
P H YSI CAL REVIEW VOLUME 128, NUM B ER 5 DECEMBER 1, 1962

x' —x' Relative Parity from a' ~x' Conversion Induced by the Coulomb
Field of a Nucleus"

EDUARDO DE RAPAELt
Physique TheorifJue et Hautes Energies, Orsay, France

(Received March 28, 1962)

Dreitlein and Primakoff have recently proposed the use of the A —& Z' conversion induced by the Coulomb
field of nuclei to determine the Z' lifetime. It is shown here that the same experiment could also be used
to measure the Z' —A. relative parity. Indeed, as a good approximation, the transversal polarizations (in the
laboratory system) of the A' and Z' particles are equal or opposite according as the Z' —A' relative parity
is even or odd, respectively.

I. INTRODUCTION

METHOD to determine the X' lifetime, r(X"),
has recently been suggested by Dreitlein and

Primakoff. ' They show that the cross section for A. —+ Z'
conversion induced by the Coulomb field of a nucleus is
proportional to Z'/r (X').' They also show that this type
of conversion, in approximately forward directions with
high-energy incident A' and high Z, dominates largely
the A —& Z conversion induced by the strong coupling.
The aim of this work is to discuss the information which

might be obtained from this process (Fig. 1) by con-
sidering the polarization effects. Our conclusion is that
such an experiment could also be used to measure the
Z' —A relative parity.

II. GENERAL ARGUMENTS

Our development is based on the following consider-
ations:

(1) i.et us consider the two-plane defined by the
energy momenta of the A and Z' particles and the
virtual photon y. We choose a spacelike four-vector
orthogonal to this plane as the quantization axis of the
A.' and Z' spins. The virtual y being a Coulomb photon
(i.e., its electric vector and momentum are collinear), an
extension of Bohr's theorem on intrinsic parities' to
virtual particles allows us to write:

( 1)mA—mz

where mA, r)sz are the spin projections &1/2 of the A'

and X' particles on the quantization axis; and e(= +1)
stands for the Z' —A relative parity. The scattering
matrix S(') of the process A'+X (nucleus) ~X'+1V'
(nucleus) is a two-by-two matrix in the polarization
space. (We consider an unpolarized nuclei. ) On account
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of the foregoing relation (1), one has the following ex-
plicit forms for S('):

(Ss+Ss
!

s(+)—f(+)!
0 S,—S)'

( 0 Si—iss)

ksi+iss 0

(2a,b)

FIG. 1. Feynman graph for A0 —+ Z
conversion induced by a nuclear
Coulomb 6eld.

Here, f'), S(), Si, Ss, and Ss are dynamical terms to be
determined on the basis of a phenomenological current
for the vertex A —y—Z'. Furthermore, since the A. —+ Z'
Coulomb conversion is only dominant for approximately
forward directions, let us study this special case. For the
strictly forward conversion, the process cV+X —+ Z'+E'
does not polarize, i.e., the polarization degree of the
hyperon is conserved and the cross section is inde-
pendent of the hyperon polarization. As we shall see
later (Sec. IV), one has in that case Ss=0 or Si——0. We
conclude: For forward A' —+ Z Coulomb conversion the
transversal polarizations in the laboratory system of the
A' and 2' particles are parallel or antiparallel, respec-
tively, according to an even or odd Z' —h.'relative parity, '

the longitudinal polarization (if any) being conserved in
magnitude and sign.

(2) In a more general fashion, when dealing v(ith non-

strictly forward conversion, the nature of the vertex
A' —y—X' [see Sec. III, (22a), (22b)$ implies for the
cross section of the process A'~Xs+virtual y to be
independent of the A' polarization and also the con-
servation of the polarization degree of the hyperon.
(As a matter of fact, it turns out that Si, Ss, Ss
are real quantities while S() is purely imaginary. )
This result is comparable to the well-known theorem:
In the Born approximation there is no polarization
effect in the scattering of a spin-1/2 particle by an
unpolarized target.
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TwaLE I. Complete summary of symbols.

p~

pz
px

5
y( e)

Four-vectors

energy momentum of arbitrary particle
energy momentum of m particle
energy momentum of h. particle
energy momentum of Z particle
energy momentum of nucleus

energy momentum of virtual p
polarization of h.' particle
energy momentum of Z' particle

