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The Hamiltonian formulation of general relativity is employed to study the interaction of photons and
gravitons in the first approximation. The redundant variables are eliminated by an appropriate choice of
gauge and coordinate conditions. S-matrix elements are calculated for initial states in which one photon is
present and final states in which a photon and a graviton are present. Self-energy effects appear in first order
but contribute nothing. Energy and momentum can be strictly conserved only if the initial and final photons
and the gravitons all propagate in the same direction. For this case the S-matrix elements vanish in conse-
quence of the null character of the Maxwell field, and the transition probability is also zero. Energy need
not be exactly conserved if the process occurs at a rate which is sufficiently high. Under these conditions,
corresponding to energies>>1028 eV, a photon might decay into another photon and a graviton. The graviton
has very low energy. This cannot explain the red shift as a “tired light”” phenomenon. The creation of
gravitons by Coulomb scattering of photons and by scattering in a magnetostatic field is shown to occur and

the cross sections are calculated.

INTRODUCTION

N recent years a number of authors'* have discussed
the Hamiltonian formulation of general relativity.
Quantization of the exact theory may lead to some
important consequences. This is a difficult program.
While it is being carried out, we attempt to extract new
physics out of an approximate treatment using existing
mathematical procedures. Here the interaction of
gravitons and photons is studied in the first approxi-
mation. This was motivated in part by the fact that
light reaches us from the most distant galaxies after
a time ~107 sec. During this long interval it interacts
with the other vacuum fields, including the gravitational
field. Even a very weak interaction might lead to
observable effects over such an incredibly long time.

Hamiltonian Formulation of Gravitation
and Electromagnetism

We start with the Hamiltonian formulation of
Einstein’s 1916 theory, in the canonical form?® with the
Hamiltonian given by

H= / L(—g") 7250 +-g 00730, Jd%. )

Repeated Greek indices are summed over 0, 1, 2, 3;
repeated Latin indices are summed over 1, 2, 3, except
for the index % which usually indicates a sum over
propagation modes. In (1), g, is the metric tensor.
H 1 and H; have both gravitational and nongravitational
parts. e7® is the inverse of the spatial metric g,

We assume weak fields and write

Zuv =0+ Iy (2)
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Here §,, is the Lorentz metric and 4, is a first-order
quantity. #'# will designate the momenta canonically
conjugate to gu. The 7% vanish in consequence of the
constraints. Coordinates may be chosen such that?

gu0=0yo0. (3)

This leaves us then with the six gravitational field
variables g., and the momenta #'7s. A Fourier de-
composition is now carried out, assuming the fields are
in a box of volume V.

grs=V"2h,, exp (iknmx™) 8, (4)
,n_/rs: V-1/2,n.k/rs exp ( — ikmx’") . (5)

In (4) and (5) a summation over all propagation modes
k is implied. We omit such summation signs, since it is
usually evident when a mode sum is required.

The three-vector %, defines a space direction for an
allowed mode of propagation. Let Uy and Ups be two
unit vectors orthogonal to each other and to k,. We
write 11, hrie, Fres, for the components of %, required
by the two degrees of freedom for each %. Note that
the numerical subscripts refer to a reference triad
associated with the given k.

The Hamiltonian for the gravitational field alone
may be written in the weak-field approximation, in
appropriate units, as

He=m2r_ 24722 k2o _r1a/4
+ B2 hioih_ro1/4— k2hiiih—ros/ d— K2hrash_r11/4
+ (7 M —m2) (M —72) /2. (6)

In obtaining (6) we employed those constraints which
require vanishing of field variables and momenta
with coordinate subscripts in the direction of %,
(longitudinal). .

The symmetry of the metric tensor requires

hklZthZL (7)

5 See, for example, C. Mgller, The Theory of Relativity (Oxford
University Press, New York, 1952), p. 296.

7 7
r/2=q2
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The additional constraint relations,
hr11=— sz, ®)

must be taken into account. If we work with (6),
retaining /%y and ke as separate variables, the
constraint relations (8) also appear as consequences of
the equations of motion. The real degrees of freedom
are associated with e and (Brii—/Fres). We may
employ these as dynamical variables by carrying out
the transformations

T2=2r"12, ©)
Qk:]’[’lcll"“hm%y (10)
2p=m /M —m2 (11)

The substitutions (9), (10), and (11) are essential to
guarantee the correct time dependence for the new
variables. The new Hamiltonian for the gravitational
field alone is

