stress-energy tensor T P must take into account con-
tributions from all fields, inclld&zg the gravitational

The zero component of E represents the total Qow of
energy, and is well known. "The three spatial compo-
nents represent the net thrust on the material system
due to the reaction of the outgoing radiation.

Up to this point, our treatment has been rigorous, and

A. Papapetrou, Proc. Roy. Irish Acad. AS2, 11 (1948).' A. Peres, Nuovo chnento 11, 617 (1959).
"For the reader who is familiar with general relativity and

may be scandalized by the approach of this paper, let us add that
our g &is the usual g & of general relativity, and that our T & is
what is usually called —Det(g»)T i . It is a second-rank tensor
density, and our Fp~" are linear combinations of the Christoffel
symbols. Finally,

16~,T ~=—UV ~ —Det(g, &)(R ~ ——,'Rg ~).
"R. H. Dicke, Phys. Rev. Letters 7, 359 (1961).
"W. H. Thirring, Ann. Phys. (New York) 16, 96 (1961).
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gram (2Tra 1ora 2Tkk)00m/fV (27)

and (19")$, without explicit reference to the interns, l

stresses T ".

4. SUMMARY AND OUTLOOK

We now introduce the mass quadrupole moment

Qmn TOO (&m&n 1 timn&k&k)/f V (19')

the mass octopole moment

and the How quadrupole moment

hymns [(T0400m TOm+s)+n+ (Tss+n TOn00s)&m

100k00k (2Tssgmn TOmgns Tsngms)

+1TOk&k(2&sgmn 00mgna &ngms) jdV(18'')

(Notice that Qmm= j7mm = /m =@mrs=Q. ) With the
help of (14') and (14") we then obtain

3Qmn —2g mn.
) (2Q')

4+mna —2 [gmns+gnsm+gamn

2(gmngskk+gnsgmkk+gsmgnkk)] (2Q//)

3+Tmns —gamn+g3snm 2J3mna

+1 (gsmgnkk+gsngmkk 2gmngskk) (2Q//)

and (17') can finally be written as

E"='Q"'[(8/45) 3E"'m (2/63) 4H—"' j (21').
On the other hand, the rate of loss of energy' ' would be
giVen by the SpCareS Of 'Q" 3&ram, and '&ram.

It is interesting to note that the final result can be
expressed. in terms of T" (the mass density) and T'"
(the momentum density) only [see Eqs. (18'), (19'),

hymns — TOO[&m00n&s 100k00k(gmn00s+pna&m+gsm00n) j/f V

(19//)

Gravitational radiation, which only a few years ago
was a rather mysterious phenomenon, is by now fairly
well understood. In the present paper, the author has
endeavored to show that it can be investigated by
exactly the same techniques as electromagnetic radia-
tion. While the present method can easily be generalized
to higher approximations (i.e., higher multipole mo-
ments), its domain of applicability is limited to the
vicinity of the material system emitting the radiation.
Roughly speaking, the series (12) and (12') will converge
rapidly only in a domain much smaller than the
wavelength.

Quite a different problem is the investigation of the
asymptotic properties of gravitational radiation at
large distances from its sources. This question has
recently been clarified by Sachs" and is also fairly well

understood by now. The remaining problem which has
not yet been solved is to establish the correspondence
between the asymptotic properties of gravitational radi-
ation and the structure of its sources. This can perhaps
be done by a WEB technique, as recently used by Suna'
in the case of electromagnetic radiation. The main diffi-

culty is that the "gauge" used by Sachs" is quite differ-
ent from (3'). (It is, in spherical polar coordinates,
V"=—1, V "=r' sine, V"=V'&=Q. ) We may hope that
this last problem will be solved in the not too distant
future. Pote added 223 proof. This question has recently
been clarified by T. A. sa/forgan and A. Peres (to be
published).
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