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Interaction of Photons and Gravitons*
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Un& ersity of M'aryland, College Park, M'aryland

(Received March 2, 1962)

The Hamiltonian formulation of general relativity is employed to study the interaction of photons and
gravitons in the first approximation. The redundant variables are eliminated by an appropriate choice of
gauge and coordinate conditions. S-matrix elements are calculated for initial states in which one photon is
present and 6nal states in which a photon and a graviton are present. Self-energy effects appear in first order
but contribute nothing. Energy and momentum can be strictly conserved only if the initial and final photons
and the gravitons all propagate in the same direction. For this case the S-matrix elements vanish in conse-
quence of the null character of the Maxwell 6eld, and the transition probability is also zero. Energy need
not be exactly conserved if the process occurs at a rate which is sufIiciently high. Under these conditions,
corresponding to energies))102' eV, a photon might decay into another photon and a graviton. The graviton
has very low energy. This cannot explain the red shift as a "tired light" phenomenon. The creation of
gravitons by Coulomb scattering of photons and by scattering in a magnetostatic field is shown to occur and
the cross sections are calculated.

INTRODUCTION
' 'N recent years a number of authors' 4 have discussed
- - the Hamiltonian formulation of general relativity.
Quantization of the exact theory may lead to some
important consequences. This is a difficult program.
While it is being carried out, we attempt to extract new
physics out of an approximate treatment using existing
mathematical procedures. Here the interaction of
gravitons and photons is studied in the first approxi-
mation. This was motivated in part by the fact that
light reaches us from the most distant galaxies after
a time 10' sec. During this long interval it interacts
with the other vacuum fields, including the gravitational
field. Even a very weak interaction might lead to
observable effects over such an incredibly long time.

Here 6„„ is the Lorentz metric and h„„ is a first-order
quantity. w'I'" will designate the momenta canonically
conjugate to g„„. The m. '&' vanish in consequence of the
constraints. Coordinates may be chosen such that'

(3)gp0 ~p0-

This leaves us then with the six gravitational field
variables g„, and the momenta m'"'. A Fourier de-
composition is now carried out, assuming the fields are
in a box of volume V.

(4)

(5)

g, ,= U "Irk„, exp(ik x")+8„,
2r'"'= U '"irk'"' exp( —ik x").

In (4) and (5) a summation over all propagation modes
k is implied. We omit such summation signs, since it is
usually evident when a mode sum is required.

The three-vector k defines a space direction for an
allowed mode of propagation. Let U~I and Up2 be two
unit vectors orthogonal to each other and to k . We
write A1,11, h1, 12, h~22, for the components of hA, „required
by the two degrees of freedom for each k. Note that
the numerical subscripts refer to a reference triad
associated with the given k .

The Hamiltonian for the gravitational field alone
may be written in the weak-field approximation, in
appropriate units, as

Hamiltonian Formulation of Gravitation
and Electromagnetism

We start with the Hamiltonian formulation of
Einstein's 1916 theory, in the canonical form' with the
Hamiltonian given by

H =
L (—g")—"2Xr,+g„se"'BC ]dsx.

Repeated Greek indices are summed over 0, 1, 2, 3;
repeated Latin indices are summed over 1, 2, 3, except
for the index k which usually indicates a sum over
propagation modes. In (1), g„„ is the metric tensor.
HL, and II, have both gravitational and nongravitational
parts. e"' is the inverse of the spatial metric g, ,

Ke assume weak fields and write

+G rrk 2I k+rrk rr k+~—~k12~—k12/4—

+~ ~k21~—k21/4 ~ hkll~ —k22/'4 ~ ~k22~—kll/4

+ (~„~11 ~„~22) (~ ~11 ~ „~22)/2 (6)

In obtaining (6) we employed those constraints which
require vanishing of field variables and momenta
with coordinate subscripts in the direction of k
(longitudinal) .

