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Following Nambu, Jona-Lasinio, and Goldstone, we seek nonperturbative solutions of quantum field
theory. We first consider a model which possesses the higher symmetry SU(3). We find that without the
introduction into the Lagrangian of any symmetry-breaking terms, solutions exist which have only the
lower symmetries of isotopic spin and hyperchange. We also show that the usual electrodynamic interaction
of the muons and the electrons allows the possibility of generating a mass splitting between them. Finally
we consider a Lagrangian in which the bare coupling constants are set equal to zero, and self-generated re-

normalized coupling constants are found.

INTRODUCTION

HE present quantum field theory of elementary

particles is beset by difficulties of many sorts:
the appearances of divergences, possible inconsistencies,
and the inadequacy of methods of calculations. But
perhaps most discouraging is the fact that it seems
necessary to employ an extremely complicated La-
grangian if there is to be any hope of describing the
variety of elementary particle phenomena. It seems
necessary to introduce a hierarchy of interactions with
various elaborate symmetry properties: strong inter-
actions, medium strong interactions, electromagnetic
interactions, and weak interactions. The symmetries of
one interaction always conflict with symmetries of
others. The electron and muon are alike except for their
mass difference; the B-decay interactions maximally
violate conservation of parity, except for the axial-
vector renormalization due to strong interactions; and
possible higher symmetries, like unitary symmetry, are
broken by the medium strong interactions. Thus, it
seems that we must take for the Lagrangian a sum of
terms with unrelated properties. None of the coupling
constants and masses appearing in the world Lagrangian
may be calculated and no simple principle explains why
the Lagrangian has the form that it does.

This situation may be contrasted with the state of
affairs in atomic, molecular, and solid-state physics
where a single law describes the great variety of
experimental data. Complexity arises from the com-
plicated nature of the solutions to a simple fundamental
equation involving only electromagnetic forces. Should
not the complexities of the phenomena of elementary
particle physics likewise arise from a “simple” funda-
mental theory?

Such a possibility was discussed by Heisenberg!:? and
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co-workers. They pointed out that the equations of
quantum field theory are nonlinear operator equations.
Since nonperturbative solutions to nonlinear equations
do not in general possess the symmetry of the equations
themselves, it is conceivable that the field equations
may be highly symmetric expressions, while their
solutions may reflect the asymmetries of nature. This
is the philosophy we adopt in this paper.

This idea has been developed along different lines in
the work of Nambu and Jona-Lasinio® and Goldstone?
upon which this work is based. Nambu and Jona-
Lasinio have shown that solutions to a field theory may
exist which lack the symmetry of the Lagrangian: in
particular, they show how theories with a v symmetry
may admit Fermion states of finite mass. The present
work is a straightforward application of these ideas to
other kinds of invariances of the Lagrangian®: to so-
called “internal symmetries” like isotopic spin and its
generalizations; to a conjectured muon-electron sym-
metry; and to space reflection.

We base our analyses upon the coupled nonlinear
equations for the one-particle Green’s function and the
vertex function (the Dyson equations). These were
originally deduced by Dyson® for quantum electro-
dynamics by formally summing perturbation theory.
Since the perturbation solution always possesses the
symmetry of the Lagrangian, it is essential that these
equations have meaning independent of the pertur-
bation expansion. This was shown to be so by
Schwinger” when he derived these equations from field
theory using his action principle. Thus, they form an
adequate starting point for our search for nonpertur-
bative symmetry-violating solutions to a symmetric
field theory.

We propose that a nonperturbative behavior char-
acterizes all the interactions to which elementary
particles are subject. Mass is completely dynamical;
mass splittings and “approximate symmetries” result
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from nonsymmetric solutions to a fully symmetric
Lagrangian theory.

Our approach has all the divergence difficulties of
quantum field theories.

To carry out a sufficiently detailed analysis proving
that the nonperturbative solutions are the ones that
are actually realized in nature would require the use of
reasonable approximations and realistic models. This
is not the purpose of the present work. Rather, we
demonstrate that several models, described by La-
grangians with extensive symmetries, do admit solutions
with lesser symmetry. It is thus made plausible that the
intricacies of the physical world are not reflected in an
equally intricate fundamental theory.

To illustrate how the nonsymmetric solutions arise,
let us consider #» Fermions symmetrically coupled to
m Bosons by means of unspecified Yukawa interactions.
An arbitrary S-matrix element may be expressed as a
power series in the exact Fermion Green’s functions
Gi;(p), the exact Boson Green’s function D,s(k), and
the complete vertex operator I';;,(p,k). The power
series extends over all irreducible diagrams which con-
tribute to the element of the .S matrix being considered.
The functions G, D, and T' are themselves determined
by solving the Dyson equations. The usual solutions to
these equations correspond to a perturbative solution
in powers of the renormalized charges, gij,, and the
zero-order solutions, G;;°, Do’ and T';;, which are the
usual noninteracting functions referring to the physical
masses. For a renormalizable theory, this is the way the
renormalized perturbation theory is usually developed.

These perturbative solutions clearly have the same
symmetries as the Lagrangian, and the resulting S
matrix also has these symmetries.

