
and p are in the hydrogen ground state, a rather
formidable requirement. This being an essentially low-

energy phenomenon, we would expect any deviations
of the photon spin from unity to have a very small
eGect, even if the slope of the photon trajectory were as
large as that of the vacuum Regge pole.

In conclusion, we wouM like to draw attention to a
few points which naturally arise. For example, the
electron shouM be a Regge pole; this could be tested,
in principle, by high-energy Compton scattering or by
large-angle pair production. The photon trajectory is of
course in reality somewhat schizoid, consisting in some
sense of an isotopic scalar and isotopic vector part,
although of course nrv(0) =nrem(0) = 1. It is possible that
the p' and co mesons are "consorts" of the photon. Such
a possibility would make the phenomenological model

of Gell-i%farm and Zachariasen's (which couples these
particles to the conventional electric current density)
quite reasonable. Is there an even-signature "photon"
family leading to bound states and resonances with even
angular momentum? For example, could this be the so-
called vacuum trajectory which would then be expected
to be an isotopic schizoid also? If high-energy cross sec-
tions for particles and antiparticles should approach dif-
ferent constants, such a possibility would be suggestive.

It is hard to believe that we can ever acquire a deep
understanding of the dynamical nature of isotopic spin
unless we broaden the scope of the 5-matrix approach
to include electromagnetism.

'g M. Gell-Mann ancl F. Zachariasen, Phys. Rev. 124, 953
(1961).
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Sy use of Moyal's representation and a perturbation theory developed by the author, we remove the
interband matrix elements of the Dirac Hamiltonian in the presence of external fields. The result is exact in
terms of velocity, but appears as a series in the field strengths and their derivatives, which is evaluated
to second order in the fields and first order in their first derivatives.

INTRODUCTION

''N 1950, Foldy and Wouthuysen' showed how one
~ ~ could derive the Pauli spin Hamiltonian from the
Dirac equation by a unitary transformation. That is,
they removed the matrix elements connecting positive
and negative energy states. In the absence of external
fields, this is no more than a transformation to eigen-
states and was done exactly. When external fields are
present, the problem is more complicated and could
be done only by a series of successive approximations,
amounting to an expansion in powers of 1/m. The
procedure was carried to second order and yieMed a
nonrelativistic result.

The author has recently developed a procedure for
the removal of interband matrix elements in solid-state
problems, ' which can easily be specialized to deal with
the Dirac Hamiltonian, if we consider the positive and
negative energy states as each constituting a douMy
degenerate band. The separation thus obtained has a
much greater range of validity than that of FW, being
valid for all energies. The result is obtained as a series
in the Geld strengths and their derivatives, which we
carry out to second order in the field strengths. and first

I L. Foldy and S. Kouthuysen, Phys. Rev. 78, 29 1,'1950).
E. I. Blount in Solid State Physics, edited by F. Seitz and D.

Turnbull (Academic Press Inc. , New York, 1962), Vol. 13.

order in their first derivatives, thus obtaining all terms
found by FW and a number of others.

Moyal has shown that the multiplication of two'
operator functions of p and x may be written in the
following form. If (P=X8, then

sfBX rle r)X c)8
(P(p,x) =X(p,x)e(p,x)+—

~

2&ax;ap; ap, ax;

1 8~X cI~8

8 rlx;rlx, rip, rip; Bp,Bx; Bp,dx,

82K 8~8
+ . -, (A=i) (1)

rip, Bpj rid;r)Sj

where the multiplication on the right ignores the non-
commutativity of p and x. In this equation K, 8, (P are
all numerical functions of p and x; to obtain the
quantum-mechanical analogs it is only necessary to
perform a Fourier transformation given in detail in
reference 2 or to write out the power series for say, K,
in powers of y and x, being careful in each order to use all
possible permutations of p's and x's which may then
be treated as operators. In the application of (1) to the

' J. Moyal, Proc. Cambridge Phil. Soc. 45, 99 (1949).
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Dirac problem, it is only necessary to bear in mind that
the operators are also 4X4 matrices. All products are
matrix products and noncommutativity of matrix
multiplication must be respected.