The symmetry of the metric tensor requires

g„.=8„,+k„..
*Supported in part by the National Science Foundation and

in part by the U. S. Air Force.' F. A. E. Pirani and A. Schild, Phys. Rev. 79, 986 (1950).
~P. G. Bergmann, R. Pen6eld, R. Schiller, and H. Zatzkis,

Phys. Rev. 80, 81 (1950).' P. A. M. Dirac, Proc. Roy. Soc. (London) 246, 333 (1958).
4 R.. Arnowitt, S. Deser, and C. W. Misner, Nuovo cimento 1

487 (1960).

hk12 ~A'21 ~ 0)
5, ' See, for example, C. Mufller, The Theory of Relativity {Oxford

University Press, New Vork, 1952)
2 p. 296.
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7r"= 2X"2
)

g k hk11 hiI:22)

2p(. =m '"—Xk"2

(9)

The substitutions (9), (10), and (11) are essential to
guarantee the correct time dependence for the new
variables. The new Hamiltonian for the gravitational
field alone is

HG 2c/,122r —2—12/2+kph01212 212/2

+2pkp ~+k'qaq 2/8, (12-)
with

~k ~—k ) hk12 h—k 12) Pk=P k ) /k= q-k12 4-12

The procedure which led to (12) is not entirely
rigorous. This must not obscure the fact that this
Hamiltonian correctly describes a system of gravi-
tational plane waves, with the dynamical variables
12212, (h211—/2222), associated with the two degrees of
freedom for each allowed k. This is identical with the
description which results from starting with Einstein's
Geld equations to develop the theory of plane gravi-
tational waves in the weak field approximation. Indeed,
we might have started with the requirements' imposed
by R„„=O, then (12) would follow.

For the Maxwell field the Lagrangian density is

g "a"(A;—Au, .) (A-, p
—A/2;) ( g)'—"—

= —( g)'"F .F"" (—13)

where g is the determinant of the metric tensor, A„ is
the four-potential, and Ii„„is the Maxwell held tensor.
The momenta of the electromagnetic field are given
by "=2/82/8 Ap, with

The additional constraint relations,

hk11 ~k22)

must be taken into account. If we work with (6),
retaining hk11 and hk22 as separate variables, the
constraint relations (8) also appear as consequences of
the equations of motion. The real degrees of freedom
are associated with /2122 and (h211—h222). We may
employ these as dynamical variables by carrying out
the transformations

may be written as a surface integral. The second term
on the right is omitted because of the Maxwell equations
2/', 2=0. Expression (16) then becomes

g'Ao, id'X= 0. (17)

The components J 0~ may be written

gmtg

4a"(—g)'

grr/, rg0nP

g00
(18)

se2r —— [2/'2/'/8+F 2 F/„]d200

+ [(»1+k22+1222) (P/ P/-/2 —A'/16)

yk, „~&~-/8 2k.,p„,p„]—"'jd x. (20)

The second integral of (20) represents the first-order
interaction between the Maxwell field and the gravi-
tational field. We now assume that the background
geometry is a Rat space with a Lorentz metric. The
h„„ then represent a GeM which is treated by standard
procedures.

The free-Geld equations for A, are obtained from
(20) as

4(A, „,—A. ..) = j/,

& =43,.
(21)

(22)

Employing (14), (17), and (18) reduces (15) to the
form

g~rg 'g"

gQ2r —( g00)
—$ + (3g)1/2/vrs/vlmP P

8 (pg)1/2

+e"g,pp/„2/, (19)

where (pg) is the determinant of the spatial metric

g,;. Equation (19) is in the canonical form given by
Dirac. ' The variable A0 no longer appears in the
Hamiltonian. I'„=A,,,—A, , &. ~.0=—Ai, o-

We now employ (2) and (3) to write (19) in the
approximate form,

2/ss its/sgpvP ( g)
1/2 4 ( g)

1/2Pps. '

The component p' vanishes identically.
The Maxwell-Geld Hamiltonian density is then

We select the Coulomb gauge, '

A;,;=0;
the A, then satisfy

A, =O.

