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The possibility that a vector gauge field can imply a nonzero mass particle is illustrated by the exact

solution of a one-dimensional model.

T has been remarked! that the gauge invariance of a
vector field does not necessarily require the existence
of a massless physical particle. In this note we shall
add a few related comments and give aspecific model
for which an exact solution affirms this logical possibility.
The model is the physical, if unworldly situation of
electrodynamics in one spatial dimension, where the
charge-bearing Dirac field has no associated mass con-
stant. This example is rather unique since it is a simple
model for which there is an exact divergence-free
solution.?

GENERAL DISCUSSION

The Green’s function of an Abelian vector gauge
field has the structure

Gur (,0") = 7y (—19)G (—140)d (x—2'),
where 7, (p) is a gauge-dependent projection matrix and
5= [ am——" 2o
prAmi—ie

which is subject to the sum rule
1=/ dm? B(m?).
0
An alternative form of G(p) is
® s(m?) 71
s()=[ phi—ict(pmia [ am—""— ],
0 Ptm—ie

where the function s(m?) and the constant A\? are non-
negative. The latter has been derived® with the under-
standing that the pole at 2=0 of the expression

——+ / in— s( )

is completely described by the parameter A. Accordingly,

1 i B(m?
S(0)=== / am 20

m2

©  dm?
/ [ () 4\ ()]

mi—g
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and A?>0 unless =0 is contained in the spectrum.
Thus, it is necessary that A vanish if m=0 is to appear
as an isolated mass value in the physical spectum. But
it is also necessary that

s(0)=0,
such that
] dmz
[ —s(m?)< oo,
-0 m2

for only then do we have a pole at p?*=0,
pP~0: G(p)~Bo/ (p*—ie), 0<Bo<1.
Under these conditions,

B(m?) = Bod(m2)~+ By (m?),

Bo= (1+/ ——s(m2)>
and

Baln)= o)) |

© s(m'?)
l:l +P / dm'?
0 m’ 2 m?
The physical interpretation of s(m?) derives from
the relation of the Green’s function to the vacuum trans-

formation function in the presence of sources. For suf-
ficiently weak external currents J,(x),

where

]-f- [rs(m?) 2.

(0[0)7= eXp[%i f (d) ()T (%) G (2,2 ”(x’)]

—esp{ 1i [ @HIOISPIP) |

which involves the reduction of the projection matrix
() to guy for a conserved current, or equivalently

bl (p)=0.

We shall present this transformation function as a
measure of the response to the external vector potential

Au(p)=5()J.u(p),

namely,

<010>J=ea:p[%¢ / (dp)An(p)*9<p>*~1A,.<p>].
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The probability that the vacuum state shall persist
despite the disturbance is

|<0|0>J12=exp[— / (@) AL(p)*Au(p) Img(p)*—l}

= exp[ -7 / (dp)dm?5 (p*+-m?)
s () (— %)Fw(p)*mw],

which exhibits s(m?) as a measure of the probability
that an external field F,, will produce a vacuum excita-
tion involving an energy-momentum transfer measured
by the mass .

The vanishing of s(m?) at m=0 is normal threshold
behavior for an excitation function. If a zero-mass
particle is not to exist, #=0 must be an abnormal
threshold. Two possibilities can be distinguished. In
the first of these, s(m?) is finite or possibly singular at
m=0, but in such a way that

0 s (m2)
lim 2 / dm? =0.
0

z-0 wmZ— e

Then the physical mass spectrum begins at m=0 but
there is no recognizable zero-mass particle. For the
second situation, s(m?) has a delta-function singularity
at m?*=0,
s (m?) =N (m?)+s51(m?),
and
s1(m?)=0,

If the threshold mass m, is zero, the restriction of the
previous situation applies to the function s;(m?). Now,
m=0is not contained in the spectrum at all. This state-
ment is true even if mo=0 for, according to the structure
of Bi(m?)= B(m?),

m? <mg’.

