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Zy. In our model, there is no conserved current and
we should not expect that a zero of Z,® will occur to
cancel the zero of Z.

VI. CONCLUSION

We have explored the possibility that the complex of
fundamental interactions can be understood in terms
of the stable self-generated solutions of the coupled
Green’s function equations of field theory. Since in this
paper we have not tried to solve any integral equations,
we have made no predictions which conclusively test
the validity of this idea. Rather, we have consistently
made the most naive approximations to the integral
equations in order to reduce them to algebraic equa-
tions. Our purpose has been to show that there is the
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possibility of explaining fundamental interactions along
these lines. There remains the more difficult practical
problem of finding more reasonable approximations to
the equations. There are also the basic problems dealing
with stability criteria, the possible appearance of zero-
mass particles,* and the existence of divergences, which
must be understood before these ideas can become a
complete theory.
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The conditions under which a material system may recoil while emitting electromagnetic or gravitational
radiation are investigated. The lowest order secular effects in the electromagnetic case arise from an inter-
ference of the electric dipole radiation with the electric quadrupole or magnetic dipole radiations. In the
gravitational case, the lowest order terms involve the interference of the mass quadrupole radiation with
the mass octopole or the flow quadrupole radiations. The investigation of the gravitational radiation recoil
is carried out in complete analogy with the more elementary electromagnetic case, so that this paper should
be accessible to physicists having no previous knowledge of general relativity theory.

1. INTRODUCTION AND NOTATIONS

T is well known that a material system can dissipate
energy in the form of spherical waves radiated to
infinity. In classical theory, these waves may be either
electromagnetic! or gravitational,>® and if they are
emitted mostly in a preferred direction, then the
emitting system will recoil in the opposite direction, like
a rocket. However, while “photon rockets” have been
largely publicized, the possibility of measuring gravita-
tional radiation recoil is still far beyond our experi-
mental techniques,* and even theoretical investigations
have hitherto been restricted to a very special model.?
The main purpose of this paper is to present the
general theory of gravitational radiation recoil. The
calculations will be valid for any kind of motion (rota-
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tional, vibrational, or other) but with the condition that
the material system remains localized within a finite
volume. Only secular effects will be considered, i.e.,
those effects which do not average to zero over a long
time interval.

In order to make these interesting questions accessible
to the reader who is not a specialist of general relativity,
we first present, in Sec. 2, the theory of electromagnetic
radiation recoil, using the same tools as will later be
needed in the gravitational case. It is found that the
lowest order effects arise from the interference of the
electric dipole radiation with either the electric quad-
rupole radiation or the magnetic dipole radiation. This
could have been expected on general grounds, because
the recoil force must be bilinear in the various multipoles
(since the Poynting vector is), and the only way to
construct a three-dimensional vector is to contract a
27 pole with a 27! pole. (Magnetic 2» poles are homo-
geneous to electric 27t poles.)

In gravitational theory, the analogs of the electric
and magnetic 2" poles are the mass and flow 2» poles,
which are defined in the same way, masses playing the
role of charges. However, there can be neither mass nor



2472

flow dipole radiations, because of the laws of conserva-
tion of linear and angular momenta.® One can therefore
expect that the lowest order terms in the gravitational
case will be due to the interference of the mass quad-
rupole radiation with either the mass octopole or the
flow quadrupole radiations. The explicit calculations
are carried out in Sec. 3, in a way which closely follows
the pattern of the more elementary electromagnetic
case. In particular, corresponding equations are labeled
by the same numbers, with primes.

Finally, Sec. 4 is devoted to a brief review of our
present status of knowledge of gravitational radiation.
A possible program for future research is outlined.

Throughout this paper, we use natural units
¢=G=4wey=1. Greek indices run from 0 to 3, Latin ones
from 1 to 3. The Minkowski tensor, diag(+1, —1,
—1, —1), is denoted by gas (this is not the usual con-
vention in general relativity) and serves to raise and
lower indices. An index placed after an already defined
symbol means partial differentiation. However, time
derivatives are also denoted by left superscripts, e.g.,
TTeb=97T*8/a/".

Finally, we note that as a consequence of our assump-
tion that the system is localized within a finite volume,
it follows that one can take effectively, in the approxi-
mation required to compute the secular effects of radiation,
that S'F.dV =0, where F is any function of the field
sources.? For a=1, 2, 3, this equation is a trivial conse-
quence of the Gauss theorem. For a=0, it can be
written as d(/"FdV)/dt=0, and means that the average
value of the time derivative over a long time interval
vanishes in the required approximation. Throughout
this paper, we shall make an extensive use of this
property, in the form

/ ABodV=— / A BdV, )

4 and B being any two functions of the material sources.