(23)

(24)
Kpr=r/~Ay, p+g &g0"Fp F,„( g)'". —

To reduce (15) further, we can proceed as follows:

(15)

2/"Ap, &dp~= [(1//'Ap), d 2/' &A phdpx. —(16)

The first term on the right of (16) vanishes because it

J. Weber, General Relativity and Gravitational 8'aves (Inter-
science Publishers, Inc. , New York, 1961),p. 92.

The procedure we have followed has resulted in
elimination of the redundant variables in gravitation
and electromagnetism. Its principal advantage is
simplicity. This is obtained at the expense of obscuring
the gauge invariance.

A Fourier decomposition of the Maxwell Geld is

VW. -Heitler, The Quantum Theory of Radiation (Oxford Uni-
versity Press, New York, 1954), 3rd ed. , Appendix 2.
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carried out by writing

q, =V "2gk„exp( —ik„x )
('gkl~klr+'Qk2+k2, ) exp( —»~z"), (25)

A.=V "'Ak, exp(ik x )
= V 'I2(—IJk, Uki, +ak2Vk2. ) exp(ik 2: ), (26)

FI, V'I2i——[Ak,ki Ak—ik, 5 exp(ik„,2","')

Here the object AA, & is the lth component of the Fourier
component 3 J,.

The gauge condition (23) is satisfied in consequence of

UI„.i,-k, =0, UI,2,k;=0.

Making use of (8), (12), and (25)-(27) enables us to
write for the total Hamiltonian

&=2rk"2r k"/2+k'hki2k ki2/2+2pkp k+O'IJkq k/8

+'gkl'g —kl/8+Ytk2Q —k2/8+2k (IiklI2 —kl+ Iik2I2—k2)

+ (h„21„q,/8 2/zI, F IF—~IS ")Ii2x (28).

photon creation and annihilation operators, respec-
tively. Making use of the commutation rules [hki2, 2rk 5
=Q» and dropping the zero-point energy enables us
to write the Hamiltonian as

&=k(4*'bk+dk*dk+ fki'fki+ fk2*fk2)

+ [(k„,q"q'/8) 2/zI,—F~IFg,8"~]d2& (37)

b)ia=ble ' ' b~~R*=bj e'". (38)

Operators of the interaction picture will be employed in
what follows and the subscript IR omitted.

The Grst order 5-matrix elements may now be
written for a process in which there is initially one
photon present and no gravitons, to a final state in
which one photon and one graviton are present as

As we remarked earlier, all of the operators appearing
in (37) are Schrodinger operators. The interaction
picture (representation) operators are obtained in the
usual way by writing, for example,

C-2= i(k/8)'I'(d-k* —dk), (32)

ski= (8k) "'(f ki*+fki), (33)

n ki=i(2k)"'(f ki*—fki), («)
III.-2=(8k) "'(f k2*+fk2), (35)

n k2=i(2k)"2(f k2*—fk2). (36)

These operators have matrix elements
b.-i .=&'",

is therefore a graviton creation operator, and b is an
annihilation operator for the k~2 type of graviton.
Similarly d* creates gravitons of the second independent
state of polarization, d annihilates them. f~ and f are

Equation (28) is a Hamiltonian which gives, in first
order, the correct equations of motion for the required
dynamical variables, for the chosen coordinate system
and gauge condition. It is seen to be that of sets of
gravitational and electromagnetic field oscillators,
together with coupling terms. For convenience we have
not Fourier-analyzed the interaction part.

The al, and h~~2 become operators when the theory is
quantized. In the Schrodinger picture, in a represen-
tation in which energy is diagonal, these have matrix
elements such as (ak) „which vanish unless II=22+1
or m=e —1. We deGne new operators by the relations'

k»2= (2k)-'~2(k k*+bk), (29)

m=ki2 ——i(k/2)" 2(b k*—bI,), (3O)

qk= (2/k)"'(d k'+dk) (31)

~BCh2 , (0
~
(PifklB+P2fk2B)

X (V8k C+V2AC) i (k;,n'gI/8)

2k~IFIIF~8—™
~
(~ifki~*+c 2fk2~')

~
o)d'& (39)

In (39), A labels the initial photon, fkiB is an annihila-
tion operator for photons propagating in the k direction
and polarized in the UI, ~ direction. 8 is a label for the
Gnal state. Similarly bj,g and d~q are annihilation
operators for the two kinds of gravitons. C is a label for
the 6nal-state graviton. I22, n2, pi, p2, yi, y2 are constants
needed to describe mixed states of polarization. Equa-
tion (39) is in fact gauge invariant since g' is the electric
field and F~; is the magnetic Geld.