IiG: 7rk127r_k12/2+k%lcuh—km/z
+ 2010 s+ E2qug_x/8, (12)

with

— *1
PR

qr= Q-k*-

The procedure which led to (12) is not entirely
rigorous. This must not obscure the fact that this
Hamiltonian correctly describes a system of gravi-
tational plane waves, with the dynamical variables
hiiz, (Brin—hiee), associated with the two degrees of
freedom for each allowed k. This is identical with the
description which results from starting with Einstein’s
field equations to develop the theory of plane gravi-
tational waves in the weak field approximation. Indeed,
we might have started with the requirements® imposed
by R,=0, then (12) would follow.

For the Maxwell field the Lagrangian density is

L=—gogf(4, y—Auy) (Aap—Ape) (— '
= (_g)I/ZF#rFW;

Ri1z= h——lc*m, Pr= p_k*,

(13)

where g is the determinant of the metric tensor, 4, is
the four-potential, and F,, is the Maxwell field tensor.
The momenta of the electromagnetic field are given
by n*=0£/94,,0, with

1= g F(—g) = — (=g P (14)

The component 7° vanishes identically.
The Maxwell-field Hamiltonian density is then

3Car=n%Aa,0+g#g¥ Faallou(—g)'%.

To reduce (15) further, we can proceed as follows:

(15)

/ndAo,dd3x=f[(ﬂdAo),d"ﬂd.dAo]d3x- (16)

The first term on the right of (16) vanishes because it

6 J. Weber, General Relativity and Gravitational Waves (Inter-
science Publishers, Inc., New York, 1961), p. 92.

2415

may be written as a surface integral. The second term
on the right is omitted because of the Maxwell equations
n',;=0. Expression (16) then becomes

/n1A0,1d3x=0. (17)
The components Fo; may be written
gmmm gngmrgU"F nr
0= 1—‘ . (18)
gP—pr g

Employing (14), (17), and (18) reduces (15) to the
form

sexr=(— g

glrﬂlﬂ'
8 (g

+ (3g)1/26rselmFlTFms]

+etsgool ™,  (19)
where (3¢) is the determinant of the spatial metric
gi;- Equation (19) is in the canonical form given by
Dirac® The variable 4, no longer appears in the
Hamiltonian. F,‘j:Aj,:i—Ai,j. Fi()= '—Ai,o.

We now employ (2) and (3) to write (19) in the
approximate form,

GCMZ / [n’nl/8+FlmFlm]d3x

+ / [ bsst-Fss+iss) (FonF o/ 2—1n1/16)

+ ™™/ 8— 2hasF mal 156™ ]dPx.  (20)

The second integral of (20) represents the first-order
interaction between the Maxwell field and the gravi-
tational field. We now assume that the background
geometry is a flat space with a Lorentz metric. The
i then represent a field which is treated by standard
procedures.

The free-field equations for A4; are obtained from
(20) as

4(4 5= A 53) =1, 21
ni=44,. (22)
We select the Coulomb gauge,”
A 1,0 0 5 (23)
the 4, then satisfy
[4;=0. (24)

The procedure we have followed has resulted in
elimination of the redundant variables in gravitation
and electromagnetism. Its principal advantage is
simplicity. This is obtained at the expense of obscuring
the gauge invariance.

A Tourier decomposition of the Maxwell field is

7W. Heitler, The Quantum Theory of Radiation (Oxford Uni-
versity Press, New York, 1954), 3rd ed., Appendix 2.
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carried out by writing

1=V "V, exp(—iknx™)

= V12 (U siet12Ukar) €xp(—ikma™), (25)
Ay=V"Y24 1, exp (thmr™)

=VV2(a31U r1st+areUsss) exp(iknr™), (26)

Fry= VAL A ey A giky] exp (k™). (27)

Here the object Ay is the Ith component of the Fourier
component Ay.
The gauge condition (23) is satisfied in consequence of

Uiiiki=0, Upoiki=0.

Making use of (8), (12), and (25)-(27) enables us to
write for the total Hamiltonian

H=mm_*/ 2+ k*hiaoh_r1s/ 2 2pip—i+-Fqrg—i/8
+"7k1"7—k1/8+77k277—k2/8+ 2k? (alnla»kl—f_ ak2a—k2)

+/ (lz,snm,/S—— 2]szszFdj5m‘i)d3x. (28)

Equation (28) is a Hamiltonian which gives, in first
order, the correct equations of motion for the required
dynamical variables, for the chosen coordinate system
and gauge condition. It is seen to be that of sets of
gravitational and electromagnetic field oscillators,
together with coupling terms. For convenience we have
not Fourier-analyzed the interaction part.