We follow this prescription for the determination of
the S matrix with one exception. We observe that the
nonlinear equations for D, G, and I may possess other,
nonperturbative, solutions which possess less symmetry
than the Lagrangian. At this stage, we know of no way
to tell which of the solutions to the Dyson equations
are the physically realized ones. On the other hand, no
obvious physical principle indicates that the symmetry-
preserving perturbative solution should be preferred to
the symmetry-breaking solutions. Perhaps a kind of
stability criterion can be found that determines which
are the physical solutions.

In the next sections we show explicitly that symmetry-
breaking solutions do exist for G, D, and T in a variety
of models. The S matrix constructed from these solu-
tions necessarily violates the symmetry as well.

In Sec. IT we illustrate this approach by obtaining
nonsymmetric solutions in a theory possessing isotopic-
spin symmetry. In Sec. IIT we consider a theory of
physical interest which possesses the higher symmetry
SU(3). We find that without the introduction into the
Lagrangian of any symmetry-breaking terms, solutions
exist which have only the lower symmetries of isotopic
spin and hypercharge. In Sec. IV we show that the
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F1c. 1. Contributions @
to Zii(v-p).
(a) (b)

usual electrodynamic interaction of muons and the
electrons allows the possibility of generating a mass
splitting between them. In Sec. V we consider the vertex
equations for the vector and axial-vector couplings of a
vector boson with Fermions. We show that the require-
ment that the bare coupling constants vanish imposes
self-consistency conditions upon the renormalized
coupling constants. In a simple approximation these
conditions imply that the renormalized interactions
either conserve parity or violate it maximally.

We emphasize that these results are all obtained
within the context of the conventional Green’s function
equations of field theory once it is realized that these
nonlinear equations, in general, do possess solutions
without the symmetry of the equations.

II. THE TWO-FERMION PROBLEM

For our first model, we consider two self-coupled
Fermion fields with bare mass zero and with an inter-
action invariant under isotopic rotations,

Y —expie- <)y, ¥—Pexp(—ia-z), (2.1)
and under the discrete 5 transformation,®
‘p_—)’Yﬁ‘p) 1;—9 I/;'YB' (22)

We choose the Lagrangian used by Banerjee? in his
discussion of the work of Nambu and Jona-Lasinio,

&=+l 0 Y+ g (W) + f(Pysp)?
+g' Prys)*+ f (@)
f=g and f/=gl7

then £ is invariant under the continuous vs trans-
formation,

2.3)
I
(2.4)

Yo erp, P — Jeers, (2.5)

while if f'=g¢ and f=g/, £ is invariant under a con-
tinuous z7ys rotation

¥—expl (e =)vs ¥, ¥— Pexpl(a-)ys] (2.6)

We wish to express the integral equations for the
self-energy operator =(p). Z(p) is obtained by summing
all the diagrams of Figs. 1(a) and 1(b). Denote the
contributions of Fig. 1(a) to the self-energy matrix
Zij(v-p) by 2P (y-p):

d

?
BW=—i3 hkO,-fk)/ (
k

)

t[OWG(y-p)], (2.7)

8We use anti-Hermitian v,’s satisfying vuv,+v,ve= 2w,
goo=—1, gis=1, ys=7"y"y"y>
9 H. Banerjee, Nuovo cimento 23, 597 (1962).
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where

OB =1, Y, Yu¥5, Ty V5, %5 ¥¥ur TY&YVS) S0y TYs,

and %y are definite linear combinations of f, g, f’, and
¢’. In terms of the self-energy operator, the Green’s
function G;;(p) is determined by

G (v 9))= (v p8i+Zii (v p))-

Contributions to Z;;(p) from Fig. 1(b) involve the four-
point vertex operator I', which itself can be expressed
in terms of G and I' by summing all irreducible vertex
diagrams. This yields a set of coupled integral equations
(not in closed form) for = and T'. We wish to determine
whether there are solutions to these equations which
break the continuous isotopic spin symmetry. We must
emphasize that the Lagrangian (2.3) is used only to
illustrate the possibility that there may be solutions
to the Dyson equations which lack this symmetry. It
is not intended to describe real neutrons and protons.

The theory described by (2.3) is not renormalizable.
Even after the Dyson equations and the .S matrix are
re-expressed in terms of physically measured coupling
constants and masses, cutoffs must still be used in
order to obtain finite results. The procedure of replacing
bare parameters by physical parameters should never-
theless be carried out in order to develop a consistent
approximation scheme in terms of physical quantities.

In the usual fashion, we may obtain equations which
determine the bare masses and charges in terms of
physical masses and charges (and in terms of the cutoff).
Like Nambu, we take the view that all masses are
dynamical, and can be determined from these equations
self-consistently by setting the bare masses equal to
zero.

The Lehmann representation requires Gy(yp) to
have poles at the physical masses of the particles. The
renormalized Green’s function G?,-j is defined so that

(2.8)

227

1
_— (2.9)
Y- ptme

while Gm, Ga1 have no pole singularities. The wave-
function renormalization (here, a two-by-two matrix)
bringing G;; to the form (2.9) is undefined to within an
arbitrary rotation in isospace because of the symmetry
of the Lagrangian. We may thereby write, with no loss
of generality,

Gis(yp)=(Z:Z)'Gii(y-p).

We shall use only a lowest approximation in this work,
so that we need not carry out the renormalization pro-
cedure in any detail—we only emphasize its importance
for a more refined calculation.