To evaluate (39) we note that for ea, ch direction
deGned by k there are four Geld variables corresponding
to two states of polarization for the gravitational Geld
and the electromagnetic Geld. h;, transforms like a
tensor under I.orentz transformations. Consider a
Lorentz frame with coordinates x, y', y', y'. y' is
measured in a direction parallel to a given propagation
three-vector k. y' and y' are measured in the two space
directions orthogonal to each other and to k. hI, ~~ is the
11 component of h~ in the y frame. To obtain A;„ in the
observer's frame with observer's coordinates x', x', x',
x', we recall that

~yI ~ya ~yI ~ye
kkiI' 12kll +kk22

BX BX7 BX 8%7

8%e have omitted absolute value signs on k here and in what
follows. Whenever k appears without a lower case subscript, it is
either a label or the absolute value of the three-vector k; is
implied. k with an upper case subscript labels a particular particle.
An asterisk denotes the adjoint operator. not summed over k.

~ye ~ye ~pa ~pa+kI;22
— — — +——,(4O)

8X BX~ BX BX~
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&llaking use of (8) as an operator identity gives

gl QI ~pa
~ ~"- al-

2 8$ Bxi 8$ Bx~

FLG. 1. Fefllnlan Clla-

graIn for virtual photon
graviton process.

~$1 ~gI
+&2212 +, (41)

X BX2 l9$8$~
not summed over k.

We may express hI„, in terms of the unit vectors U»
and V~2 which were de6ned earlier,

Employing (42), (29), and (31) in (41) gives

hk', = (2&) '"[(d-k*+dk) (Ukt'Ukt j—Uk2'Uk2, )
+ (& k*+&k) (Uki'Uki j+Uk24Ukt, )]. (43)

Uki'=tjykt/»', Uk2'= &yk2/&'t. ". (42) The 5 matrix elements (39) then assume the form

~BC,A= —« '
(O~ (pifkia+p2fk2a)(vt4C+v2t4C) ) {(2&') "'[(tf—k *+tfk )(Uk'liUk'ij Uk'21Uk 2j)'

+ (ft k' +ftk—') (Uk'14Uk'2 j+Uk'24Uk'lj)]) { (~ ~ /16) [(f—k"1 fk"1)Uk''it+ (f—k''2 fk2") Uk''2i]

X[(f k "1* fk «t)U—k«~t;+(f k "2*—fk" 2)Uk 2j]+(16&"&"')"'[(f k-t*+fk"1)(&"tUk"tj—&,"Uk it)

+(f—k"2*+fk"2) (&t"Uk"2j—&j"Uk"2t)][(f—k" i +fk "i)(&t"'Uk" tt —&4"'Uk" it)

+ (f k 2*+fk- 2) (&t"'Uk" 2,—&,"'Uk "21)])exp[2~" (&„'+&„"+&„"')]
~
(~t fktA'+~2fk2A*)

~
o)d4~, (44)

summed over k', k", and k'". Here k„ is the propagation four-vector. Carrying out some of these operations leads to

~BC,A 2(2&) I ft4(fthm +f4tl, +~p ) (plfkla+p2fk2B){[71~kc;k'(Uk'ltUk'tj+Uk'24Uk'tj)

+72ftkc, 1' (Uk'll U—k'lj Uk'2iUk'2j )](2~ ) ) '{ (~ ~ /1tt) [(f—k"1 fk"1)Uk" 1~

+ (f—k"2 fk"2) Uk"2 ][(f-k" i*—fk" i) Uk" tj+(f—k "2*—fk" 2)Uk" 2j]

+(16&"It'") "[(fk"1*+fk i)(Itt"Uk"tt &",Uk"it)+—(f k"2'+fi "2)(&t"Uk"2, Ittj"Uk"2t)—]
X[(f—k"21*+fr"1) (4"'Uk" i' &4'"Uk" it)+—(f k" 22*+fk" ~2—) (&t"'Uk «2~ —&4'"Uk "21)7)

X (~tfktA*+~2fk2A'). (45)

We return for a moment to expression (44) and note that it involves some products of the form

(O~ fka[tfkctfk 'fk"fk" '"[fk *~0).