2. ELECTROMAGNETIC RADIATION RECOIL

We consider a system of charges characterized by
a current density J¢ which satisfies the continuity
equation

Je.=0. (2)

The electromagnetic potential 4« in the Lorentz gauge
A2,=0, 3)

satisfies the field equations
Ode=4rJ=. 4)

The electromagnetic field is
Fap=Apa—Aas, ®)

6 J. Boardman and P. G. Bergmann, Phys. Rev. 115, 1318
(1959).
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and the 4-force on the material system is given by
K= /FaﬁjﬂdV. (6)

The zero component of K, represents the total flow of
energy, and is well known.! The three spatial compo-
nents represent the net thrust on the material system
due to the reaction of the outgoing radiation.

From (1) and (2) it follows that

/Aagfﬁde —/Aafﬂ,ng=0, @)
whence

K= / T 4ndV. (8)

To evaluate (8), we solve (4) for A, taking the retarded
potential solution

Areta:%(Areta—'Aadva)—*‘%(Axeta+Aadva)- (Q)

The last parenthesis, however, is time symmetric, and
thus cannot contribute to any secular radiation effect.
Thus, for our purpose, we can effectively take that

Aa:%(Areta_Aadva)) (10)

! / [Je(t—R)—J*(+R)JdV/R,  (11)
2

where R=|x—X]|, x being the argument of 4= and X
the variable of integration. We now expand (11) about
¢, by means of the Taylor theorem. (This may impose
some restrictions on the time derivatives of J2, namely,
that the velocities and accelerations of the charges are
not too large.) Assuming that such an expansion is valid,
we obtain

A== / [k CTuR/30+ (T RS+ TV, (12)
whence
Am=— / [(237/3) 4 (45T R/5)+- - TR"dV. (13)

Before we substitute this result into (8), we note that
for any function Z

/"]oZdV=—/"—1JkadV, (14)
in virtue of (1) and (2). In particular
Agm= —/{[2 2] w/31]
+[447k(8R*R™/3R¥)/5V])- - -}dV. (15)
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The first term gives no contribution to the recoil, as may
be seen with the help of (1), (8), and (14). We finally
obtain, from (8), (13), and (14)

Kpm— / / (7 @)[4474(X) (9RR"/0R*)/51]

+TE@[2 3, X)R"/3 N dxd*X,  (16)

where we have omitted the contribution from higher
order terms (hitherto denoted by three points). By
repeated use of (1) and (14), this can be brought to the
form

Km=(2/15) \D* (4 E*m— Emk— §kmFnn) ¢¥))

where !D¥= [ 1Jo%*kdV = [ J*dV and Em*= Jf 3]mxrdV.
We now introduce the magnetic dipole moment

Mm"=/(]mx”—f"x"‘)dV, (18)
and the electric quadrupole moment
Qmr= /J°(xmx"~%6m"x’°x’°)dV, (19)

from which we obtain, with the help of (14)
1Q”‘"=/(J"‘x"+]”xm— (2/3)6mnJkx®)dV.  (20)

With these notations, (17) can finally be written
Krm=—D(1/5) Q4+ (1/3) M. (21)

It is interesting to compare this formula with the one for
the rate of energy loss, which is given by the squares of
2Dk 3Qkm and 2M*™ (no interference).’

3. GRAVITATIONAL RADIATION RECOIL

We now consider a material system characterized by

a stress-energy tensor 7°# which satisfies the conserva-
tion law

2"

The gravitational potential V*f is a symmetric tensor
which satisfies the De Donder gauge

T“‘sg= 0.