Our approximation to the Dyson equations consists
in taking

(2.10)

Zij(y- P25,
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as given by (2.7). In this approximation an expression
for the vertex operator is not required. Moreover, Z;;)
is independent of v p, so we may write (after a suitable
isotopic rotation of the fields),

2y p)=mvbit+ms(r3) =M ;. (2.11)

Because Z;;(y-p) is a constant, the Dyson integral
equations reduce simply to a set of algebraic equations
for mg and my:

Gy p))ij= (vp+M;)

and
a*p
Mg=—iY, kkOij(k)/
k (2

)

tr(0OW@).  (2.12)

We can interpret the /%, as renormalized coupling
constants. Gi;=Gyj, since the Z; of (2.10) are one in
this approximation.

This is the starting point of the work of Nambu and
Jona-Lasinio. We have presented a detailed discussion
only to illustrate what approximations are required
and what must be done in order to find better approxi-
mation solutions. For a discussion of the axial-vector
currents and of the vertex operator, it is imperative to
carry out the renormalization procedure. This will be
seen in Sec. V with reference to a different model.

Unlike Nambu and Jona-Lasinio, we allow M ;;to be a
matrix (2.11) and we anticipate solutions to (2.12) for
which a mass difference between the two particles
appears. This is the essential point of the present work.

With the Lagrangian of (2.3), (2.12) becomes

i [ odp
M= —— Te+ f+3¢'—3f
8/(21r)4{(g f+3¢' =31

Xos; i (M+y-p) ]+ (f—g—g +9/")

X (r3)ss il rs(M+vy-p)71 ]}, (2.13)
This equation for the two masses,
mi=my+mg and me=mg—my,
can be written in the form:
m1=)\1m1F(m12)+>\2M2F(’WL22), (2 14)
mgz)\zmlF(mlz)—I—)\1m2F(m22),
where
MN=3g+¢'+31+ 1, (2.15)
Ne=4g+2¢'—6f, (2.16)
and
a*p
F(m?)=—i f (P*+mA)IG(p*/A%).  (2.17)
(2m)*

With the same covariant cutoff factor G(p?/A?) used in
reference 3, we obtain

A2 m? A?
F(m?)= [1—— 1n(1+—>]. (2.18)
167 A? m?
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We define the more convenient parameters

x=mi/A, y=ms/A, (2.19)
a=A2\,/161, (2.20)
y=A2\y/1672, (2.21)
f@)=1—a2In(141/22), (2.22)

and rewrite (2.14) in the form

x=axf@)+vyf(y), y=vaf(x)+ayf(y). (2.23)

Note that the continuous symmetry of £ is reflected in
the permutation symmetry of (2.23).

There are several kinds of solutions to (2.23).
Certainly, x=y=0 is one solution. This solution is
consistent with all the symmetries of the Lagrangian
and is the usual perturbation theory solution. There
are also solutions for which x=9>0. Such solutions
require

(aty)fx)=1, (2.24)
0.6
B=-02
0.5
0.4+ B=-0.1
i
h{x) 0.3 — B-o0
0.2 -
0.1
B=+02
o] 1 1
[o] 1 2 3
X—b

F16. 2. i(x) = f(x) —Bx for several representative values of .

and exist so long as
at+y>1. (2.25)

These are the nonperturbative solutions discussed by
Nambu and Jona-Lasinio. They are compatible with
isospin invariance (2.1), but they break v; symmetry
(2.2).

There are also solutions for which x5£y. They break
both the symmetries (2.1) and (2.2).

To see that such solutions do appear for certain
ranges of the coupling constants, it is convenient to
rewrite (2.23) in the form

x+y=Gxf(x)—Bx], a+y=GLyf(y)—By]l, (2.26)
where

G=v"(y"—0a?), (2.27)

B=(@—7y)™ (2.28)

For two solutions to occur with x17%xs, it is necessary
for the function

h(x)=xf(x)—Px (2.29)

ELEMENTARY
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Fi1c. 3. Schematic diagram indicating values of G and g for which
exceptional solutions occur in the three-field model. In I the three
masses must vanish; in IT there are nontrivial solutions with all
masses equal; in IIT there are solutions with two masses equal;
in IV nondegenerate solutions exist.

to assume the same value ¢, for at least two distinct
positive arguments, say @ and b. Then either

x=a, y=0b
or (2.30)
x=b, y=a

satisfies (2.26) providing that
G=(a+d)/c. (2.31)

It is evident from Fig. 2 that 4(x) has the required
property for

~—0.2<B<+1. (2.32)

For g fixed and within this range, there will be a range
of values of G [determined by (2.31)] for which
asymmetric solutions exist. This is illustrated in Fig.
3. In Fig. 4 the possible values of x and y are shown for
several representative values of B. Note that the
situation is most complicated for ~—0.2<3<0, when

2

F1G. 4. Mass spectrum (x,y) is shown for representative values
of B. Each curve is parametrized with respect to G. This figure
applies both to the two-field solutions and to the partly degenerate
three-field solutions (but with different parametrizations in the
two situations). For each curve, the minimum value of G corre-
sponds to the point of closest approach to the origin.
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the function inverse to % is three valued (all values
positive), and (2.30) have a variety of solutions.