The a;, and %12 become operators when the theory is
quantized. In the Schrédinger picture, in a represen-
tation in which energy is diagonal, these have matrix
elements such as (@x)m», which vanish unless m=n+1
or m=n—1. We define new operators by the relations®

hiaa= (2k)72(b_x*+by), (29)
Tr12=1(k/2)V2(b_i*—by), (30)
qr= (2/k)V2(d_x*+dy). (31)
p—x=1(k/8)"*(d_i*—dx), (32)
ar= (8&)2(fop*+ fur), (33)
-1 =1(2)"*(frr™— fr1), (34)
axz= (8k)V2(fr2*+ fia), (35)
2= 1(2R) 2 (foro*— fa)- (36)

These operators have matrix elements
bn,n—lzo, bn—l,n*zo, bn—l,n=n1I2, bn.n—1*=n1/2- b*
is therefore a graviton creation operator, and b is an
annjhilation operator for the %52 type of graviton.
Similarly d* creates gravitons of the second independent
state of polarization, d annihilates them. f* and f are

8 We have omitted absolute value signs on % here and in what
follows. Whenever . appears without a lower case subscript, it is
either a label or the absolute value of the three-vector k: is

implied. & with an upper case subscript labels a particular particle.
An asterisk denotes the adjoint operator.
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photon creation and annihilation operators, respec-
tively. Making use of the commutation rules [%x12,mi'%]
=18y, and dropping the zero-point energy enables us
to write the Hamiltonian as

H=k0:*bxtdi*dit fer® frat fre™fre)
~]~/[(h,,s-y;’n8/8) = 2hy ;B il as6m JdPx.  (37)

As we remarked earlier, all of the operators appearing
in (37) are Schrédinger operators. The interaction
picture (representation) operators are obtained in the
usual way by writing, for example,

kaR* = bk*eikt-

(38)

Operators of the interaction picture will be employed in
what follows and the subscript IR omitted.

The first order S-matrix elements may now be
written for a process in which there is initially one
photon present and no gravitons, to a final state in
which one photon and one graviton are present as

— P ikt
brir=Dbre~ i,

Mpe,a= “i/@’ (Bifr1B+Bofi28)

X (y1beotvedrc) | (Bimini/8)
— 245 F 13 ™| (01 fria*+azfrea®) | 0)dix. (39)

In (39), 4 labels the initial photon, fiip is an annihila-
tion operator for photons propagating in the % direction
and polarized in the Uy direction. B is a label for the
final state. Similarly &x¢ and die are annihilation
operators for the two kinds of gravitons. C is a label for
the final-state graviton. ai, as, B1, B2, ¥1, ¥2 are constants
needed to describe mixed states of polarization. Equa-
tion (39) is in fact gauge invariant since 5 is the electric
field and F; is the magnetic field.

To evaluate (39) we note that for each direction
defined by % there are four field variables corresponding
to two states of polarization for the gravitational field
and the electromagnetic field. %4:; transforms like a
tensor under Lorentz transformations. Consider a
Lorentz frame with coordinates a° 9, 9% 3% 9% is
measured in a direction parallel to a given propagation
three-vector k. 4* and 3? are measured in the two space
directions orthogonal to each other and to k. 411 is the
11 component of %; in the y frame. To obtain 4:; in the
observer’s frame with observer’s coordinates x°, ', %2,
2%, we recall that

yi! dyit 9y 0y,?
hri;= Iy LA -
dx* dxa? dxt dx?
Ayl 0yi:  Oyi? Ayt
+/11;12[*~'f-‘7+**7 '-*-"_'j], (40)
dxt dx?  OJxt Jx?

not summed over k.
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Making use of (8) as an operator identity gives

1 1 2 2 F16. 1. Feynman dia-
=Z’f[ayk 9y _ay K Ok :‘ gram for virtual photon

2L 9x 9x7  9xt 9xi graviton process.