Three-vectors (laboratory system}

Unit four-vectors

n n.~t& /3E
b 0 qb
b(~) g(~) = t-(~) b(~)

n(') time component of a tetrad
n(') space components of a tetrad
n orthogonal to the scattering plane
jl lt —=Pg/UVs

u.
' n'= t&z/&z

b polarization of virtual y

Stokes' vectors

p„y A.' particle momentum

yg Z' particle momentum
n= (psxpz)/I psxpz I

» = (1/ps)ps Xn
ns' ns' ——(1/pz)pzXn

Parameters

h.' particle
(& '& Z' particle

Scalars

a A -decay parameter
Polarization degree of h.' particle
Polarization degree of Z' particle
~=—1—pzjp~
angle betvreen u, u'

iC Z= 2M'&M„$4(Ms, M„,M )j '~'= 1.397;
A(a, b,c) = (a+b+c) (a+b c) (a b—+c) (a b c)———

Es 4' energy in (lab system)
Ez Z' energy in (lab system)

ps ps=
~ ps ~

(lab sys™)
pq pq—=

~ pq ~
(lab system)

Mg Mass of A.' particle
My Mass of Z0 particle

III. PHENOMENOLOGICAL DESCRIPTIO¹

Ke use the covariant formalism of polarization, ' '
i.e., the polarization of a spin 1/2 particle is represented

by a pseudo 4-vector orthogonal to its energy momentum.
Let 5=&7b be the polarization of the A.' particle (b'= —1;

~
r& ( is the degree of the h' polarization, 0(

~
ri

~

'(1).We
assume that the A' beam is polarized. Usually this
polarization will be transversal in the laboratory system.
The A. decay is an analyzer of the A' polarization. In-
deed the transition amplitude for A'~ p+m is pro-
portional )see Michel and Rouhaninejad, ' formula (45)]
to the function (see Table I for notation),

A = 1—nr&Ett b, (3a)

where tt == p /M; It. is a numerical constant; and cr is
the asymmetry parameter for the h.'-decay (—1&u& 1).
In the As-rest system, the covariant expression (3a),
becomes:

The parameter e has recently been measured; however,
in the experiment we study here, only o.p has to be
measured.

A right-handed orthonormal basis for the space time
is a set of four-vectors such that

n( 'n(»=g t'
)

&)tape@&(~)~z (P)~~ (y)&& (~) — &~Py&

For a particle with energy momentum p and mass M,
let u(—= tt"'&) =p/M, tt&'& be four four-vectors satisfying
(4). We call them a "tetrad" for the given particle. In
what follows, we choose the unit 4-vector H. orthogonal
to the scattering three-plane of the process A'+i7 —+ Z'

+Jt/' as the tt"& common component of all "tetrads" for
the di6erent particles:

(3b)2=1—
crt& co&, where r, is the normalization coefFicient such that

N S)t= —i.
I.et u=pq/Mq tt&'& n"' n(=n'") stand for the A'

tetrad. The It('), Il(') four-vectors shall be chosen later
)see Sec. IV, (26)]. The components rl, of the As

polarization in this tetrad are given by

O=r&b=s7 n—=Q, t&,tt&'&. (6)

where 9b is the angle between tt and b in that system.

Ke use the symbolic scalar product ~ for summation
over ~. Usually the q~ are considered as the three com-
ponents in a given tetrad of g, the Stokes' vector of the
particle. The density matrix for the polarization of the

4 See the Appendix for notation. The symbolism has been
labeled in Table I.

5 For the mathematical theory, see L. Michel and A. S. Wight-
man, Phys. Rev. 98, 1190(1955};I .Michel, Suppl. Nuovo cimento
14, 95 (1959};A. S.Wightman, Relations de Dispersion et I'artjcul'es
L&'leraerctaires (Hermann et Cie, Paris, 1960), pp. 160-226.

For the physical applications, see C. Bouchiat and L. Michel,
Nuclear Phys. 5, 416 (1958};J. Bernstein and L. Michel, Phys.
Rev. 118, 871 (1960);L. Michel and H. Rouhaninejad, ibid 122, .
242 (1961};H. Rouhaninejad, Pho. thesis, Paris, 1961 (un-
published}.' See L. Michel and H. Rouhaninejad, reference 6.
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A' particle is the tv o-by-two matrir:

pA -'(1-6 n ~).