In one possible sequence fk" annihilates fk ~, ft„aannlhilates . fkA*, dk creates a graviton and tEkc annihilates
it. Initially we have a photon and in the final state the same photon. The Feynman (self-energy) diagram is given
by Fig. 1.Let us evaluate (45) for this kind of process by writing first

Mac A = 2 (2'') V 84(kp +kg + 14y )[plficla+p2fk2B]{ [ftkc, lkl(U l kU t' 4+2—jUk'2tUk'1j )

+V2I2kc, -k (Uk i, Uk i;—Uk 2,Uk 2,)](2&') "')[Uk"1,U k t,k"+Uk 2, U k 2jk"

+~ (~t Uk" lj ~j Uk" ll) (Iti U—k''ll kl U '1k)+4~ (~l Uk—''2j 0j Uk''21)

X (&'"U-k"2t
—&t"U k"2,)](~tfktA*+~2 fk2A*)/4. (47)

Carrying out these operations gives

~BC,A 2(22r)'I "2jt4(&c)—[ptfkta+p2fkta]{ [jt(U kct 'U kc2j+ U kc—2—aU—kcl,)—
+72(U kci, U kci; —U-kc2, -U kc2j)-](2&c) ' ') {&"(Ui tA" k"1,+Uk"2, U k"2,)

+~ [ ~t ftj (Uk" llU k"lt+ Uk" 21U k"21)-
k"2(U k",Uk 1;+U—k"1;«k 1,)])(«tfktA'"=+422fk2A*) (48)

(48) vanishes in consequence of
Uk" llU —k"ll+ Uk" 2lU—k"2l
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except perhaps at kc=O where (48) is not defined. However, the square of (48) will in any case vanish when
integrated over momentum space because of the part of the phase space volume element kc2dkcV, if the volume is
allowed to become infinite. For a finite volume, at small kq the appropriate phase volume element is Ldk~, where
L is the length of the box; but kc cannot be zero in this case so the phase volume integral of the square of(48)
is zero.

We turn to the other kinds of terms in (45). Consider the one polarization first, for the group of terms:

pifkla(16k"k"') "'(f k"1*+fk"1)(ki"Uk'1, k—;"Uk"14)(f k" 1"+fk'"i)(ki"'Uk' 1,—k, '"Uk 1111)i21fklA*

Now
=~k0, (16k''k'")-1'2(k&"Uk"j —k,"Uk"1)(ki'"Uk-, k, '—"U. -1)[f»a(f '*fk-+fk"f k -*)f»A*].

fklB(fk"f k"' +—f k" fk—"')fklA 'nkla, k"fik'"—, klA+nkla, k"'ski—A, k

Employing this and carrying out the sum over k" and k'" then gives for these terms

(421pl/4)[(kAka) (k BLU kB—j k—Bj U kl—B1) (k—ALUkAli kAiUkA11)

+(kakA) —'"(kA1UkA1; —kA, UkAii) (k-B1U-kai' —k-a'U-kali)] (49)

A similar contribution results for the other polarization. We then evaluate the terms:

(—alpl/4)(k"k'")'j2Uk 1;Uk l,fkia[f k"1*—fk"1][f 1 "1*—fk" 1]fklA*

(i21pl/4) (kBkA) [UklAi U ka1j+ U —kB1*UkAlj]—' (n )

A similar contribution results from the other polarization. Also there will be some terms resulting from annihilation
of a photon of one polarization and creation of a photon of the other polarization. Assembling these results gives
us for the 5 matrix elements