Ay 0y&®  Oyi® Oyi'
+hk12[_‘_‘ —+— —“,‘jly (41)
9xt dx?  dxt 9x Employing (42), (29), and. (31) in (41) gives
not summed over %.
We may express %; in terms of the unit vectors Uzy  Frij= (28) 2 (d_x*+di) (UrsiUsri— Us2iUkay)

and Uys which were defined earlier, 4 (b_i*+b1) (Ur1iUejt+UroilUr;) ). (43)
Urkii=0y!/0x%,  Ugoi=09yi%/0x". (42) The S matrix elements (39) then assume the form

Mpe,a= -—iV“W/(O[ (Bufris+Befras) (vibretv2dic) | { QR ) VL (A—r*+di) (Ur Uk 1i— Ur2iUrr25)

+ O *+01) (Urr1ilU w2+ Un 2T 1) B{— R7E" /16)V°L(fopri— frrr) Uit (forrro® = frar ) Unerai]
XL(fewr*= forrm) Ut (foprrg® = frrng) Uprrrgi 14 (16RR ") 2L (foport*+ frord) (B U k1= ki Unena)
+ (Forrre™ frrre) (ke Unrras— k" Unra)) JL(Forr i+ firn) (R Urrri— k" Uroo1a)

A (forrrrg™ frorrre) (B Uprrrgi—k!" Uprroa) 1} explint (k4R +E") ]| (01 frria™Fasfrea®) |0)dix,  (44)
summed over &', k", and &"”’. Here k, is the propagation four-vector. Carrying out some of these operations leads to
Mpe,a= —i(2m)* V=154 (k) +k) k") Bifr1n+Bafrem){ [Vidro—r (Ur1iUkr2jt Ukr2iU k1)

Fyabrc,—r (Ur1iUw1j~ UkaiUw o) JQE )2} — (B'E" J16)V2 (ftrr*— frrr) Uprrni
+ (fewre® = frra) Uprai JL(forrrn® = frrr) Unrrajb (foperra®— fara) Uproraj]
+ A6k R )V (fpra®* firrd) (Be Unrriy— R iUkro 1) F (foprra*frr2) (R Uprroj— ki’ Uprr1) ]
XOferrrrd®™ - frrt) (B Uprrrii— k""" U id) + (foprrra®™+ farrn) (R Urrrai— k" Usorra1) 1}
X (s frra*+onfrea®).  (45)
We return for a moment to expression (44) and note that it involves some products of the form
(O] frn|dicdi™* furr farr*| fra®|0). (46)

In one possible sequence fi annihilates fy* fip annihilates fra¥, di* creates a graviton and dy¢ annihilates
it. Initially we have a photon and in the final state the same photon. The Feynman (self-energy) diagram is given
by Fig. 1. Let us evaluate (45) for this kind of process by writing first

Mo, a=—1(2m) V=364 (k) k. + k") [B1fi1p+Bafrap  [0kc,—1v1(Ui1:U kot UsrailU i)
Fyadec,—w (Uk iUk 1j— UkaiUk2)) JQE )V Uprr iU+ UirraiU—r 2%
FE R Uprrij— ki Unerg) (k" U_prriu— kU _gyr15) B2 (R Urroj— b Urrar)
X (& U_prraa—k"U_tyr2:) N fraa*Fasfiea®) /4. (47)

Carrying out these operations gives
Mpe,a=—1iQ2m) V= 4(kc) BrfratBefia {[v1(U-re1:U—rezit U-rc2.U_ke1s)
Fv2(U—reriU-rcrj— U—rc2iU—_rcej) JQke) 2R (Uil g1+ Urrr2iU—prr2y)
AR =k R (UrridU o+ UrrrogU goray)
=kU—p2iUp ot U iU ) 1} (o fraa®Fanfraa®).  (48)

(48) vanishes in consequence of
UrriUprutUprgU_yrr9=0,
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except perhaps at k¢=0 where (48) is not defined. However, the square of (48) will in any case vanish when
integrated over momentum space because of the part of the phase space volume element k2dkcV, if the volume is
allowed to become infinite. For a finite volume, at small k2¢ the appropriate phase volume element is Ldk¢, where
L is the length of the box; but k¢ cannot be zero in this case so the phase volume integral of the square of (48)
is zero.

