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Motion of Electron with Radiation Damping and Boundary Conditions
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The classical equation of motion of an electron with radiation damping is investigated. It is shown that a
physically reasonable solution satisfying the given initial conditions can be obtained (i.e., the Cauchy
problem formulated) only in the absence of radiation damping. On the other hand, once the radiation
damping is taken into account, a boundary value problem arises and initial and Anal conditions must be
prescribed. In conclusion, a comparison of our results and those of Schwartz is given.

x=0, x=dx/dt=0 at (2)

but it is, in addition, necessary to require the vanishing
of the acceleration af ter the action of all forces
disappears, ' '

d'x/dP =0 at

1. BASIC EQUATION
' 'HE problem of solving the classical equation of

motion of the point electron, with radiation
damping taken into account, has been rather widely
discussed in recent years. ' ' This equation, in the case
of the harmonic oscillator in nonrelativistic approxi-
mation, has the form

d t' d' d'
D —x=

)
—+o)p' —y—x= f(t)d«dhs dP

Here y= srp/c, fp=e /t)zpc is the electron radius, o)p is
the oscillator frequency, and f(t) is the external force
depending upon the time t. As Eq. (1) contains the
third time derivative, in order to obtain a unique
solution it is not sufhcient to give only the initial
coordinate and velocity values, e.g. , in the form

Here co~ and —~I&icu2 are the roots of the equation

D (o)) =o)'+o)ps —yo)'= 0

coI, ~2, and co~ being real positive quantities. Suppose
that youp((1; then one obtains

o)s (1/'y) (1+'y Mp ) i &2—&p(1 s'y ~p )q

o) r—s'yo) p (1 2y o)p ) .

2. INVESTIGATION OF THE SOLUTIONS

At t'(t the Green's function describes the retarded
action of the force on the coordinates, and at 3'&] it
describes the advanced action.

If Gopp((1, the advanced part of the Green's function,
being proportional to e"3(' '), will assume nonvanishing
values effectively only during a time interval At

According to (5) the solution of Eq. (1) may be
expressed in the form'

x(h) = G(t—t') f(t')Ch'.

Only if this condition is fulfilled are there no self-
accelerating solutions after the external forces disappear.
Thus, strictly speaking, the Cauchy problem (i.e.,
the initial value problem) cannot be formulated
correctly if radiation damping is present.

The Green's function for Eq. (1) satisfying
relation

If the function f(t) can be represented as a Fourier
integral,

trt (o))e Co),

D(d/Ck)G(t —t') =8(t—t'),

the
then on substituting (8) into (7) and integrating over t',

(4) one obtains:

and the boundary conditions (2) and (3), have the form' ' x(t) =
~(~)ei&ut

der.
(zo)) +o)p y (zo))

G(t t')=-
Vg~s'+ (~t+~s)'j

o)s—s (o)r+o) s)
(~1 ~2) (& i )+c c h (t

In our case, the change of the order of integrations is
permissible for all functions possessing Fourier trans-
forms since the function D(io)) = (io&) +o)ps —y(io))' has

ghd3(5 —8 ) f~) ]
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6 In general the solution of the homogeneous equation
(eigenvibrations),

xp(h) = Crp (~1 i~2&'+C2p &»+)~2)~+( pe~&~ (7a)

is to be added to the solution (7), describing the forced oscillations.
To satisfy the boundary condition (3) we must put C3=0 (no

self-acceleration solutions). Although the constants CI and C~
may be nonzero in the case when the initial coordinate and
velocity are given at a certain moment t1 ~ ~, the terms containing
them tend to zero at t —+ ~ due to the inAuence of damping.
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no zeros on the real ~ axis. Thus the solution (9) is
equivalent to (7).7

An attempt was made' to interpret the quantum
character of the motion of a charged particle as the
result of the inhuence of fluctuation forces due to the
second quantized transversal photon field on the
classical model of a damped harmonic oscillator. In this
case, the force f(t) is to be put equal to

f(t) = —(e/m«) 5» (t)/»] (»)
Here A(t) is the x component of the transversal part
of the vector potential at the origin. These quantities do
not commute at different times':

LA (t),A (t')]= —(4h/3ic) (cl/R) 5 (t—t'). (11)

Let us perform a Fourier transformation of A (t) and
use the method of dividing by an operator (see reference
8) to obtain x and p. Then one can show that the
coordinate in the dipole approximation

$p, x]= i't/i. (16)

We do not intend to discuss here the physical aspect
of the problem. But it is necessary to return once again
to mathematical reasoning leading to Eq. (16), as
Schwartz in his paper' expressed some doubts on the
validity of using the Fourier transform Lsee (9)],
believing that dividing by an operator leads to "mis-
leading solutions. "In particular, Schwartz believes that
starting from the exact solution when, according to (7),

To obtain these results the commutation relations

La(k), a'(k')]= s~(k—k')

were taken into account. Here ck=c~k~ =co, and the
factor —', arises from averaging over the angles, ' the
integrals of Eqs. (12) and (13) possess spherical
symmetry.

In the limit y —+ 0, i.e., icos ~ 1, Eq. (14) takes the
form of Heisenberg uncertainty relation for the
operators p and x:

ia(k)e— '
+c.c.