If G and B (or equivalently, the initial coupling
constants, f, g, f and g’) are chosen so that solutions
with x7y exist, then there are also solutions for these
same values of G and B for which x=y=0, or x=y>0.
Evidently, some other principle must be invoked in
order to determine which kind of solution is actually
realized in nature. Perhaps the symmetric solutions
may be eliminated by some kind of stability criterion,
but we have not answered this question.

We used an extreme approximation for 2 in which
it is a constant. If more involved contributions are kept,
we are forced to solve integral equations to determine
G. Let us suppose that these equations, like our simple
algebraic equations, have as a solution a Green’s
function lacking the isotopic symmetry. This cannot
be the solution corresponding to the usual perturbation
theory based upon a symmetric zero-order solution.
However, we might conjecture that this asymmetric
solution can be developed in a perturbation expansion
about the symmetry-breaking solution we have just
determined. If this conjecture is true (and we have no
firm reason to believe that it is) then the predictions
of this theory may be expressed in a perturbation series
in terms of the physical (nonsymmetric) masses and
physical (also nonsymmetric) coupling constants.

This formal solution to the exact equation always
exists, just as the fully symmetric solution in terms of a
perturbation theory compatible with the symmetries of
£ always exists. The question is whether or not there
appear still other solutions to the Dyson equations which
cannot even be expressed as a perturbation theory of
this kind. We might assume that there are no such solu-
tions, and moreover, that the stability criterion which
is used to exclude the symmetric solutions does not also
exclude the symmetry-breaking solutions. A more de-
tailed consideration of this point is necessary.

Under the above assumptions, we can attach physical
significance to the nonsymmetric lowest order solutions
of the Dyson equations.

Consider the behavior of the physical masses as
functions of one of the coupling constants, #;(g). In
general, there is a critical coupling constant g, so that
for g<g. this particular solution does not appear.
Having excluded the symmetric solution by a stability
criterion, we are left with no physically realizable solu-
tions for g<g.. Thus G;;=0 in this approximation. This
suggests the behavior of an unstable particle for which
the Green’s function indeed has no pole. One might
look for complex solutions to (2.26) if there are no real
solutions of the desired type, and determine the lifetime
from the imaginary part of the mass. However, it is
really necessary to carry out a better approximation for
the Green’s function in such a situation.

If this is the correct origin of unstable particles, an
important corollary appears: either a solution exists in
lowest order and all the particles are stable; or there is
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no solution in lowest order, and all the particles are
unstable.

In the next section, we discuss a more realistic model
with SU(3) as the starting symmetry. In such a theory,
all eight baryons comprise a unitary octet as do the
eight pseudoscalar mesons. There also appears to be an
octet of vector bosons. It is a remarkable fact that all
eight baryons are stable with respect to strong inter-
actions, as are all the pseudoscalar mesons. This re-
quires many inequalities among their masses,
My— A <My Mg— A <pK, py<Aur, etc. For the vector
particles, all the inequalities run the other way,
ME*S> UK+ r, po>3ur, etc; all there particles are un-
stable. This behavior is understood from the point of
view of the preceding paragraph.

There is a problem with this approach which has been
discussed by Nambu® and Banerjee.® The continuous
symmetry of the Lagrangian implies certain conserva-
tion laws. These laws put restrictions on the form factors
determined by the matrix elements of the conserved
current between single particle states. If there are one-
particle states which violate the original symmetry of
the Lagrangian, the resulting conditions on the form
factors indicate the existence of zero-mass bosons. At
this stage, we do not know under what circumstances
such particles actually do arise. A detailed discussion of
this problem is essential.

To summarize this section, we have shown how a
spontaneous breakdown of isotopic spin symmetry can
occur in a theory described by a Lagrangian with this
symmetry. This is not the situation of physical interest.
In the next section we will see the possibility of the
spontaneous breakdown of unitary symmetry leaving
only the observed isotopic spin and hypercharge sym-
metries. Thus the concept of a higher symmetry is given
an exact meaning even in a world where only a lower
symmetry appears.

III. THE THREE-FERMION PROBLEM

We consider three self-coupled Fermion fields with
zero bare mass and with interactions that are invariant
under the unitary symmetry group SU (3),

‘P_’") eXP@“'Q‘)‘I’: KZ—_) exp(‘_i“‘a)\z; (31)

where the A are eight properly normalized traceless
three-by-three matrices,”® and under the discrete vys
transformation (2.2). We choose for the Lagrangian

L=ty dup+g W)+ f(Prap)*
+g Gy + f (G (3.2)

If f=g and f/=g’, £ is also invariant under the con-
tinuous s rotations of (2.5), while invariance under
continuous Ays rotations requires"! f=g=f'=g'. Pro-
ceeding exactly as in Sec. II, we deduce the following

10 M. Gell-Mann, Phys. Rev. 125, 1067 (1962).
1S, Coleman and S. L. Glashow, Ann. Phys. (New York) 17,
41 (1962).
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equations for the physical masses by setting the bare
masses equal to zero,

m1=)\lm1F(m12)+)\2{M2F (7}122)+M3F(1’}’L32)},
Moo= )\1M2F (m22)+)\2{m3F (m32)+m1F (m12) } y
M3=)\1M3F (M32)+)\2{M1F (m12)+m2F (M22)},

where F(m?) is given by (2.18), and A\; and . are linear
combinations of f, g, f/, and g’ different from (2.15)
and (2.16). The continuous symmetry group of £ shows
itself in the symmetry of (3.3) under any permutation
of the three masses. This permutation group is a dis-
crete subgroup of SU(3). Introducing the dimensionless
masses,