The polarization pseudo four-vector of the Z particle is

fl(~) ~ ((~) ~ u

The density matrix for the Z' particle pro(' is dehned by and the polarization degree is given by

f (~) = (—fl(~) .6(~))Us= (((~) ~ ((~))i&s

where 5(' stands for the scattering matrix as given in
(2a,b). We can write pro&') in the form

" '=-'(1+«");
and, from (7), (8), and (9), one has for (&'

((')=
I 2 Trpxo&') 1 (Tr(s(')S(')ts)

The scattering cross section has the form

g (&) —g (&) (1+st ~ g(&)) (13)

where 0-0(' means the cross section measured when
polarizations are not observed and X(') is given by

g(~) = (TrS(~)S(&)t)—i TrS(&)&S(~)t (14)

Taking into account the explicit forms (2a,b) one has
for (10):

t t(~)—
0,(')gl —ey(')g2

imp& ~)~,

y&')r)i+e(r&')»s p&')+et&s|s(~)— l.s(~) =
1+P&')qs 1+P&')ns

(15a,b,c)

where n", p", y') are six real numbers defined as follows:

~(+)—
lssl'+ ISsl'

ls. l
-ls.

l

0(—)—
ls, ls+ Is, ls'

SoSs*+S&)"Ss
p(+)—

I
Sol'+ lssl'

s,s,*-s,*s,
p(-) = j

IS& l'+ ISsl'

So*ss—Sess*
7(+)=i

I
So I'+

I
Ss I'

St*Ss+Siss*
p(—)—

ls, ls+ Is, ls

(16a,b, c)

(17a,b, c)

which satisfy the relations

I
(r( )

I
s+

I P (~)
I
s+

I
&(~)

I

s= 1

Let us call N(l&, &it) the Dirac amplitudes for a one-
particle state of energy momentum I) and total polariza-
tion along ~It.. Ke describe the corresponding ampli-
tudes for the A.' particle by s((l&A, tn) and those for the Z'
particle by N(l)x, stl) where i, s= +1.In an unpublished
work, Michel has explicitly computed the two-by-two
matrices (TA), i.

.«- ==(~'~ ~ -'(0) l~')a.="0., )(F '-'(q'b'~"a
+iFs&

)(q')pesos"q,

a„}N(yA,ln), (22b)

where Fi&'(q') LFs&'(q')) are the electric Lmagneticj
form factors of the vertex A' —y —Z depending on the
square of the momentum transfer (q= l&A

—px); p stands
for the electromagnetic form factor of the nucleus. We
include in p the Z dependence and the normalization
factors as well. The four-vector 0, describes the polariza-
tion of the virtual photon; it is such that

(T"),i=(u(yg, sn) ly" "'IN(yA, ln)), (19) a q=0, o a=i. (23a,b)

for the arbitrary 4X4 matrices ps(p" "') when the Z'
tetrad is obtained from the A.' tetrad by the Lorentz
transformation which changes u= pA/MA into 11'—=px/Mz
and leaves invariant all four-vectors orthogonal to both
l)A and l&x. The expressions for the T" matrices corre-
sponding to the i6 linearly independent matrices are
given in Table II.

The transition matrix for the process described by the
graph of Fig. 1 is given bys

S'+&—=(Zo
I

j&&+)(0) I
hs)a„= ps'(I&g, sn) (Fi&+) (q')icosa„

+iFs&+) (q')o s"q„a }u(l&A /n) (22a)

' See references 1 and 2 for a discussion on the vertex function
of the process involved. See also G. Feldman and T. I'ulton,
Nuclear Phys. 8, 106 (1958);J. Dreitlein and B.Lee, Phys. Rev.
124, 1274 (1961).

In the following we shall only consider the magnetic
Fs&')(q') form factor term, because the contribution of
the electric Fi&'&(q') form factor is negligible for the

TABLE II. Explicit expressions for the T"matrices Lsee for-.
mula (19)5 corresponding to the 16 1inearjy independent ~&' »
matrices. '

TA

W/2
(1/W) (n'~+n~+ie~""~ ~ n„~,ec.')