We turn to the other kinds of terms in (45). Consider the one polarization first, for the group of terms:

Bifuis(L6R" B Y2 (f_prra*+ frrn) (R Unr15— k" Unrrit) (f—prr ™+ frrrn) (R Uprrrii— k" U)o fraa™®
=anBr(16R"E" )2 (ki U j— k" Uiert) (k"' Uerri— k" Usrr ) fran (forr™* firrr = fiorr foterr™) fr1a® ]
Seas(forr fonrr 4 fop ™ frrre) fr1a® =0k18,—1r Ok k140818, —kr+ k14, 177+
Employing this and carrying out the sum over 2" and &'” then gives for these terms
(B1/B)[(kakp)*(k_piU_rpi—k_p;U_t181) (karUsrari—kaUran)
+ (kpka)™2(karUrar;—kajUrary) (b_piU_spri—k_p:U_rp1) .  (49)
A similar contribution results for the other polarization. We then evaluate the terms:
(—aiBy/4) ('R 2U o1 Ui frap [ forrs®— fron L f—prra®* = farrn] fraa®
= (a181/4) (kpka) [ Ur1a:U_rp1;+U_iB1Ura1;].  (50)

A similar contribution results from the other polarization. Also there will be some terms resulting from annihilation
of a photon of one polarization and creation of a photon of the other polarization. Assembling these results gives
us for the .S matrix elements

Mpe,a=—1Qu) V3254 (kay—kpu—kcu) ke) ™2 (2y1U—_reriU—reoi+vo L U—rcriU—rc1i— U—rc2iU—xc2i])
X[ (Br/4)x11+ (@eB1/4) xo1+ (@iB2/4) x 10+ (@eBs/4) X221,

Now

with
Xro= (kakp)*[ (UiraiU—rapiFU—_rapiUiras) )+ (kaks) ™ (k—piU_ropi—k—5;U_rap) (RaiUrrai—kaUkrar)

_I_ (kAlUkI‘Aj—' kAjUkI'A l) (k—-BlU-—kSlBi_ k—BiU——kﬂBl)]. (51)
The indices T, © run over 1 and 2 only.

In order to calculate the transition probability we must square (51) and integrate over momentum space. The
occurrence of the delta function means, among other things, that the three (three-space) momentum vectors
ks, kpi, and ke; all lie in a plane, and sum to zero. It is useful to evaluate (51) for this condition, shown in Fig.2.
U+ is normal to the plane of the figure, U, lies in the plane. In this case,

k_BjkAiU_kcin_kcgj': "‘Sill(p 51n(0+ (p). (52)
Evaluating (51) for both polarizations by use of (52) leads to

Mpe, a=—1(2m) V3254 (kay—kpu—key) (kakp/8kc)2{a:81v2 cos—1—sin(8+ ¢) sing |

+FasBaye[1—cosg cos(6+ ¢) J+v1(asfatasBi)[cosp—cos(0+¢) I},  (53)
with kai=kpi+ke.
Following the procedure of Lippmann and Schwinger?® we square (51), set one of the delta functions equal to the
quantity (2r)~*Vt, and integrate over momentum space to obtain

W= (271')‘2/54 (kaw—kBu—kou) [ P11 +P1oFPoo PPk pdkc. (54)

Equation (54) is the transition probability for a photon to decay into a photon and a graviton. ®11, 15, and Py are
parts of (51) contributed by the two possible polarizations of the initial photon. Evaluating (54) gives kai=kpi+kc:
and making use of (53) then leads to

W= (2#)“2/60(}6A—k3"kc) (kAkB/Skc){alﬁl’Yz[COSB— 1"'8111(0-‘- go) Sincp]

+FasByya[1—cose cos(0+ ¢) J+v1(aBataBlcosp—cos(0+ o) 1} *d*%ke,  (55)
9 B. A. Lippmann and J. Schwinger, Phys. Rev. 79, 469 (1950).
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with
k?=ki2+kp?—2kakp COS@, (56)
k32=kA2+k02—2kAkc Cos . (57)
Let
k=ki—ks—ke. (58)
Combining (56), (57), and (58) gives
k=ka—kp— (ka*+ks*—2k sk 6)1/2,
A B (A+B ABCOS) (59)

k=kA—kc— (kA2+k02—2kAkc COS(p)”Z.

Noting that d3k¢=2rkc*dk¢ singd ¢ enables us to write
(55) in the form

W= (211')_1/50 (k) (kAkBkc/S)

X{a1Brys[ cosd—1—sin (84 ¢) sing]

+asBays[ 1—cose cos(6+ o) ]

+’Y1(Olu82+01261) [COSgo— COos (0+ ‘P)]}2
dkc

><<_> dk sinpde. (60)
ak ¢ =constant

Employing (59) to evaluate (8k¢/dk),=constant gives
Oko/dk= (kot+k—ka)/[ka(l—cose)—Fk]. (61)

In order to evaluate the integral (60) it is helpful to
consider several cases.