The advantage of this apparently rather cumbersome
multiplication is that it can be viewed as an expansion
in powers of B/Bx T.hus, if we are dealing with slowly

varying functions of x, the terms rapidly become smaller.
In our case, since x appears only in the potentials, we

get an expansion in the 6eld strengths and their deriva-
tives. A systematic perturbation theory based on this
fact is given in Sec. III of reference 2. Here we shall

proceed inductively.
Given the Hamiltonian

@=ct}t (y+a)+Pic'+U, (2)

which transforms the I 0t to I ~t. Then

S(p)est(p) =PE(p),

E(p) (lpgsc4+. psc2) 1/2

S(p)xSt(p) =R+X(p),
where

R—=sB/By,

( Bl o)&- (p)—=sl ~:*
By i'

(6)

(BE/Bp) 7& e scpot t'c (ot BE/By) y
x(y) = — + (7)

2 (E+ttsc') 2E 2E„(E„+mc')

Schist=8(p)

BE c(ot BE/By)y.=P —cts+
Bp (E„+wc')

It is also convenient to de6ne g and v as the parts of f
and 8 containing e and P, and X and V as the parts
involving 0..The commutator of x and H yields

V= —(1/a) LX,PEj,

as can be seen directly also. The explicit forms of X and
8 are taken from'FW.

Now, after defining a in the future to be a function of

where Dirac notation is followed, except that we have
absorbed e/c into a and e into U and where a and U may
be function of x and t, we wish to eliminate the interband
elements, those involving 0.'s, p1, p2, etc. , and obtain a
Hamiltonian using only the unit matrix, the e s and P.
In the absence of a and U, we have the Hamiltonian

H=cts' p+PBtc }

with eigenfunctions e'~'N„~, where I„„is a spinor,
independent of x, and e labels, for the moment, the
four eigenfunctions at p. We define

Sss~(p) =Iso N~~o,

R, and }&=—p+a, let us blindly write

O'=S(p) {g&L&(P)+U(R)3{g}S'(p)—~S (BS'/B1) (1o)

where 8 indicates operator multiplication. H(}t)+U(R)
is equivalent to @ before the transformation since
x= R in the Dirac representation. To form the operator
product on the right we used (1). It is clear that we
obtain terms involving

82IBa; Ba; BU /Ba; Ba ) B'a, B'a;

BR; R BR, ~BR; BR„i BR}BRt RBR; BR;M;

/Bao Ba}') ttBU Bat)
l, andi

E Br BR}i &BR; BR,i

Similarly, we form the product SSt and 6nd that it is
1 only to zeroth order. Our program will then be to
form (1+g['&)O'8 (1+g&"t) where g['& is a Hermitian
operator chosen so that (1+g&'&)3S{ISts(1+g&'&t) is
unitary to 6rst order; we then similarly chose g&2~ to
obtain an operator unitary to second order. We can
then use perturbation theory to remove the interband
terms of the resulting {[1through second order. We will
then have a Hamiltonian with no interband matrix
elements of less than third order. In principle this could
be carried on inde6nitely, but we will stop at this point.
This procedure has been discussed in more detail in
reference 2.

The terms involving only the 6rst spatial derivatives
of a;, and their squares are entirely analogous to a
problem discussed recently by the author' in the context
of solids. These terms can be taken directly from that
paper, and we will not repeat the steps in their evalua-
tion. The other terms are evaluated in the Appendix.
The net result is

0 1 2 117

co=PE(}&)+U(R),

(11a)

(11b)

Here, all functions v, X, etc. , are the objects as
defined in Eqs. (7) and (8), not their transforms.