~BC,A ~(22F) V 04(kAp kap kCp) (2kC) (271U—kCliU —kC2j+'Y2[U —kCliU —kClj U—kC2iU —kC2j])

with
X[(ir 1p1/4) x11+(422p1/4) +21+ (&ip2/4) X12+ (422p2/4) +227 I

xrn= (kAka)' '[(UkrAiU —knaj+U —knaiUkrA 2)7+(kAka) ' '[(k—aiU —knaj —k—BjU—knal) (kAiUkrA' kAiUkrA&)—

+ (kA«kFAj kAj UkFAl) (k—BlU—knBi k BiU knB1)7. —(51)—
The indices F, 0 run over 1 and 2 only.

ln order to calculate the transition probability we must square (51) and integrate over momentum space. The
occurrence of the delta function means, among other things, that the three (three-space) momentum vectors
kA, , ka;, and kc; all lie in a plane, and sum to zero. It is useful to evaluate (51) for this condition, shown in Fig.2.
U~ is normal to the plane of the figure, U~ lies in the plane. In this case,

k B;kA, U kc2, U kc2, —siny——sin(0+y). (52)

Evaluating (51) for both polarizations by use of (52) leads to

3fBC A= —2(22F)'V '"&4(kA„—ka„—kC„) (kAka/SkC)"'{illpl'r2[cos0 1—sin(0+ y—) slny7

+n2P2y2[1 cosg co—s(0+y)7+pl(nlP2+n2P1)[cosy —cos(0+y)7}, (53)
with kA, ——ka, +kc;.

Following the procedure of Lippmann and Schwinger' we squa, re (51), set one of the delta functions equal to the
quantity (22F) 4Vt, and integrate over momentum space to obtain

W= (22F) ' 54(kA„—ka„—kC„)[C11+C12+C22]'d'kad'kC. (54)

Equation (54) is the transition probability for a photon to decay into a photon and a graviton. C», C», and 422 are
parts of (51) contributed by the two possible polarizations of the initial photon. Evaluating (54) gives kA, =k B;+kc;
and making use of (53) then leads to

B'= (22F) ' 52(kA —ka —kc) (kAka/Skc) {nlP172[cos0—1—sin(0+ y) siny]

+i22P2y2[1 cosy cos(—0+ y)7+pl(421P2+n2P1) [cosy cos(0+ y—)]}'d'kc, (55)

B.A. Lipprnann and J. Schwinger, Phys. Rev. 79, 469 (1950).
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with

Let

kc2= kg2+k212 —2kgklt cos8,

k222 ——k~2+k' —2kgkc cos po.

(56)

(57)

&=&~—&a-ke.

Combining (56), (57), and (58) gives

k= k~ —
kent

—(k~'+kit' —2k~k21 cos8)'",

k= kg kc —(k~2—+kc2—2k~kg cos p2)'".

(58)

(59)

Fxo. 2. Momenta and reference triads. UqgI, Uy, gI,
Ukt;I are normal to the figure.

Noting that d'kg= 2xk~'dkg sinpdp enables us to write
(55) in the form

W= (22r) ' bp(k) (kgk2tkc/8)

X{n,Pty2[COS8 —1—Sin(8+ps) Sinpo]

+n2p2'y2[1 —COS pp COS (8+ po) )
+pl(nlP2+n2P1)[cospo COS(8+ po))} lim

2 sln2(kt/2)

(b) kc ~ 0, k21A0, po need not vanish. Under
circumstances for which (62) is valid a vanishing result
would still be obtained as kg~0. However, (62) is
valid only for long times t such that

(63)

The origin of the delta function in (60) is known from
time-dependent perturbation theory to be

pBko
X

~

dk sin psd ps. (60)
p =constant

For
(65)

Employing (59) to evaluate (Bkt;/Bk), =„„,t,„t gives

8k'/8k= (kc+k —kg)/[kg(1 —costo) —k]. (61)

In order to evaluate the integral (60) it is helpful to
consider several cases.