m?s; (m?)
B(m*)= )
LR (m?) P+ [amPsy (m?)
in which
00 1 (7%2)
R (m?)=m?—N+m?P / dm' ,
moz m'z —m2

we have
m?s1(m?)
lim B(m?)=lim ——=
m2->0 m?->0 MM

Let us suppose that m, is the threshold of a continuous
spectrum. A stable particle of mass m < m, will exist if
R(m¢?)>0. Should both R(m¢?) and si(m.®) be zero
there would be a stable particle of mass m,. No stable
particle exists if R(m¢®)< 0. But there is always an
unstable particle, in a certain sense. By this we mean
that R(m?) vanishes at some mass value #;>m,, under
the general restrictions required for the continuity of
the function R(m?), as a consequence of this function’s
asymptotic approach to -4 o with increasing m?. The
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mass #; will be physically recognizable as the mass of an
unstable particle if the mass width

sy (m12)
" LaR () dme?]

is sufficiently small. [We take the derivative of R (m2)
to be positive, which is appropriate for the simplifying
assumption that only one zero occurs. | The contribution
of such a fairly sharp resonance to the sum rule for
B(m?) is given by

/ dm?B(m*)=[dR (m2)/dm2]1<1.

SIMPLE MODELS

Some of these possibilities can be illustrated in very
simple physical contexts. We consider the linear ap-
proximation to the problem of electromagnetic vacuum
polarization for spaces of dimensionality »=2 and 1.
A modification of a technique* previously applied to
three-dimensional space yields for m>m,:

(l—mo2/m2)1/2
s(m?) = / dv(1—) (/87 for n=3
0

(1—mg2/m2)1/2

= dv(1—1?) (e?/4x?)
X[m*(1—2®)—m 2 for n=2

(1—mo2/m?2) 1/2
=/ dv(1—2) (¢%/m)d[m? (1 — 1) —m?]
0

for n=1;

for m <wmy:
s(m?)=0,

where the known result for »=3 has been included for
comparison. The threshold mass m, is that for single
pair creation. It should be noted that the coupling
constant €? of electrodynamics in #-dimensional space
has the dimensions of a mass raised to the power 3—#.
For <3 this single pair approximation does not lead
to difficulties concerning the existence of such integrals

as
>0 dmZ
Bo—l—1=/ — B(m),
0 2

m
since, for m>>my:

s(m¥)~ (&/127%) for =3,
~(&/16m)(1/m) for n=2,
~(&/2m) (m¢/m*) for n=1.
The particular situation in which we are interested
appears at the limit m9— 0. Then we have

s(m®)= (/167) (1/m) for n=2,
= (&%/m)6(m?) for n=1.

* Selected Papers on Quantum Electrodynamics (Dover Publica-
tions, New York, 1958), p. 209.
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Two-dimensional electrodynamics illustrates the first
of the two possibilities for an anomalous threshold at
m=0. The spectral function B(m?) describes a purely
continuous spectrum,

2 e dm
dm? B(mt)=—— ————
16 m2+(e2/16)?

and an m integration from 0 to oo satisfies the sum rule.
In one-dimensional electrodynamics we meet a special
case of the second possibility, with

N=e/r, s1(m*)=0.
Accordingly,
B(m?)=06(m*— (¢/m))

and the mass spectrum is localized at one point, de-
scribing a stable particle of mass e/x'/2.

The basis indicated for the latter conclusion will not
be very convincing, but it is an exact result. To prove
this we first compute for one spatial dimension the elec-
tric current induced by an arbitrary external potential
in the vacuum state of a massless charged Dirac field.
The appropriate gauge-invariant expression for the
current® is

’
' >z

Ju(x)=—%e trqa,G(x,x") exp[—ieq/ dgr Au(f)]

z’

in which the approach of «’ to x is performed from a

spatial direction in order to maintain time locality. The

Green’s function is defined by the differential equation
at[d,—ieqd , ()]G (,2") =6 (x—2),

together with the outgoing wave boundary condition,
in the absence of the potential. Only two Dirac matrices
appear here,a’= —ao=1and a'=a;, which has the eigen-
values #1. Those are also the eigenvalues of the inde-
pendent charge matrix g. The Green’s function equation
can be satisfied by writing

G (x,2")=G"(x,x") exp{ieg[é(x)— ¢ (=) 1},
where
ardup=a"4 ,(x)

and
a*d,G(x,x')=08(x—x').