Vaﬂﬂ =0, (3 ’)
and the Einstein field equations
OVef=16xT<b. 4"

These equations actually are nonlinear, because the
stress-energy tensor 7'*# must take into account con-
tributions from all fields, including the gravitational

7L. Landau and E. Lifshitz, The Classical Theory of Fields

(Addison-Wesley Publishing Company, Reading, Massachusetts,

1951), p. 206.
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field. We shall write
Teb= TP+ ,T, (22)

where the subscripts m and g stand for “matter”
and “‘gravitational field,” respectively. ,7f is a compli-
cated function of the V*# (and only of them). It contains
terms which are quadratic in the first derivatives of
Vet and also some second derivatives of V2B, the
coefficients themselves being algebraic functions of
V889 Fortunately, the exact form of ,7%f is not
required for our purpose.
We now introduce the following notations'®:

geP=g P +V,  Qapdfr=0a", (23)
and
Fﬂva=%[91ﬁvwa7+ngvwaﬁ
‘i‘gmr (%Qﬂvguv_ gﬂu@w) V"vr]' (51)

Fgy is the gravitational field and has 40 independent
components, instead of only 6 for the electromagnetic
field. Incidentally, let us note that the mathematical
meaning of the equivalence principle simply is that in
the Einstein equations (4'), g® and V< never appear
separately, but only in the combination g«8.1.12 We
shall, however, not make use of this important property
in the present work, but only of the fact that ,7'¢#
satisfies

16w ,T*g= (167 ;T8 — O VE")F 2. (24)

(This holds identically in the V*8.) Tt then follows from
(2’) and (4’) that

mT“’s,3=mTﬂ'Y Fg,e. (25)

The left-hand side is the divergence of the matter part
of the stress-energy tensor, and is therefore equal to the
force density acting on matter from all the fields not
included in ,7*f. It is just the gravitational force
density. Thus, the total gravitational force acting on
our material system is

Ko= / Fay® wTE7AYV. (6')

The zero component of K* represents the total flow of
energy, and is well known.?® The three spatial compo-
nents represent the net thrust on the material system
due to the reaction of the outgoing radiation.

Up to this point, our treatment has been rigorous, and

8 A. Papapetrou, Proc. Roy. Irish Acad. A52, 11 (1948).

9 A. Peres, Nuovo cimento 11, 617 (1959).

10 For the reader who is familiar with general relativity and
may be scandalized by the approach of this paper, let us add that
our g°f is the usual g*8 of general relativity, and that our 78 is
what is usually called —Det(g,s)78. It is a second-rank tensor
density, and our Fg,® are linear combinations of the Christoffel
symbols. Finally,

167 y T8 = 1V *8— Det (g5) (R*8 — } Rge8).

1 R. H. Dicke, Phys. Rev. Letters 7, 359 (1961).
12 W. H. Thirring, Ann. Phys. (New York) 16, 96 (1961).
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no approximations were made. We shall now suppose
that the Vf are small, compared to unity (at the surface
of the Sun, the largest one, V%, is of the order of 10-%)
so that we can safely replace, in (5'), g*f and g.s by g*#
and ga.s. We can thus write

Foy2=3(Veg,+Vpst3ge, Vam@—Vpy®). (5)

For the same reason, we can replace ,7'*f in the right-
hand side of (6’) by T=5.
From (1) and (2) it thus follows that

/ Vg, THYdY = — / Ve TP0,dV=0,  (7)
whence
1
Km:ZfTaﬁ(zVaﬁm_gaBVvvm)dvy (81)
1
- / [T00 (V80,4 V%,,) — ATOF Y0k,
4
27?4V 24, - T?2(VO0,— V) V.  (8")

To evaluate (8'") we solve (4') for V*#, taking the re-
tarded potential solution

VrctaB: % (Vretaﬂ_ Vadvaﬂ) +% (Vretaﬂ+ Vadvaﬁ)- (9/)
The last parenthesis, however, is time symmetric, and
thus cannot contribute to any secular effects. Thus, for
our purpose, we can effectively take that

Veb= % (Vretaﬁ_ Vadvaﬁ) ’ (10/)

=2 / [Tf(t—R)—T*#(t++R)JdV/R, (11")

where R=|x—X|, x being the argument of V# and X
the variable of integration. We now expand (11’) about
¢, by means of the Taylor theorem. (This may impose
some restrictions on the time derivatives of 7%, namely,
that the velocities and accelerations of the masses are
not too large.) Assuming that such an expansion is valid,
we obtain

Veb=—4 / [{TeF-+ (T=8R?/31)+ (*T*BR%/5!)