(1/2W)[e~ P ~ n, (u'+u). i(u*u')~"—5
(W/2) s ~ ns —1/Ws e„n' &I

(-i/W)e~u u'

(1/2W) (t ( +uu) A e u5I'"+ie&"I'"n„'N. )

a Here pg =MylI', lip =MglI, and W' = L2 (1+iI-lI') g'/2. The symbol
h means external product, i.e., (lI& lI')1'" =I&"u "—24"e'I'.
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approximately forward A' —+Z' Coulomb conversion.
However we can prove that the general statements
given in Sec. II are still valid if the electric form factor
is not neglected. Indeed, the Ao —y —Z' vertex function
considered as a complex function of the squared mo-
mentum transfer (t= qo)—has no singularities on the
negative real axis of the complex t plane. This negative
real axis is the physical region for the A' —+ Z' Coulomb
conversion. Time-reversal invariance requires that there
is no complex phase between the electric and magnetic
form factors. It suKces to apply the formulas of
Table II to (22a,b) to obtain the general results of
Sec. II.

tA"e finally recall how the Z polarization can be
analyzed. Let us call n"' ' the tetrad for the A particle
of the decay process Zo —+ho+y. The corresponding
correlation function )see reference 7, formula (64)] is

So= PI((1+MI /Mz)PI, /Pz(1 t)) q—, (29b)

5,= EI—(PI /MI ) (1+M)&/M z) (1 (')) p-, (30a)

S =p L(1+M. /M )(~+~'/2)
—(pg'/MgMz) (()—q'/2)]. (30b)

Therefore, one has P&') = 0 )see (16b), (17b)], and from
(13) and (14) o=o.o, i.-e. , the cross section is independent
of the A.' polarization. The g&') components Lsee
(15a,b, c)] become

pz. () is a small quantity for suKciently large PI&', for
PI, =4M', =4.4 BeV/c, (I 0.0043. On account of these
approximations (28), we finally obtain

So= ~&—J (PI/M~)'(1+MI jMz)

X((1—M~/Mz)8+ (1+M)&/Mz) &I '/2], (29a)

H= 1 nt &') c—osgi cos02, (24)

where cos8&= —b&' n (see Table I); and cos|)o—— Eu-
.n"('). Here the quantity to be measured is (zf&'), n being
the same parameter as in (3a,b) and { ' the polarization
degree of the Z' particle (12).

IV. EXPLICIT CALCULATIONS AND RESULTS

Since only magnetic form factors are considered, we
have for the right-hand side terms in (22a,b) (see
Table II):
S&+)= f&+)a„q.{o~"~'~ ~ n, (u'+u). —i(u ~ u')~"~,}, (25a)

S&—)= f&
—)a„q„{L(u'+u) n ~ ~ n]&"+&'oo"&'u p'N. ro), (25b)

with

t'&') = (i/2W)pFo&') (q') W=L2(1+u. u')]'~'

In the laboratory system we choose the A' tetrad as
follows: n' )=—u; n&'& =—n, as was defined in (5) (unit four-
vector orthogonal to the scattering three-plane); and
n(", H'@ are such that

n&'& = (O,ni), n&'& = ppI/MI, (Eppg)/(Mgp~)], (26a,b)

where PI,= ~y)&~ and ni ——(1/p)&)yiXn. The transversal
and longitudinal polarizations (in the lab system) of the
A' particle are then given by

iI:=—5 n(—=i&o), )Ig = —5 n"'(—=)&i),

)Ii ———5 n&'&(—=ito), (27a,b, C)

i&i means transversal polarization collinear to n (unit
vector orthogonal to the scattering plane in the lab
system); i&i means transversal polarization collinear to
ni L(26a)]; iI& is the longitudinal polarization. We
neglect the kinetic energy of the recoiling nucleus
(EI,=Ez), and we define

1 Pz/PI = (Mz' —M—~'—)/2P~',

2(1—()) sin2&o/2= &o'/2, (28)

where q
—=cos '(u u'), i.e., the lab angle between pq and

with
g(~) —((~), n —l. (~)n(&)+l. (~)n(o)+l. (~)n(3)

The (&') components were defined in (31a,b, c): The
explicit results for {,&'), l, &', and &" &&' are

t g&'=o)Ig, (34a)

and (&'l'=(&' ~ ("=rP; i.e. , the polarization degree of
the hyperon is conserved. These are the quantitative
expressions of the statements given in Sec. II.2.