The latter defines the free Green’s function, which is
given explicitly by

©d
G"(x,x’)=/ Ei—)exp[ipa“(xu—xu’)] for 20>a,
0 2w

0 d
N _/ ﬁ explipat(v,—x,)] for af<a?.

w0 2T

§ The necessity for the line integral factor has been noted before
[J. Schwinger, Phys. Rev. Letters 3, 296 (1959)7].
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At equal times, and for sufficiently small x;—x1/, we
have

G(x,x") exp|:—ieg /x @ ag* Au(é)]

i ay eq
——ai[ 91 (x) — 41 (x)].

271' x1"‘x1’ T

[t

The first term does not contribute to the vacuum cur-
rent when the limit x," — % is performed symmetrically.
On utilizing the relation

a1(819—A1)=— (dup—40),
we find that

o C L.
@)= Wm@Hﬂ{%tM@}

This expression for the induced current is Lorentz
covariant, gauge invariant, and obeys the equation of
conservation. It is also a linear function of the external
field. To verify these statements we construct a dif-
ferential equation for tr¢(x) by multiplying the ¢
equation with dop—a;9; and evaluating the trace. The
result is

0% trep (x) = 9,4 # (),
and therefore

iuwmz—/wwbmmwwwum

in which D is the outgoing-wave Green’s function defined

by
— 3D (x,x")=06(x—x").

By using a symbolic matrix notation for coordinates and
vector indices, we can write

j=—(¢/m)(1+0Da)4,
which exhibits the symmetrical projection matrix

==140Da,
In=m=d=0,

that guarantees invariance and current
conservation.

We shall insert this result in the functional dif-
ferential equation obeyed by the Green’s functional
G[J], the vacuum transformation function in the pres-
ence of external currents. It is convenient to use the
particular system of equations that refer to the Lorentz

gauge,

gauge

{(aa—m); %— (1+aDa)[]+ jG %)]}G[JJ:O,

5
0—G[J]=0,
57
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which also utilize a symbolic notation for vectorial co-
ordinate functions. We have written 7(—148/8J) to
indicate the conversion of j(4) into a functional dif-
ferential operator by the substitution 4 — —18/4J.
The functional differential equation implied by the
known structure of this operator is

{2t

or, on uniting the two defining properties of the
functional,

16
(— '~——-7:9]>G[J] =0,

i 8J

in which
[— 0%+ (¢¥/w) ]G (x,x") = 6 (x—«').
The Green’s functional G[J] is therefore given exactly
by
G[J1= eXp|:%i / (dx) (da')T#(2) Gpur (2,6 ) T * () ]
with
G (2,0") =7y (—10)G(—10)8 (x—2")

and

1
9(1))=m-

Thus, all states that can be excited by vector currents
are fully described as noninteracting ensembles of Bose
particles with the mass e/#'/2.

Concerning the complete Green’s functional including
Fermi sources, G[J ], we shall only remark that

1
Gta1=ex] = [ @@
16
X6(5:#, == e ot
18]
in which the Green’s function can be presented as

Gl )= (o) o] [ @0 1,0 |
with
(65 =eqer (YD)~ D6
ik (&,%,0") = eqat| ol——— x)—D (&) ].
J q o8 op
On expanding the Green’s functional in even powers of
the Fermi source, we encounter functional differential

operators that are contained in one or more factors of
the type

esa| f (@0)74(ema)3/677(8) |

the effect of which is simply to produce the translation
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J— J4jin G[J]. The first Fermi Green’s function is

G(x,%") =G (x, o', ~48/8J)G[T ]| smo
= () exp[%i / (@8) (@)

><j“(E,x,x’>9ﬂv(s,é’)j”(é’,x,x’)].

The latter exponential factor is given by

oof = <d1’><1,;[ e +(62i,r)_1:e>

X(1-ei1’(”—"')):|.

We shall be content to note that this integral and the
similar integrals encountered in more general Green’s
functions are completely convergent. The detailed
physical interpretation of the Green’s functions is
rather special and apart from our main purpose.