4 E. I. Blount, Phys. Rev. 126, 1636 (1962).

{[li=——',((~Xv).X}——4'(&(VXX)}—5 g —5 X, (11c)

Os= —-'((&&&) t, (»*/Bpt)@'}

+magnetic term, (11d)

1 Bm; 1 B'a, B'E
ll

2 M; 24 BR;Mt Bp,Bp;Bpt

1 BB {' BX;
+ & 'tl ~ l ', (t}'XtXt+XtX}t{~)

12 BRt ~ — Bpt-

+{si{s;,{o;}}+-;[[I;,s;],v,]). {1}e&
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It remains only to remove the interband first-order
terms; for the magnetic term this has already been done
in reference 4, the electric term is trivial, and the cross
term vanishes. The 6nal result is

8=pE(p)+U(R)—
c'B.op

S vXop Q'c' (S v)' V Sc'
+ +p p—

2(E+mcs) SEs SEs 4E(E+mcs)

(v V)S v(2E'+2Emc'+m'c') c'(2E' —m'c')
+

SE' (E+mc')'SE'(E+mc')'

2(E—mc')
X(SXB) vp+ —(v VXB)

12 E'(E+mc')

c' (BXv)'mc' (B v)'

2, E'(E+mc') E(E+mc')'

c'(B v)' c4(vXB)'m'c4
+p +p

4E(E+mc')' SE'(E+mc')'

c2

+ P[&'c'—(BXv)']
16K'

828; 828
p

24BR,BRt Bp;Bp;Bpt

c2

P(&'c' —(Bxv)'). (12)
SE'

We now describe the meaning of the various terms:

(i) The last two terms are isolated from the others
because they combine with the first term to make pE(p)
into a more useful form PE, (P). E(P) according to our

previous statement becomes the quantum-mechanical
operator obtained by weighing equally all permutations
of the y's and x's in its series expansion as a function of

y and x. E,(p) becomes the quantum-mechanical

operator obtained by substituting p; for p; in the
expansion of E(p), again weighing all permutations of
the p, 's equally. E, (lp) is gauge invariant, whereas

E(p) is not.
(ii) U(R) speaks for itself.
(iii) —c'B.esp/2E is the magnetic moment term.

Note that we obtain a g factor decreasing with energy
which can also be written —c'o B/m&, where m& is the
familiar transverse mass.

(iv) The fourth term is the spin-orbit coupling
%e recall that one would naively expect a term
—S vX o/2m, by applying the Lorentz transformation
to give an electric moment arising from the intrinsic
magnetic moment. It is well known that this leads to an

error by a factor of 2 commonly attributed to the
"Thomas precession. '" We observe that the factor of 2

arises from the presence of (E„+mc') rather than E„.
This result agrees with Thomas's expression [his Eq.
(4.122), after dividing by P to make the left side
dw/dt] based on a classical electron with spin. As this
is also true of the magnetic moment term, both first-
order terms agree with Thomas's expression which
requires only the assumption that the spin g factor is 2.
For the higher order terms, Thomas's analysis would
require further assumptions about the structure of the
electron. It should also be observed that the high-
energy form of the magnetic moment also can only be
understood by taking account of the Thomas precession.
It differs by a factor of (mc'/E~)' from the value that
would be predicted by simple application of special
relativity, which would in addition predict an aniso-
tropic g factor.

(v) The terms in V S and (v V)S v are due to the
finite spread of the electron. When S is entirely due to
a potential we can regroup some terms as follows:

S vXoP
U(R)—

2(E+mc') 4E(E+mc')

V Sc'

(v V)S v (2E'+2Emc'+m'c')

SE'(E+mc')'

vXop ) c' (v V)S e
=U R— (13)

2 (E,+mc') ) SE' SE2

5 L. H. Thomas, Phil. Mag. 3, 1 (1.926); H. C. Corben and P.
Stehle, Classical mechanics (John Wiley lk Sons, Inc. , New York,
1950), p. 355.

The 6rst term represents the displacement of the center
of the electron, while the last two describe the effect of its
spread, being derived from the term ——',(X V)(S X).
This spread is of the order of the Compton wavelength
at low energies, and of the order of the de Broglie
wavelength at high energies, where the Lorentz con-
traction also introduces a quadrupole moment,
evidenced. by the last term in (13). The reality and
precise meaning of this spread can be seen by construct-
ing a wave packet of positive (or negative) energy
states, of momentum near y. It is easily shown that
such a packet cannot be more localized in space than
c/E.

The terms discussed so far are the relativistic forms
for the terms discussed by FW. The remaining terms,
except for one, are of second order in the 6eld strengths.