(a) Neither kit nor kc approach zero. Integrating
with respect to k gives

W= (k~9/322r2) [v2(ntpl —n2p2))'ko

(Bko
X

~

sin'p2d q dk. (66)
s =constant

From (59), for small kc,

the delta function can be replaced by 3/22r For thi.s
case we may approximately evaluate (60) as

W= (22r) ' (kc—k~)[8k~(1—costo)) 'k~k2tkc
k =kg(cosy —1), (67)

X{ytntP1[cos8 —1—sin(8+ ps) sinpo)

+n2P2| 2[1—COS&p COS (8+ po) ]+71(nlP2+n2Pl)

X[COSpo —COS(8+ ps)]}2 Sin&pdpo. (62)

From Fig. 2 we have sing=(ks/kc) sin8. (62) must
be evaluated at k=0. From (59) and (58) this requires
q =0, 0=0, corresponding to strict conservation of
both momentum and energy. The integral is seen to
vanish. The vanishing of the 5-matrix elements for
forward scattering is readily understood if we study
the structure of the interaction for this case. It is made
up of terms such as

hit (El'El"—H2'H2"),

where E and H are the electric and magnetic field
operators, respectively. For a null 6eld E'—H'==0. On
the other hand, if the scattered photon does not
propagate in the same direction as the incident one,
Ey Q H2 and the cancellation need not occur.

the integral (66) is evaluated as

W= tk~2k2[y2(n P —n2P )]'/242r2= t ' (68)

We now insert dimensional factors and, from the
inequality (65), (68) becomes

k,»(C2/AG)»2. (69)

(69) is the condition to be met for decay of a photon
into another photon and a low-energy graviton. It
requires energies ))10"electron volts.

(c) kit-+0, kc/0, ps~0, 8 need not be zero. The
integral (60) tends to

W= (tk2k~2/642r2) (1—COS8)

X (r2n2p2 r2nlpl+ylnlp2+Vln2pl) sm'ptgps (70)

In this order of approximation S' —+0 in consequence
of the condition p —+ 0. We may therefore conclude that
processes for which a photon decays into another
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photon and a graviton are excluded in this approxi-
mation, except possibly at extreme energies, i.c., &&10"
eV, corresponding to (69). In these cases the photon
may conceivably decay into a very low energy graviton
and a photon of almost the same energy as the incident
photon. This cannot explain the red shift on the "tired
light" hypothesis, since it does not occur at low and
intermediate energy.

rjr 'grT+2jrj. (71)

Scattering by the Longitudinal Fie1ds of
Charges and Currents

A longitudinal electromagnetic field would be
expected to produce gravitons when photons are
incident upon it.

We may write for an electric field

In (71), 2j.T is the transverse part of the canonical
momentum and. g,L, is the longitudinal part.

The reduction of (16) to (17) would not follow since
(—g) 'j22t', ,=Jp, the charge density. (20) and (21)
would be modified and (22) would be replaced by

4(A —Ap )

Ke may now write for the Fourier decomposition

2jj„=V 'j22jkj, exp(ik„x )
= V 'j22jk L—Ukj„exp(ik x") .(72)

U~L, „ is a unit vector in the direction of ql, These
expressions are summed over (k).

The longitudinal field gives a contribution to the S
matrix for initial states in which one photon is present
and no gravitons to Anal states in which no photons
and one graviton are present.

(oIvl&kC+v2&kCI (2&') "'E(d k*+~'-)(Uk liUk'lj Uk'2iUk'2j)+2(f —k' +4')Uk'liUk'2j)

X /(k"/32)" (Uk" 1;fk 1+Uk" 2ifk"2) Ukjj2jkj+ (~ /32) (Uk" 1jfk"1+Uk"2jfk" 2) Ukji'gkjf

Xexpfix&(k„'+7i„"+7ij„)j ~
ul fklA*+n2fk2A*~ 0)d'x (73).