(3.3)

x=mi/A, y=ms/A, z=m3/A, (3.4)
we find
xt+y+z=Glxf(x)—Bx],
x+y+z=Glyf(y)—By], 3.5)

a+y+z=Glzf(z)—Bz],

where G and 8 are related to A\; and A, through (2.20),
(2.21), (2.27), and (2.28). Again, there are several
kinds of solutions to (3.5). The perturbative result is
x=y=2=0. There is also a completely degenerate solu-
tion with x=y=2>0 providing that

(1-B)G>3.

Nondegenerate solutions occur only when the right-
hand side (rhs) of (3.5) can take the same value for
several distinct arguments.

For 0<B<1 there are at most two abscissas corre-
sponding to each value of the left-hand side (lhs) of
(3.6) (see Fig. 2). For this range of 3, there is no solution
with three distinct masses. If x denotes the repeated
mass and y the unequal mass, (3.5) reduces to

20+y=G[xf(x)—Bx], 2x+y=G[yf(v»)—By], (3.6)

and may be solved in the same way as (2.26). The curve
of Fig. 4 for 0<B<1 gives the two masses for 8 fixed.
Each point of the curve represents two solutions for two
different values of G: one solution with the degenerate
mass greater than the third mass (x>v) and one with
x<y. Evidently, the same curves are pertinent for the
three-field case as for the two-field case (except for
their parametrization in G) because they merely specify
the pairs of arguments (x,y) for which the rhs of (3.6)
is the same.

The situation is more complicated in the narrow
range ~—0.2<B<0. Again, there are many ways to
satisfy (3.6), for the rhs is now the inverse of a three-
valued positive function. The discussion of the pre-
ceding paragraph applies with no change for the solu-
tions with x=972>0.

There are now additional solutions for which no two
masses are equal. From Fig. 2 it is clear that «, y, and 2
may be chosen all distinct, yet satisfying (3.6) with an
appropriate value of G. In practice, it is difficult to find

2467

these solutions since the ranges of 3 and especially of G
that give rise to such solutions are very small. This
happens because, with f(x) given by (2.22), there is
very little variation of the lhs of (3.5) as x, ¥, z run
through their permitted values. This region in G and 8
is shown schematically in Fig. 3.

Observe that there is a hierarchy of solutions with
decreasing symmetries:

(1) x=y=32=0; symmetry of U(3) and v;
(2) x=y=2>0; symmetry of U(3)
3) x=ys%sz; symmetry of U (2)X U (1)

(4) xs£ys£as£x; symmetry of U(1)XU1)XU(1).

As the symmetry is reduced, the constraints upon the
coupling constants become more severe. Whenever a
given kind of solution does exist, solutions with lesser
symmetries also exist.

In order to relate these results to strong interactions,
we must assume three things:

(1) The “‘stablest” kind of solution is the one with
least symmetry, thus we eliminate solutions with too
much symmetry.

(2) The strong interactions are exactly invariant
under SU (3), and f, g, f’, and g’ are such that solutions
of the third variety, but not of the fourth, occur, thus
we eliminate solutions with too little symmetry.

(3) There is a convergent perturbative expansion
based on zero-order Green’s functions with the non-
symmetric physical masses.

With these assumptions, we have the makings of a
theory of strong interactions:

Strong interactions are exactly invariant under
SU(3). There are no “medium strong symmetry-
breaking interactions.” Because of dynamic instability
of the fully symmetric solution, the physically realized
solutions partially break the symmetry of the
Lagrangian. However, some symmetry remains: two of
the underlying fields remain degenerate. Of the original
eight-parameter group SU(3), only a four-parameter
subgroup survives. We are left with isospin invariance
(unitary transformations among the two degenerate
fields), and with conservation of hypercharge [the re-
maining kind of rotation in SU(3) not mixing fields of
unequal mass]. Dynamic instabilities provide a likely
explanation of why just this subgroup of SU(3) is an
exact symmetry of nature.

We now digress. Departures from exact unitary sym-
metry appear to be of a simple sort. The Gell-Mann
mass formulas

3 (my~+mz) =% (mz+3my)
and
ur*=% GBul+ua),

are satisfied to within several MeV. In other words, the
effective mass Lagrangian has the transformation
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property under SU(3) of a superposition of a unitary
singlet and a member of an octet. These formulas also
describe the imaginary parts of the masses—all sixteen
particles are stable with respect to strong interactions.
Perhaps the reason for this is the very simple way the
exact unitary symmetry of the Lagrangian is violated
in our model.

One may ask why a theory with three basic Fermions
should describe a world in which octets, not triplets, of
elementary particles appear. We have little to add to
the remarks of Gell-Mann' about this. But three is the
only number of fields that can give a successful theory
along the lines we pursue. Certainly, three fields are a
minimum number with sufficient symmetries to de-
scribe isospin and hypercharge.