These simple examples are quite uninformative in
one important respect. They do not exhibit a critical
dependence upon the coupling constant. As we have
discussed previously, one can view the electromagnetic
field as undercoupled and the hypothetical vector field
that relates to nucleonic charge as overcoupled, in the
sense of a critical value at which the massless Bose
particle ceases to exist. The corresponding appearance
of an anomalous zero-mass threshold must be attributed
to a dynamical mechanism. We can supply an artificial
mathematical model that illustrates the situation. Let
the following be a contributory term in s(m?):

A2 my
so(m?)=— ;
= (mi—mipF ()

in which m, is a characteristic physical fermion mass,
and \/mo, v/mo, and « are positive functions of the
(dimensionless) coupling constant. In electrodynamics
the near-resonant contributions of such a term can be
identified with the creation of a unit angular momentum
positronium state, while the values far below resonance
refer to the creation of three-photon states (the model
falsifies the latter, which should vary as m8 for m<m,).
It is reasonable to suppose that « decreases with increas-
ing strength of the coupling, and we can imagine that a
critical value exists for which both « and v reach zero,
with finite \. In that circumstance,

so(m?)=N28(m?),

and the null-mass particle disappears from the spectrum.
Since this argument requires that one type of excitation
move down to zero mass at the critical coupling strength,
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it is plausible that some other types of excitation will
then be located at fairly small fractions of #¢. Thus, one
could anticipate that the known spin-0 bosons, for
example, are secondary dynamical manifestations of
strongly coupled primary fermion fields and vector
gauge fields. This line of thought emphasizes that the
question “Which particles are fundamental?” is in-

correctly formulated. One should ask “What are the
fundamental fields?”
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We calculate the diffraction of electromagnetic waves by weak scatterers with complex dielectric constant
and permeability using the Saxon-Schiff theory of potential scattering. Boundary conditions, polarizations,
and the optical theorem are discussed to some extent. Our results for the scattering amplitude contain certain
special cases obtained previously by other authors. In an Appendix, we compare the results for the scattering
by a homogeneous dielectric sphere with those of the exact Mie theory. It is seen that the Saxon-Schiff
theory gives a good qualitative agreement insofar as it reproduces the diffraction maxima and minima, in
vast superiority to the Born approximation. In the asymptotic limit 2R — oo, the radar cross section is

shown to agree with the exact result for a not too large index of refraction.

HE theory of Saxon and Schiff,! originally
developed for high-energy scalar potential scat-
tering, has been applied to the scattering of electro-
magnetic waves by dielectric bodies.? Schiff® has also
considered scattering of vector waves using an earlier
version of the theory, valid for either small or large
angles only. In this note, we derive the scattering
amplitude of electromagnetic waves for a general weak
scatterer with complex dielectric constant and per-
meability, and demonstrate that the results can be
made to reduce to the large- and small-angle expressions
of Schiff? in the respective limits.
Maxwell’s equations, setting ¢=1 and assuming a
harmonic time dependence of the fields,

~exp(—1kt),
become
VX E=ikuH, VXH= (6—ike)E. (1)

No free charges are assumed to be present; o is the
conductivity, and e, p are dielectric constant and
permeability, respectively (we shall use Gaussian units,
eo=po=1). Taking the divergence of the second
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equation, we get

v ¢ E=0, 2)

where we have introduced the complex dielectric
constant,
é=e(1+1v),
with
v=0/ke.

Elimination of H from (1) gives the wave equation
V2E4+K2E=vV - E—u'wuX (VXE), 3)
with the squared propagation constant
K2=F%¢. 4)

Equation (2) can again be obtained by taking the
divergence of the wave equation.
Following reference (1), a Green’s function

F(x)=F(t'r)=— (4duwp)tetS.1" (5)
will be considered, where
=|r—1';
the phase is assumed to have the limits

lim p=2S (r,r') =C (1),

6

limyS=kn+0@(1); r=nr. )
T—>0

This Green’s function satisfies the differential

equation

VEF+ (VS)2F=5(r—1)+iFpv - (o02vS). (1)



