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Two-dimensional electrodynamics illustrates the first
of the two possibilities for an anomalous threshold at
m=0. The spectral function B(nz') describes a purely
continuous spectrum,

2 g dent
dm' 8 (m') =——

~ 16 eP+ (e'/16)'

and an m integration from 0 to ~ satisfies the sum rule.
In one-dimensional electrodynamics we meet a special
case of the second possibility, with

Accordingly,

and the mass spectrum is localized at one point, de-

scribing a stable particle of mass e/pr'~'.

The basis indicated for the latter conclusion will not
be very convincing, but it is an exact result. To prove
this we first compute for one spatial dimension the elec-
tric current induced by an arbitrary external potential
in the vacuum state of a massless charged Dirac field.
The appropriate gauge-invariant expression for the
current' is

At equal times, and for suKciently small x&—x&', we
have

G(x,x') exp i—eq dP A„(P)

'b cfi 8g——ng[aty(x) —A t(x)].
2~ xl —X1' 2~

The first term does not contribute to the vacuum cur-
rent when the limit x&' ~ x& is performed symmetrically.
On utilizing the relation

n( ayt—At)= —(apy —Ap),

we find that

j„(x)= ——A„(x)+a„—try(x) .
vr 4m

This expression for the induced current is Lorentz
covariant, gauge invariant, and obeys the equation of
conservation. It is also a linear function of the external
field. To verify these statements we construct a dif-
ferential equation for trP(x) by multiplying the p
equation with 80—u&8& and evaluating the trace. The
result is

j„(x)= ——,'e trqn„G(x, x') exp ieq —dp A„($) and therefore
a'-,' try(x) = a„A&(x),

n~a„GP (x,x') = b(x x'). -
The latter defines the free Green's function, which is

given explicitly by

G'(x, x') = —exp[ipn&(x„x„')] fo—r xp) xp',

2'
P dp—exp[ipn&(x„—x„')] for xp (x".

— 27t.

6 The necessity for the line integral factor has been noted before
D. Schwinger, Phys. Rev. Letters 3, 296 (1959)j.

in which the approach of x' to x is performed from a
spatial direction in order to maintain time locality. The
Green's function is defined by the differential equation

n&[a„—ieqA„(x)]G(x, x') = 8(x—x'),

together with the outgoing wave boundary condition,
in the absence of the potential. Only two Dirac matrices

appear here, n'= —no= 1 and+'=o. ~, which has the eigen-
values &1.Those are also the eigenvalues of the inde-

pendent charge matrix q. The Green's function equation
can be satisfied by writing

G(x,x') =G'(x, x') exp(iraq[@(x) —4 (x')]),

where

n"a„@=n"A„(x)

-,'trp(x) = — (dx')D(x, x') a„'A ~(x'),

in which D is the outgoing-wave Green s function defined

by —a'D(x, *')= 3(x—*').

Sy using a symbolic matrix notation for coordinates and
vector indices, we can write

j= —(e'/n ) (1+aDa) A,

which exhibits the symmetrical projection matrix

pp =1+aDa )

8+=~8=0,

that guarantees gauge invariance and current
conservation.

We shall insert this result in the functional dif-
ferential equation obeyed by the Green's functional
G[J], the vacuum transformation function in the pres-
ence of external currents. It is convenient to use the
particular system of equations that refer to the Lorentz
gauge,

1
(aa —a')——(1+aDa) J+j —— G[J]=0

i 5J i 8J

a—G[J]=0,
8J
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which also utilize a symbolic notation for vectorial co-
ordinate functions. We have written j(—z8/hJ) to
indicate the conversion of j(A) into a functional dif-
ferential operator by the substitution A ~ —i8/5J.
The functional differential equation implied by the
known structure of this operator is

t.~ 1 8—8'+————J GLJj=0,
x iBJ

J~ J+ j in GLJj. The first Fermi Green's function is

G(x,x') =G(x, *', —z~/SJ)GLJ]~, ,

=G'(x, x') exp z~z (d$)(d$')

or, on uniting the two defining properties of the The latter exponential factor is given by
functional,

in which

GLJl=O,
i

I
—8'+ (e'/zr)$8(x, x') = 5(x—x').

)( ($ &iy(z—x'))

with

g„„(x,x') =~„„(—i8)b (—iB)5 (x—x')

Thus, all states that can be excited by vector currents
are fully described as noninteracting ensembles of Bose
particles with the mass e/zr"'.

Concerning the complete Green's functional including
Fermi sources, GLztJ], we shall only remark that

1
GLqJ]= exp —— (dx) (dx') g (x)

2

The Green's functional GLJ) is therefore given exactly
by

GLJ) = exp ', z (dx) (dx, ')-J&(x)g„„(x,x')J"(x')

We shall be content to note that this integral and the
similar integrals encountered in more general Green's
functions are completely convergent. The detailed
physical interpretation of the Green's functions is
rather special and apart from our main purpose.