With more than three fields, the residual symmetry
group is always too great. From (3.5) and Fig. 2 it is
clear that no more than three masses can appear—
independent of the number of participating fields. This
result depends only on very general properties, like the
monotonicity of f(x) in (2.23). Four fields, with inter-
actions invariant under SU(4), yield the following
possibilities for exact strong interaction symmetries:

SU®4),
SU@B)XU(1),
SU@)XSU@R)XU (L),
SUQ)XU1)XU(1),

all of which contain more than the known exact sym-
metries of strong interactions.

IV. THE MUON-ELECTRON PROBLEM

Recent experiments? demonstrate that the inter-
actions of the electron and of the muon are identical
(i.e., purely electromagnetic) aside from weak inter-
actions. Conventional theory accounts for their mass
difference by introducing different bare mass terms into
the Lagrangian. We point out the possibility that their
mass difference can result from a self-consistent solution
to the Green’s function equations with a Lagrangian
containing no bare mass terms. Thus, the explanation
of the electron-muon puzzle may lie entirely within the
realm of ordinary quantum electrodynamics.

With very crude approximations, we have been
unable to determine the electron-muon mass ratio. We

(@ (b)

F16. 5. (a) Approximation for Z,(y-p). (b) Approximation
for Ze(v-p).

12 G. E. Masek, L. D. Heggie, Y. B. Kim, and R. R. Williams,
Phys. Rev. 122, 937 (1961). G. Charpak, F. J. M. Farley, R. L.
Garwin, T. Muller, J. C. Sens, V. L. Telegdi, and A. Zichichi,
Phys. Rev. Letters 6, 128 (1961).
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are hopeful that more refined calculations, perhaps
along the lines we suggest, will give the correct result.
The electron-muon problem appears a good proving
ground for the kind of spontaneous breakdown of ele-
mentary particle symmetries we discuss.

We start with only the electrodynamic interaction
and no bare mass terms,

L= +i‘pe'7)‘a)\‘ze+i‘]’u7)‘ah¢u+eﬂfl A (‘;e’)’)“/-’e‘l“ '/;u’)’)\‘/’#)’

where Y., ¥, and 4, are the electron, muon, and photon
fields, respectively, and e, is the bare electric charge.

We seek solutions to the renormalized Dyson equa-
tions such that the renormalized electron Green’s
function G. has a pole at the physical electron mass .,
and the renormalized muon Green’s function G, has a
pole at the physical muon mass m,:

Ge~ (v pt+me)™ and Gu~ (v-ptmu).

As a first approximation to the electron and muon self-
energy operators, Z.(y-p) and Z,(y-p), we replace the
exact vertex operator I', by v, and the exact photon
propagator D (k%) by 1/k* (Fig. 5).

Because we calculate self-energies, we encounter
divergences, and a cutoff energy A must be introduced.
From the two equations determining m, and ., it
should be possible to deduce an unambiguous (cutoff
independent) value for their ratio s,/ ..

In our study of direct four-Fermion couplings, the
approximation for Z(y-p) was independent of v-p, so
that the solution to the approximate equations was
given exactly by the pole terms. The integral equations
then reduced simply to algebraic equations for m; and
mq. In the electromagnetic problem, the approximation
described by Fig. 5 does not yield a constant Z(y-p),
so that the approximate Green’s functions contain
spectral functions as well as pole terms.

To carry through this approximation, it is necessary
to solve integral equations in terms of m., m, and the
spectral functions. We have not done this. Suppose the
spectral functions do not play a vital role in determining
the mass ratio. If just the pole parts of the Green’s
function are put into the integrals for Z.(y-p) and
Zu(y-p), we find

me= (3a/dr)m. In(A%/me),
my= (3a/4m)m, In(A%/m,?),

(4.2)

(4.3)
(4.4)
so long as A>>m, and A>>m,. There are four solutions
to these equations:
mu=me=0;
mu=0, me=Ae 2"/,
me=0, m,=Ae 27/,
M=M= Ae 27/,

Besides the fact that these solutions disagree with ex-
periment, they are suspect for two reasons:
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(i) Neglect of the spectral functions of G, and G, is
questionable.

(i) In the approximation of Fig. 5 the muon and
electron Green’s functions are not coupled to each
other. This is unlike the model discussed in Sec. II
where m, entered into the equation determining ..

We can attempt to deal with the second objection by
considering the diagrams of Fig. 6 as well as those of
Fig. 5. Replacing (4.3) and (4.4), we now find

me= (3a/4mw)m¢ In(A2/m2)+c2m F (me,my,A),
mu= (3a/4m)m, In(A2/m,2)+2m, F (myme,A).

4.5)
(4.6)

These equations also admit uninteresting solutions like
those of (4.3) and (4.4). We have not determined
whether they have solutions for which the two masses
are unequal, and neither mass vanishes.

It may be over optimistic to believe that Egs.
(4.5) and (4.6) will give the correct lepton mass ratio,
for the expansion parameter is a In(A%/m?) and not a.
It may be necessary to include the most divergent parts
of a wide class of diagrams in order to find reliable
algebraic equations for the masses.

Once the masses have been self-consistently deter-
mined, a perturbation theory may be developed about
the physical (nonsymmetric) masses. The predictions
of such a theory are just those of ordinary renormalized
perturbation theory, which agrees so well with experi-
ment. The absence of u— e+4+y remains true to any
(electrodynamic) order because the vertex operator
remains diagonal.