(a) Neither kg nor k¢ approach zero. Integrating
with respect to % gives

W= (21!')_1/ (kc—kA)[SkA(1—COS<p)]*1kAkBkC

X {y201B81[ cosf—1—sin(8+ ¢) sing |
FasBrys[1—cose cos(0+ ¢) J+v1(iBetasB)

X[cosp—cos(6+ @) ]}? sinpdeo.  (62)

From Fig. 2 we have sing= (kp/kc) sinf. (62) must
be evaluated at 2=0. From (59) and (58) this requires
¢=0, 6=0, corresponding to strict conservation of
both momentum and energy. The integral is seen to
vanish. The vanishing of the S-matrix elements for
forward scattering is readily understood if we study
the structure of the interaction for this case. It is made
up of terms such as

hu(EllEl”—H2IH2”),

where E and H are the electric and magnetic field
operators, respectively. For a null field E2—H?=0. On
the other hand, if the scattered photon does not
propagate in the same direction as the incident one,
E,"#H," and the cancellation need not occur.

PHOTONS AND GRAVITONS
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&n

F16. 2. Momenta and reference triads. Uga1, Uspi,
Utct are normal to the figure.

(b) k¢—0, kp*0, ¢ need not vanish. Under
circumstances for which (62) is valid a vanishing result
would still be obtained as k¢ — 0. However, (62) is

valid only for long times ¢ such that
kt>. (63)

The origin of the delta function in (60) is known from
time-dependent perturbation theory to be

2 sin2(kt/2)
lim ———— 5 5(). (64)
t—>0 7rk2t
For
btk (65)

the delta function can be replaced by #/2r. For this
case we may approximately evaluate (60) as

k
W= (kA2t/327r2)/ / [ve(aBi—asBs) ke

ke _
X(—> sin®pdpdk.  (66)
3]3 ¢ =constant
From (59), for small k¢,
k=~kc(cosp—1), 67)
the integral (66) is evaluated as
W= tkA2k2['yz(alﬁl—agﬁg)]2/247r2% 1 (68)

We now insert dimensional factors and, from the
inequality (65), (68) becomes

ka>>(c3/hG)2. (69)

(69) is the condition to be met for decay of a photon
into another photon and a low-energy graviton. It
requires energies >>10% electron volts.

(¢) kg—0, k¢#0, ¢ — 0, 6 need not be zero. The
integral (60) tends to

W = (tk%k 42/ 647%) / (1—cosb)

X (v209B2—y2a181+v100B82+v1081)? sined . (70)

In this order of approximation W — 0 in consequence
of the condition ¢ — 0. We may therefore conclude that
processes for which a photon decays into another
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photon and a graviton are excluded in this approxi-
mation, except possibly at extreme energies, i.e., >>10%
eV, corresponding to (69). In these cases the photon
may conceivably decay into a very low energy graviton
and a photon of almost the same energy as the incident
photon. This cannot explain the red shift on the “tired
light” hypothesis, since it does not occur at low and
intermediate energy.

Scattering by the Longitudinal Fields of
Charges and Currents

A longitudinal electromagnetic field would be
expected to produce gravitons when photons are
incident upon it.

We may write for an electric field

Nr="n0:7F1rL (71)
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In (71), 7.7 is the transverse part of the canonical
momentum and 7,z is the longitudinal part.

The reduction of (16) to (17) would not follow since
(—g) i ;=J,, the charge density. (20) and (21)
would be modified and (22) would be replaced by

ni=4(A;—4o,j).
We may now write for the Fourier decomposition

nLr=V "1, exp (iknx™)

=V Uprs exp(ikmxm) (72)

Ukrr 1s a unit vector in the direction of 5z, These
expressions are summed over (k).

The longitudinal field gives a contribution to the §
matrix for initial states in which one photon is present
and no gravitons to final states in which no photons
and one graviton are present.