These simple examples are quite uninformative in
one important respect. They do not exhibit a critical
dependence upon the coupling constant. As we have
discussed previously, one can view the electromagnetic
field as undercoupled and the hypothetical vector field
that relates to nucleonic charge as overcoupled, in the
sense of a critical value at which the massless Bose
particle ceases to exist. The corresponding appearance
of an anomalous zero-mass threshold must be attributed
to a dynamical mechanism. We can supply an artificial
mathematical model that illustrates the situation. Let
the following be a contributory term in s(m'):

A2 mV
s~(m') =-

zr (m' —mo'a)'+ (my)'

in which the Green's function can be presented as

G(x x' 2) =G"(x x') exp z (de) j&($,x,x')A„(t)

with

On expanding the Green's functional in even powers of
the Fermi source, we encounter functional differential
operators that are contained in one or more factors of
the type

(dk)j"Rx,x') &/»" (5),

the effect of which is simply to produce the translation

in which neo is a characteristic physical fermion mass,
and X/mo, 7/mo, and z are positive functions of the
(dimensionless) coupling constant. In electrodynamics
the near-resonant contributions of such a term can be
identified with the creation of a unit angular momentum
positronium state, while the values far below resonance
refer to the creation of three-photon states (the model
falsifies the latter, which should vary as m' for m«mo)
It is reasonable to suppose that a decreases with increas-
ing strength of the coupling, and we can imagine that a
critical value exists for which both a and y reach zero,
with finite P. In that circumstance,

so(m') =X'8 (m'),

and the null-mass particle disappears from the spectrum,
Since this argument requires that one type of excitation
move down to zero mass at the critical coupling strength,
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it is plausible that some other types of excitation will

then be located at fairly small fractions of alp. Thus, one
could anticipate that the known spin-0 bosons, for
example, are secondary dynamical manifestations of
strongly coupled primary fermion fields and vector
gauge fields. This line of thought emphasizes that the
question "Which particles are fundamental?" is in-

correctly formulated. One should a,sk "What are the
fundamental fields P"
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Scattering of Electromagnetic Waves in Saxon-Schiff Theory
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We calculate the diffraction of electromagnetic waves by weak scatterers with complex dielectric constant
and permeability using the Saxon-Schiff theory of potential scattering. Boundary conditions, polarizations,
and the optical theorem are discussed to some extent. Our results for the scattering amplitude contain certain
special cases obtained previously by other authors. In an Appendix, we compare the results for the scattering
by a homogeneous dielectric sphere with those of the exact Mie theory. It is seen that the Saxon-Schiff
theory gives a good qualitative agreement insofar as it reproduces the diGraction maxima and minima, in
vast superiority to the Born approximation. In the asymptotic limit kR ~ ~, the radar cross section is
shown to agree with the exact result for a not too large index of refraction.

~ ~HE theory of Saxon and SchiQ, ' originally
developed for high-energy scalar potential scat-

tering, has been applied to the scattering of electro-
magnetic waves by dielectric bodies. ' SchiG' has also
considered scattering of vector waves using an earlier
version of the theory, valid for either small or large
angles only. In this note, we derive the scattering
amplitude of electromagnetic waves for a general weak
scatterer with complex dielectric constant and per-
meability, and demonstrate that the results can be
made to reduce to the large- and small-angle expressions
of Schi6' in the respective limits.

Maxwell's equations, setting c=i and assuming a
harmonic time dependence of the fields,

equation, we get
v' ~'K=O,

E =k p6. (4)

where we have introduced the complex dielectric
constant,

e = e(1+tv),
with

p= 0'/ke

Elimination of H from (1) gives the wave equation

v'E+E'E= v v E—p, 'vp X (v X E), (3)

with the squared propagation constant

become
-exp( —ikt),

VXE=ikpH, VX&=(o—ike)E.

Equation (2) can again be obtained by taking the
divergence of the wave equation.

Following reference (1), a Green's function

No free charges are assumed to be present; a- is the
conductivity, and e, p are dielectric constant and
permeability, respectively (we shall use Gaussian units,
ep=ps= 1). Taking the divergence of the second

*Also at the Harrison M. Randall Laboratory of Physics,
University of Michigan, Ann Arbor, Michigan.
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F(r,r') =F(r',r) = —(4s-p)
—'e'«'"&

will be considered, where

the phase is assumed to have the limits

lim p 'S(r,r') =C(r),

limVS=kn+O(r '); r=-nr.
(6)

This Green s function satis6es the di8erential
equatIon

VF+ (VS)sF=5(r r')+i''V . (p '—VS). (7)