In the case of strictly forward A' —+ Z' Coulomb con-
version p=0, and y&'=P"=0; n&'=o. The longi-
tudinal and transversal components (in the lab system)
of the Z' polarization are then given by

i'i&'= o)&i, { = o)I, , f&&') =i&&) (32a b,c)

the transverse components conserve or reverse their
sign according to even or odd Z' —A' relative parity,
respectively, while the longitudinal polarization con-
serves its magnitude and sign. This was stated in
Sec. II.1.

To define the transversal and longitudinal com-
ponents, in the laboratory system, of the Z polarization
when dealing with nonstrictly forward A'~Z' con-
version, we introduce a new Z' tetrad as follows:

n'&o) = }&z/3IIz, n'&" = (O,n2'),
n'"'= I:Pz/Mz, (~zyz)l(Mzpz)], n""=n, (33)

with no'= (pzXn) /Pz. The transversal and longitudinal
components of the Z' polarization are then,
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i- (e) —&, &(~) & &(~)

3fg Mg3EIg

scattering plane. Then

i.,(~) —O )

1 ~"=BI:~"(1—~'/2) —7"(E~/~~) pl,
1 )') =))(n(') (Ex/Mz) y —y('(Mg3fz) '

&& Lp~'(~'/2 —@+~~'('—~'/ )j&.

(39a,b,c)

1
y(&) p+o(&)

Mg MpMg

p2 ql)2

X p~' ——~ +~~' 1—— . (34c)
2 2

1 ~') =« cos0,

t ~
(' =r) sin0I n(') (1—qP/2) —y(') (Eq/J(»f q) q j,

(36a)

(36b)

t ("=)) sin0{&i(') (Ez/Mz) p—y(') (M)(Mz)
—'

&& I:p~'(P'/2 —0)+~~'(1—&"/2)3) (3«)
Remarks:

(a) Strictly forward Ao —+Z' conversion for purely
transversal A.' polarization:

1 (') =0, 1,') = «cos0, i t,"——«sin0. (37a&b,c)

(b) The Ao polarization is collinear to n (unit vector
orthogonal to the scattering plane). Then

i.,(~) —«1, (~) =i.,(~) =O (3ga b c)

(c) The purely transversal A' polarization is in the

From (34), one reads: The orthogonal components to
the scattering plane of the A' and Z~ polarizations are
equal or opposite according to even or odd Z' —A'

relative parity, respectively. We remark that this holds
in both four and three dimensions, the scattering plane
in the latter case being defined in the laboratory
system.

Let us consider the case when the A' polarization is
purely transversal (in the lab system). Then we have

)),= rj sin0, )))——0, )), =)) cos0, (35a,b,c)

where 0 is the angle between the A polarization and n
in the laboratory system. The transversal and logi-
tudinal components of the Z' polariza. tion become

(d) Finally, we notice that from a formal point of
view there is much analogy between the A' —+Z'
Coulomb conversion we have considered and the OPEC
(one-pion-exchange contribution) to the process A'

+E—+ Z'+&V. Since a ~ meson is a pseudoscalar par-
ticle, the application of Bohr's theorem to the vertex
A' —m

—2' allows us to predict the following result: The
components of the A and Z' polarization on any space-
Jike four-vector orthogonal to the two-plane de6ned by
the vertex A —m —Z' are parallel or antiparallel ac-
cording to odd or even Z' —A' relative parity, respec-
tively (i.e., the opposite to the Coulomb photon
exchange case).
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APPENDIX NOTATION

We use natural units: A=c=1. The fundamental
metric tensor is taken as g"= —g"= —g"= —g"=1;
g&"=0 if p, Q p. u& are the contravariant components of
the 4-vector a. We use the scalar product notation:
a 6=a»b„=(J„b»=u»b"g„„.Latin. indices run from 1 to 3;
Greek indices run from 0 to 3. The symbol * means
complex conjugate; f means Hermitian conjugate; ~.a
is a short hand for P, r("a('; ~ are the usual Pauli
matrices (with 73 diagonal); ro is the 2-by-2 unit
matrix; e &"& is the totally antisymmetric tensor of rank
4 (co)"=1). Dirac's y» matrices are defined by p»&"

+p"y»= —2g»" and we take o.»"= (2i) 'I y»&y") . The
adjoint spinor of m is u=mtA, where A is a matrix such
that (Aiq»)t=Aiq».