Mea= V_m/(O [v1bretredic| QR VPL(d—*4di) (UniUprj— UpoilU kr0) +2 (b *+bir) UnrtiUrras ]

XL(®" /322 (UpriferaitUsoaifira) Urninrrt (& /32)V2 (Ui frrntUsrrgfirre) Urramir]

Evaluating (73) gives

with

Fp= [271U-k01i U—k02j+')’2 (U—kC’IiU—kCIj'— U—kC’ZiU—-k(mj)]

Xexp[int (k) k) +kry) ]| asfrra* s froa®| 0)d.  (73)
Me,a= Qu)*V=325y(kaptkru—kou)merF g (anoe,v1,v2,Ukar,Uraz,U—rc1,U—rca), (74)
X[a1Ura1:UrritaeUsreaiUrritaiUsar;UsritaaUsea;Usri](ka/ke)V?/8.  (75)

A sum over %y, is implied by (74). Replacing this sum by an integral and noting that %, has a vanishing timelike

component gives

Me.a= 21rV"1/2/54 (kaptkry~ke)nerF gd¥kr=2wV"28(ka—kc)F s | cLickcioras

(76)

The transition probability is then obtained by integrating the square of (76) over momentum space, remembering
that one of the delta functions is replaced by #/2r. In terms of the spherical coordinate k¢-space angles 8’ and ¢,

we have
W= (2m)~* / kcdo(ka—ke) (F P nis®) kpimroi-raq Sing'dkedd'de’. (77)
After inserting dimensional factors, we may write this in the form!
W=728Gc 3k 42 (ne12)av (78)
with (nz12)sy given by
<77kL2>av=&1; f (1%L*F 8% kLimkci-rai SING'dG'd . (79)
The differential cross section is
dScontomb = 64GCc™4V k42 (i 12FER) kLo it ai SING'dF'd &, (80)
with ¥V the normalization volume for photons. The scattering cross section is therefore
Scoutomb =m25GC ™k a¥nrav V. (81)

10 Tn these units, n°=F"/47.
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We note the absence of Planck’s constant in (80) and (81). This is to be expected, since we have the interaction
of two Boson fields, which has a classical limit. The classical calculation has been carried out and agrees with

(80) and (81).

The case of graviton production by scattering of photons in a magnetostatic field can be carried through in

a similar way. Now we have

As=AystArs.

Here A i, represents the prescribed part of A, with vanishing time derivative. For the Fourier decomposition,

A s is given by

A ars= VP43 U gars €xp(thma™).

Corresponding to (76), we now obtain

Mo, a=2mVY2%o(ka—kc)F s (kakc) ™ 2arm | katimiciobais

where

(76A)

Fu=[—=v1(U_tc1iU—-rcoi+U—_rc1;U—-rc2:) = ¥2(U—-rcriU—rcrj— U—rc2iU—rc2i L ksraUrsri— kariUrmi]

Corresponding to (78),

W =2"1Gc¥ar®)av,

with {(ara?)av given by

1
(arsD)av= ?4; / @a®F 3?| earimrcina; SING'd0'dy’.

The differential cross section is

dSMagnetic field= G (271')*26-4 V (leMzFZ) EMi=kCi—kAi sin@’d@’d (p,.

The scattering cross section is
S=r1GcV (@rsPav- (814)

ner? and agp® contain V! so these results are in-
dependent of V. A closer study of F? indicates that the
total scattering cross section for a large volume con-
taining a uniform field tends to

S~8n2GUlc,

where U is the energy and [ is the linear dimension of
the scatterer.

For laboratory experiments the cross section appears
too small. Thus, for a volume 108 cc containing 10° ergs
of electrical energy, we have

S — 1073 cm?.

On the other hand, for a galaxy containing a magnetic
field ~10-% G, with I~10% cm,

S — 10%8 cm?,

X[o1(kaiUrari—kaiUraw)+ao (ka1Urazi—kaiUra2r)].
(78A)

(794)

(80A)

A fraction 10%/10%=10"1 of the incident photons
would be converted to gravitons.

CONCLUSIONS

We have studied the interaction of gravitons and
photons in the first approximation. Some simplification
results from use of a coordinate system and a gauge
condition in which all of the redundant variables have
been eliminated. In first order self-energy effects
appear but these contribute nothing. In this order the
decay of a photon into a low-energy graviton and a
photon might occur at photon wavelengths

AL (GR/ )12,

corresponding to energies >>10% eV. This does not
constitute a possible “tired light” mechanism.

Electrostatic and magnetostatic fields may annihilate
a photon with production of a graviton.