V. VERTEX EQUATION

In this work, we have been exploiting the fact that
the Dyson equations can admit solutions other than the
usual perturbative one. Thus far in our study of these
solutions, we have limited ourselves to the consideration
of the equation for the self-energy operator. =(p) was
decoupled from the vertex operator I' by approximating
the complete vertex by the zero-order vertex v in the
expression for Z(p). In this section we reverse this pro-
cedure. We now study the equation for the vertex
operator which we decouple from the self-energy opera-
tor by replacing the complete Green’s function by its
zero-order value in the experssion for T'.

We consider a single complex vector Boson field B,
of mass u coupled to two massless Fermion fields ¢, and
Y. with the interaction Lagrangian £r:

Lr=B{fol vyt gob iy yspe} +H.c.,

where fo and go are the unrenormalized vector and
axial-vector coupling constants. The complete vertex
function is a sum of a “vector” part T', and an “axial-
vector” part I'ys. T, includes v, and all radiative correc-
tions to the v, vertex, A(I'y), while Ty includes 7y, ys
and all radiative corrections to the 7y, ys vertex, A (Tys)-

(5.1)

2469

B s
CO
LN I
BT K op
(

a)

€ 3
Y
% +
€ [ € e
(

b)

F16. 6. (a) Further con-
tributions to Z,(y-p). (b)
Further contributions to
Ee(’Y’ﬁ)-

Since £r does not conserve parity, I'y, and T',s will each
contain vector and axial-vector contributions.
Replacing all propagators by their zero-order values,
we obtain a pair of coupled integral equations for T,
and T3,
FH:7+A(I‘IM for+gor5), (53)

Tus=1tvuys+A (T, fol'+gls). (5.4)

Renormalized vector and axial-vector functions, T', and
T'us, are defined so that

F# (P17P2) Y

(as y-p1—0 and «v-pa—0), (5.5)
and
F;&E (pl;??) - i'YI"YF)

(as yp1—0 and v-p2—0), (5.6)

and they are related to the unrenormalized quantities
through a two-by-two renormalization matrix Z,

()G 26
T/ \Zu Zw/\Tu/'
The requirements (5.5) and (5.6) uniquely determine Z.
From (5.3), (5.4), and (5.7) we find

T v A(T,, fol+gol's)
(a7 )y, s
Tys dywys/  \A(Tyus, fol'+gol's)
We define renormalized coupling constants by the
condition

(5.7

fols+gols= T, 4gTus, (5.9)
and put (5.8) into the form
Lulpr,
(_ M(Pl P‘A’) )= (Z-I—L)( "Yu )
FF5(p17P2) VY ub
AR(T,, fT+gTs, 91,
( (_ wf _+g -5 P1, p2) )’ (5.10)
AE(Tys, fT+gTs, p1, p2)
where
A(T,, fT+gT5 0,0
L( Yu )E< (_n f_+g _5 )) (5.11)
LYY A(Ts, fT+gT5, 0,0)
and
AuE(pr,p2) = Au(p1,p2) —Au(0,0). (5.12)
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By choosing
Z=1-1,

we satisfy (5.5) and (5.6).

This is the usual renormalization procedure for the
vertex function. Equation (5.10) is just the integral
equation for the renormalized vertex functions, T', and
T'.s and it involves only the renormalized coupling
constants, f and g, which by (5.7) and (5.9) are related
to fo and go by the equation

()4
8o g
From the solution of (5.10) for T'y and T in terms of [
and g, we use (5.11), (5.12), and (5.13) to calculate fo
and go in terms of f and g.

In accordance with our viewpoint that the original

Lagrangian should be simple, we impose the condition
that the bare coupling constants vanish,

(5.13)

(5.14)

fo=g0=0,

just as in our study of the self-energy operator we had
set all bare masses equal to zero. Thus (5.14) becomes

Z(f,g)(i )-o

The matrix Z is determined from (5.11), (5.12), and
(5.13) in terms of the solutions T', and T'ys to the re-
normalized vertex equation (5.10). Then, (5.15) yields
and equation determining f and g. There is also the
possibility that (5.12) is an identity in f and g.13

Equations (5.15) may be combined with (5.11) and
(5.13) to yield

Frotgvivs=A(Tutglys, [T+l 0,0).  (5.16)

This has the obvious interpretation as the condition for
a self-generated interaction.

It should be pointed out that because fo and go no
longer appear in (5.10), the Lagrangian (5.1) simply
determines the structure of the renormalized equations.
The requirement (5.15) imposes the condition that the
allowable interactions are just those that can arise
spontaneously without the introduction of the arbitrary
parameters fo and go. This treatment of the vertex
function is analogous to our previous discussion of the
self-energy function. There, we used the condition
mo=0 as a requirement that all masses arise self-
consistently. Here, we demand that all interactions
arise self-consistently. In a complete treatment, both
problems must be handled together.

We do not solve the integral equation (5.10) for T,
and T but as a first approximation we use their
threshold values v, and 7y,ys in our determination of

(5.15)

13 See the discussion of the no-subtraction philosophy in dis-
persion relations. S. D. Drell and F. Zachariasen, Phys. Rev. 111,
1727 (1958); M. Baker and F. Zachariasen, 7bid. 119, 438 (1960).