(vi) The terms quadratic in S represent the polariza-
bility of the electron, the fact that in an electric 6eld
its shape is distorted.

(vii) The terms quadratic in B are of several types.
The 6rst bracket consists of terms related to
—(B/Bp~)(B.m)a~, (a=-',BXg), B m evaluated at
&+a, rather than lp, that is, they show that the electron
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x=R—
v X 4FP c'(2E' —m'c4)t BXvP—P

2 (E+wc') SE'(E+mc')'

(gc' @ vvi
X

~

— — ~+interband terms
kE' E'

+higher order terms. (16)

We can now evaluate the intraband velocity from

(12) and (16), obtaining the first order.

c'B 4rpv vc'BX (vX4r)
v'= v(P) —g XQ+ + +

2E' 2E(E+wc')

2mc~
~24r+

E' 2E(E+mc')

C 0"VV

Thus, the velocity contains terms depending explicitly
on the fields. The first of these terms is familiar in the
nonrelativistic limit as the spin-orbit contribution to
the velocity, but multiplied by a factor of 2. This
results from the neglect of g in the representation of x
in the usual treatment of the Pauli Hamiltonian. The
last two terms combine contributions of the form
(BXv)XQ with those of the form+i[R+g, B mj. The
neglect of & in the Pauli theory means that the velocity
is not strictly correct, but in most cases we have to
consider many electrons and a current given by an
integral of the velocity over occupied states. The
neglected terms can also be written —i[g,H); it is

is, in a sense, at R+g. The second bracket consists
essentially of terms due to the evaluation of E(P) at this
point, as well as terms due to the second-order eGect
of the interband magnetic moment operator. The last
bracket is similar to the standard atomic diamagnetism
arising like the electric polarizability from the spread of
the electron

(viii) The term in SXB is attributable to the
evaluation of —5 X at lp+5, (5=—,'BXX).

(ix) The term in v VXB is due to the evalua, tion of
B at lp+I, and to the noncommutativity of B and X
and 8 as quantum-mechanical operators.

We now consider the representation of x as affected by
the transformation we have made. To first order, we
find easily

x=R+&(&)+k((~&(~P')&')+i[&Y K+ (14)

where Y is the Hermitian operator with no intraband
elements, which satisfies the equation

i[H,Y Sj=S X (15)

for all S. The dots indicate interband terms of first
order, and higher order terms. The third term can be
combined with the second to yield X(lp+I). The last
term is due to the polarization of the electron by the
electric field. Equation (14) takes the explicit form

readily seen that for a steady-state system, the integral
vanishes, so that for such a situation the usual treatment
gives the total current correctly.

It would be tempting to try to 6nd a simple semi-
classical model of an electron which would behave like
our transformed Dirac electron. So far as the Hamil-
tonian is concerned, we have seen that this is possible.
When we try to understand the representation of x,
however, things are more complicated. In the first
place, if we consider the term g, we see that while we

could understand it on the basis of Thomas precession
in the Hamiltonian, it also turns up in the absence of
any external field in the expectation value of g. Similarly,
the value of X is smaller by a factor (mc'/E)2 than
would be expected on the basis of a Lorentz trans-
formation. These difficulties are all aspects of the fact
that a Lorentz transformation cannot be represented by
an intraband operator, but rather requires the use of n's. '
This statement shows clearly that any classical one-band
picture is doomed to failure.

The last paragraph also points up the fact that it is
not sufficient to specify a field-free Hamiltonian in order
to determine a theory completely, but all other operators
which can be varied, subject to internal consistency,
must be given also. Thus, given the Dirac Hamiltonian

H= pane'+ce p,

we can choose x=R+F(p), where F is an arbitrary
matrix function of y. Dirac's choice F(y) =0 represents
a physical assumption. A different choice could, for
example, have made x=R in the FW representation;
the velocity would have been 8=v, and the spin
magnetic moment would have been zero. Dirac's choice
is clearly preferred, but by experiment, not u pnori

Our interpretation of the FW representation does
not differ significantly from theirs, except for a fairly
trivial semantic detail. They ascribe X to the "zitterbe-
wegung" of the electron, whereas we would ascribe
only X to this source, since g actually represents a shift
in the position. A wave packet made up of FW states
will have its center shifted by (g) from the value given

by the envelope, whereas X appears only in the spread.
of the packet.