COp GO ZPM

(12)
" c)G(t—t')

A (t')dt',

and the momentum

dS dS 8

p =ms ymo —+-A (t)
dt dt' c

Ceo 2
p

G(t —t")A (t")dt",

we are led to the following commutation relations":
etossh't' ds/t at (k)e~—'

+c.c.
co'" coos —co'+ibices

(13) Pmo(dx/dt), x]=I ymo(d'x/dP), ]x=0,

(e/c) LA (t),x]= fp, x],
(18)

become noncommuting operators": whereas our solution in the form (9) is stated to give
other results.

In this connection me must emphasize that, as was
shown by our direct calculations, both methods yield
completely identical results:

[p,x]= (A/i)yoos/(3y~s —2). (14)

ds 2'
5$p—)S

dt i(3ycos 2)—
d S

ynzp, S =0,
dt2

(19)

e IIg 2 QC03
-LA (t),x]= —— W [p,x].

2 3+%3—2

These results do not coincide with corresponding
relations (18) of Schwartz.

3. SOME PARTICULAR CASES

Starting from the general solution (5), one may
obtain the Green's function corresponding to various
particular cases.

"See reference 5, p. 1907,

r To obtain Eq. (9) from Eq. (7) one may use the following
relation that holds also in the limiting case t ~ ~:

~&-'&f(~')«'= —s(~)+ fo)+ .r(~)+ )— —"1 1 1

C03 C03 M3

It is seen from Eq. (9) that when the constant force p(~) =As(~)
acts upon the damped oscillator, one obtains in the limit t ~ ~:

x(t) ~ A/ares; *(t) —+ 0; x(t) ~ 0.
If, on the other hand, the force is harmonic, v(cg)=(A/2t)
XI e(o&—

&o&)
—e(a&+co&)g, then not only the coordinate but the

velocity and acceleration as well perform undamped oscillations
in the limit t —+ 00.

A. A. Sokolov and V. S. Tumanov, J. Exptl. Theoret. Phys.
(U.S.S.R.) 80, 802 (1956) /translation: Soviet Phys. —JETP 8,
958 (1957)j; see also A. A. Sokolov, Iatrodgctcors to Quomtura
Rtectrodyaomjcs (Moscow, 1958, in Russian), p. 190.

9 The Eq. (11)may be obtained from the commutation relations
for the x component of the transverse electromagnetic vector
potential: LA (r~t),A (r', t') j=F(t,t',R). Here R (r' —r=~, and

F(t,t', R) =——. 1——* e'~R sin/eh(t —t')g—.1 cA k', d'k
7r2 2i - k2 k

'

Going to the limit R —& 0 (dipole approximation) one obtains
Eq. (11).' Note by the way that the factor 2 instead of 4 must be used
in the right-hand side of the corresponding formula of Schwartz
Lsee Eq. (89) of reference 5j. Only in this case will it go over into
our Eq. (14). Besides that, the relations co&'+cess=co&(cue —1/y)
and ~q = xs (cps —1/y) must be taken into account.
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(a) In the case of an undamped harmonic oscillator one obtains
one must put y=0 in Eq. (5). Then z(t) ~ const, f (),',

t

(20) (1—e ' ') ~)f(t')dt'+const, t~(t(tm (23)

Thus, in the absence of damping, only the retarded part.
of the solution will remain, i.e., we have the solution of
the Cauchy problem and the 6nal condition may be
discarded.

Now let the force be given in the form of the expan-

sion (8). Then the solution (7) leads to

1 co

p(u)e 'l ——)m—4( p' —'))k (21)

(1—e&' ')'&)f(t')dt'+const, t) t,

It is seen that the mass point continues to move with
acceleration after all the forces have stopped their
action (3)f2) .

This self-accelerating solution is absent only if one
imposes the boundary conditions (2) and (3). In this
particular case they take the form

i()l~)=const, z()l~)=0,

and one obtains

C=1, t'&t
—~(~-~') iv

(22)

Consider now the case when the force is nonvanishing

in the time interval t&&t&t2. Solving the Cauchy
problem, i.e., imposing the following initial values
before the force sets in:

x(f))= const, i(t))-=0,

the principal value being taken of the integral of

G)p
—

CO

On the other hand, the direct dividing by an operator
would lead to an analogous expression but without the
term proportional to 6(cog—cv'). Thus, Schwartz's

assertion that the solutions (7) and (9) lead to different

results applies only in cases when the function D(ice)
possesses zeros on the real axis (such as in the case of
a harmonic oscillator), but it is quite irrelevant in the
case of our Eq. (1), reference 8, since there the roots
of the function D(m) lie in the complex plane.

(b) If the elastic force is absent but the damping is

present, then taking the time derivative of the Green's

function (5) and putting o&0'=0, one obtains the follow-

ing expression for the Green's function determining
the velocity:

e&' ')'&f(t')dt'+const, f(),')

+ e&' ')'&f(t')d)!'+const, t~(/(4

= const, t& t2 (24)

In the absence of damping, y —+0, Eq. (23) yields a
diverging value, while Eq. (24) becomes the solution of
the Cauchy problem.

Thus the problem of boundary conditions in the
presence of damping (i.e., of the third derivative) is
only partially investigated even in the simplest cases as
yet considered. One of the most important possible
alternatives has just been considered in our paper
(see also Sokolov et aL")
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