BAKER AND S.

L. GLASHOW

L according to (5.11). From the structure of the nth
order irreducible contribution to A,, it is easy to show

that
e (A (f.g.A/1), B(f. ,g,A/ﬂ)>
B(feM/w), A(f,gM )/

where A (f,g,A/1) and B(f,g,A/u) are power series in f
and g. A cutoff A is introduced to make the integrals
defining 4 and B finite. We also have

A4 (anaA/ﬂ') =B (O;gaA/l-") =B (f:orA/ﬂ) = 0)

(5.17)

A(—f,9)=A(f, —=A4(f9), (5.18)
B(—f,8)=B(f, —)=—B(fg).
Equations (5.15) become
f1—=A4)+gB=0, g(1—A)+fB=0, (5.19)
and can have the following types of solution:
(a) f=g=0;
(b) /=0, g=0,
where g satisfies
A0,g,A/u)=1; (5.20)
(c) g=0and f520,
where f satisfies
A(f0A/w)=1; (5.21)
(d) g==£/#0,
where f satisfies
1=A(f,))—B(.1); (5.22)
(&) fr#g, f#0, g=0,
where f and g satisfy the fwo relations
A(f,9)=1 and B(f,g)=0. (5.23)

(a) gives no interaction and is the usual perturbation
theory solution when fo=go=0.

(b) and (c) give self-generated axial-vector and vector
interactions, respectively.

(d) gives self-generated v, (1414v;) interactions which
violate parity maximally.

(e) gives solutions which neither conserve parity nor
violate it maximally. To lowest order, B« fg and no
such solutions exist. We can make no general statement
about the existence of solutions to (5.23) of this kind.

Hopefully, interactions like (e) are not realized in
nature, (d) corresponds to the weak interactions, (b)
and (c) to the strong interactions.

To summarize this section, we have shown the possi-
bility that the fundamental interactions can generate
themselves from a “bootstrap mechanism” in a theory
where the bare coupling constants vanish. We empha-
size that in our discussion of the vertex equation we
have neglected all modifications of the propagators, in-
cluding the wave function renormalization constants



BREAKDOWN OF

Zy. In our model, there is no conserved current and
we should not expect that a zero of Z,® will occur to
cancel the zero of Z.

VI. CONCLUSION

We have explored the possibility that the complex of
fundamental interactions can be understood in terms
of the stable self-generated solutions of the coupled
Green’s function equations of field theory. Since in this
paper we have not tried to solve any integral equations,
we have made no predictions which conclusively test
the validity of this idea. Rather, we have consistently
made the most naive approximations to the integral
equations in order to reduce them to algebraic equa-
tions. Our purpose has been to show that there is the

ELEMENTARY PARTICLE
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possibility of explaining fundamental interactions along
these lines. There remains the more difficult practical
problem of finding more reasonable approximations to
the equations. There are also the basic problems dealing
with stability criteria, the possible appearance of zero-
mass particles,* and the existence of divergences, which
must be understood before these ideas can become a
complete theory.
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The conditions under which a material system may recoil while emitting electromagnetic or gravitational
radiation are investigated. The lowest order secular effects in the electromagnetic case arise from an inter-
ference of the electric dipole radiation with the electric quadrupole or magnetic dipole radiations. In the
gravitational case, the lowest order terms involve the interference of the mass quadrupole radiation with
the mass octopole or the flow quadrupole radiations. The investigation of the gravitational radiation recoil
is carried out in complete analogy with the more elementary electromagnetic case, so that this paper should
be accessible to physicists having no previous knowledge of general relativity theory.

1. INTRODUCTION AND NOTATIONS

T is well known that a material system can dissipate
energy in the form of spherical waves radiated to
infinity. In classical theory, these waves may be either
electromagnetic! or gravitational,>® and if they are
emitted mostly in a preferred direction, then the
emitting system will recoil in the opposite direction, like
a rocket. However, while “photon rockets” have been
largely publicized, the possibility of measuring gravita-
tional radiation recoil is still far beyond our experi-
mental techniques,* and even theoretical investigations
have hitherto been restricted to a very special model.?
The main purpose of this paper is to present the
general theory of gravitational radiation recoil. The
calculations will be valid for any kind of motion (rota-
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tional, vibrational, or other) but with the condition that
the material system remains localized within a finite
volume. Only secular effects will be considered, i.e.,
those effects which do not average to zero over a long
time interval.

In order to make these interesting questions accessible
to the reader who is not a specialist of general relativity,
we first present, in Sec. 2, the theory of electromagnetic
radiation recoil, using the same tools as will later be
needed in the gravitational case. It is found that the
lowest order effects arise from the interference of the
electric dipole radiation with either the electric quad-
rupole radiation or the magnetic dipole radiation. This
could have been expected on general grounds, because
the recoil force must be bilinear in the various multipoles
(since the Poynting vector is), and the only way to
construct a three-dimensional vector is to contract a
27 pole with a 27! pole. (Magnetic 2» poles are homo-
geneous to electric 27t poles.)

In gravitational theory, the analogs of the electric
and magnetic 2" poles are the mass and flow 2» poles,
which are defined in the same way, masses playing the
role of charges. However, there can be neither mass nor