The author's attention has been directed to the work
of K. M. Case [Phys. Rev. 95, 1323 (1954)) in which it
is shown that in the case of a constant but not necessarily
uniform magnetic Geld, the interband elements can be
removed exactly to yield

@'=p(m'C4+C'y' —eACa y)'".

A straightforward computation shows that the terms
in (12) independent of 5 are the. expansion of Case's
form to the required order. It may be noted that Case
was interested not only in Dirac particles but also in
those of higher spin, for which he was unable to

6 P. A. M. Dirac, The Erinci p/es of QNantlm Mechanics
(Clarendon Press, Oxford, 1947), 3rd ed. , p. 258.
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generalize this result. Our procedure, while not exact,
can readily be generalized to arbitrary spin.

APPENDIX

The evaluation of (10) divides naturally into several
parts. The terms involving only the 6rst spatial
derivatives of a, are to be found in reference 4 and we
merely quote the result:

O,„=E(y)——,'{(BXv) X}——,'{B (VXX)}

1 88;
+,{@{5-.. .;}}+ +

2m 2 8pg

1- cia;— 1-cia; -88,
+ $5v-j +

4 Bp; 8 cjp; Bp,

1 8'a; BX; &X,
8;, '+$ vg,

12 BR;BR( cjpi Dpi

—
&&X&Xt

+&~XiXi XtX—p~+X&Xpq+2X, SqX&

+2X,e,X;-4X;e,X, ~, (AS)

where we have used (6) and (g). Rearrangement yields

into two parts, the 6rst symmetrical in the interchange
of indices, the second the remainder. On adding the
terms required for unitarity in the form of a g"), we
obtain

Bc 8E 1. Qg;
+ - LLX,,X;],~i]

24 BR,BRi Bp,8p;Bp~ 8 BR;BR~

1 8'a, O'E 1 BB ( BX;
B { XX» ("') 24aR, aR, ap,ap, ap, 12aR, "& "ap,

't

where 8=-,'BXX.
The next group consists of terms from S|3II{SSt

involving second derivatives of a;:

8'a;
[5;H,(S'+S,H,S," +SH,S;,t

8 BR;BE&

SgHD;t+5—;H(S,t+5;HS, /+5; gH;St S,H,Sf-
+5;~HS;t+5; H (5;t+5 (H;5,"+SH;(5;t

+5;S,t (SHSt) (+ (SHSt) (5;5)

5;5;t(SHSt)—( (SHSt) gS;5—;tj.
The subscripts indicate differentiation. The last four
terms arise not from S&&LI)&S~'but from g&"g)SHSt
+SHStg"', where (1+g~") is the additional trans-
formation used in reference 4 to make S unitary
through 6rst order. Such terms as well as g&" are
included in (A1). If we replace H by 1 in (A2) we do not
obtain zero, showing that additional terms in
8'a;/BR;BR ~ are also required to make 5 unitary
through second order. First, however, we split (A2)

—{{X;,8&}X&}+v,{X;X~}~+interband terms. (A4)
~

The next terms involve U:

@ = U(R)+ (i/2) (SU;S,t—S,U;5")

,' (SU,,—S;—,t+5,;U;;St 25,U;,5—;t)
,')Ba;/—BR—i Bai/BR—,](5;U,S;,t 5;;U,S—,t)

+s$8a;/Mt Ba~/B—R;j
X{5;SF,(SU,S;t—5,U;St) }, (AS)

the last term being due to go~. Equation (AS) simplifies
to

@,.= U+ U;X,--,'U;;X;X;
+'{(BXX)&,(&X-,/Bp&) U;}. (A6)

The terms involving 85/Bt are handled similarly and
their only effect is to change U; in (A6) to the electric
face I,=—U,—(t/c) (Ba,/Bt)

All the anal expressions obtained here are also valid
for electrons in crystals provided 8, X, etc. , are given
their appropriate meanings as in reference 4.