Evaluating (73) gives

~c,A ( &) V 84(~AP+~jy ~cP) Ikjpz(™lpci2pY1)72)U klA)UkA2rU-kelt U—kc2))

Pz=pylU kcl, U kC2;+&2(U kcl;U kC1; -U-kC2, U —kC2;)j

X[&1UkA li UkI I+ci2Uk2A i Ukj 1+i21UkA lj Ukji+&2Uk2Aj Ukji] (72A/&c)"'/8 (75)

A sum over kj is implied by (74). Replacing this sum by an integral and noting that kj has a vanishing timelike
component gives

84(&»+&L. 7pC.)2jkjpz&'—4,=2~V "'8p(&A &C)I"z2jkj~ kj—; kC; kA;. (76)

The transition probability is then obtained by integra, ting the squa, re of (76) over momentum space, remembering
that one of the delta functions is replaced by 3/2~. In terms of the spherical coordinate kc-space angles 8' and p2',

we have

W= (22r) ' kc'8p(kA —kc) (Fz'rjkj')kj; kc, kA, sin8'dkcd8'dq'. (77)

After inserting dimensional factors, we may write this in the form"

IV = lr22Gc —
2kA2(2jk L'),

with (rjk L2), given by
i.

(2jkj ) = (Qkj +z )kz„=kc; k, sln8 d8 drjj . '

4x
The diGerential cross section is

iE+Coulomb 64G& V~A (2jkj ~E )kLi 1Ci kAi Sln8 iN dP—~

with V the normalization volume for photons. The scattering cross section is therefore

~Coulomb 212 GC kA ('gkP)urV

(79)

(80)
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Kc note thc abseIlcc of Planck s CDIlstRII't ill (80) alld (81).This ls to bc expected) slllcc wc llavc tile llltcractlon
of two Boson fields, which has a classical limit. The classical calculation has been carried out and agrees witll

(80) and (81).
The case of graviton production by scattering of photons in a magnetostatic field can be carried through in

a similar way. Now we have
.4,=22j,+H Z, .

Here A~, represents the prescribed part of 2, with vanishing time derivative. For the Fourier decomposition,
A~, is given by

Akja= V i akkjUkkjl exp(2k~x ).
Corresponding to (76), we now obtain

where
Mc A

——22rV—"282(kA —kc)Fkj(kAkc) "2akkj~ kki; kc; 1A;,

'rt(U kcliU kcgj+U kcljU kc2i) Y2(U kCliU kC1j U kC2i U k—C2j j'L4—flUkkr j k2f jUkMI)

(76A)

Xt 112(kAIU Akli kAiUkA11)+c22(kAIUkA2i k»UkA21) j
Corresponding to (78),

with (akkt ), given by

The differential cross section is

W=2r 'Gc 2(ak&)„. ,

(a»r") ak~ ~~
I k~ kc =kA' s—me de &q

4

(78A)

(79A)

dSMagnetic field=G(22r) C V(akkP+ )kkji kai—kAi Slntj il dp (80A)

The scattering cross section is

$=2r 'Gc 'V(akkj'), .

tlk12 and akim contain V ' so these results are in-
dependent of V. A closer study of F' indicates that the
total scattering cross section for a large volume con-
taining a uniform field tends to

5=8m'Gt lc 4,

where U is the energy and / is the linear dimension of
the scatterer.

For laboratory experiments the cross section appears
too small. Thus, for a volume 10' cc containing 10"ergs
of electrical energy, we have

S~ 10-3o cm2.

On the other hand, for a galaxy containing a magnetic
field ~10 'G, with/~10" cm,

5 —+ 10"cm'.

A fraction 10'/10"=10 " of the incident photons
would be converted to gravitons.

CON CLUSlONS

We have studied the interaction of gravitons and
photons in the 6rst approximation. Some simplification
results from use of a coordinate system and a gauge
condition in which all of the redundant variables have
been eliminated. In first order self-energy eAects

appear but these contribute nothing. In this order the
decay of a photon into a low-energy graviton and a
photon might occur at photon wavelengths

X«(Gh/cg)»2

corresponding to energies ))10' eU. This does not
constitute a possible "tired light" mechanism.

Electrostatic and magnetostatic 6elds may annihilate
a photon with production of a graviton.