+(T*8RS/T))+--- 1AV, (12))
whence
Veb,=—4 / [23T«8/31)4 (4 5T*BR2/5")
+ (6 "T*ERY/T)+- - - IR™dV. (13")

Before we substitute this result into (8"), we note
that for any function Z

PERES

/ 0z dY = / n2Tvag, dV, (14))
and ‘
/"T""ZdV———-/”“lT’""Zde, 14
in virtue of (1) and (2’). In particular
C— / [(43T7e/5) (RR"),,
+(6 579/ T) (RR™)t++- 10V, (15')
and
Yok, =4 / [(227%m/31)
+ (44T%/51) (AR2R™/9R™)+ - - - JdV. (15"
We thus obtain, from (8), (13") (15), and (15")
K= [ [0 reysy @,
+(6 5T29/71) (RER™) pg b - - - + (2 3THRm/31)
+ (4 5T*R2R™/51) 4+ « - JH-4TOk[ (2 2T*m/31)
+ (4 4T%"/5) (OR2R™/R™)+-- - - ]
TR TS (RR™ ot
—(23T#pRm/31)— ...
2T (23T7R"/31)+ - - - PdadX. (16')

Further use of (1), (14'), and (14"') shows that the last
terms in the first, second, and third row vanish, and it
remains

Km= — .T” 3T (X){[6(R4R™) 500/ 7!
// ® T (X) (6 RER™) o/ T']

+[48.0 (R2R™) 15/ 51 ]—[168,,(R2ZR™),, /5]
46,405 R™/3 1]+ [46,s(R2R™) o/ 5]

—[28,:8uR™/3 T} d2d®X, (16'")

where we have omitted the contributions from higher
order terms (hitherto denoted by three points). A
lengthy but straightforward calculation then leads to

Km= (S/IOS)A rs (66””B8kk+63m”“ 1 IBr.sm)’ (17/)
where

Arsz/(lj‘ra_%ars ITIcIc)dV, (26)
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and
Brem= / (T7s—36m TR )xmd V. @n
We now introduce the mass quadrupole moment
Qmr= / T00 (xmyn—L5mrxkx®)dV (19)

the mass octopole moment

Hmns = /TOO[xmxnxs_%xkxk(amnxs_!_5nsxm+6smxn)]dl/,

(19")
and the flow quadrupole moment
Nmns— /E(Tﬂsxm_ TOmxs)xn_l_ (TOsxn__ T(]nxs)xm
— %xkxk (2T086mn_ Tomgns T(mams)
Tk gk (2pegmn — ampne—gngm) AV, (18))

(Notice that Qmm=Hmms= Nmms=Nmss=().) With the
help of (14’) and (14"") we then obtain

3an= 24 mn’
4fmns — ZEan8+anm+Bsmn

(20)

—Z(§mnBskk-gns Brkk 4 gsmBnkE) ] (20/)
3)ymns — Bsmn | Bsnm_ ) Bmns
+1 (somBrkkf genBmkk_gmnBakk)  (20'7)
and (17’) can finally be written as
Km=3Q7s[ (8/45) 3N7=m— (2/63) *H™™]. (21')

On the other hand, the rate of loss of energy**® would be
given by the squares of 3Q7, 3N7s™ and *Hrs™.

It is interesting to note that the final result can be
expressed in terms of 7% (the mass density) and 79
(the momentum density) only [see Egs. (18", (19,
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and (19”)7], without explicit reference to the internal
stresses 7™".

4. SUMMARY AND OUTLOOK

Gravitational radiation, which only a few years ago
was a rather mysterious phenomenon, is by now fairly
well understood. In the present paper, the author has
endeavored to show that it can be investigated by
exactly the same techniques as electromagnetic radia-
tion. While the present method can easily be generalized
to higher approximations (i.e., higher multipole mo-
ments), its domain of applicability is limited to the
vicinity of the material system emitting the radiation.
Roughly speaking, the series (12) and (12") will converge
rapidly only in a domain much smaller than the
wavelength.

Quite a different problem is the investigation of the
asymptotic properties of gravitational radiation at
large distances from its sources. This question has
recently been clarified by Sachs'® and is also fairly well
understood by now. The remaining problem which has
not yet been solved is to establish the correspondence
between the asymptotic properties of gravitational radi-
ation and the structure of its sources. This can perhaps
be done by a WKB technique, as recently used by Suna'4
in the case of electromagnetic radiation. The main diffi-
culty is that the “gauge” used by Sachs® is quite differ-
ent from (3’). (It is, in spherical polar coordinates,
V0= —1, Vor=42ging, Vo= V%=(.) We may hope that
this last problem will be solved in the not too distant
future. Note added in proof. This question has recently
been clarified by T. A. Morgan and A. Peres (to be
published).
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