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The classical definition of noise figure, based on signal-to-noise ratio, is adapted to the case when quantum
noise is predominant. The noise figure is normalized to ‘“uncertainty noise.” General quantum mechanical
equations for linear amplifiers are set up using the condition of linearity and the requirement that the com-
mutator brackets of the pertinent operators are conserved in the amplification. These equations include as
special cases the maser, the parametric amplifier, and the parametric up-converter. Using these equations
the noise figure of a general amplifier is derived. The minimum value of this noise figure is equal to 2. The
significance of the result with regard to a simultaneous phase and amplitude measurement is explored.

INTRODUCTION

HE availability of coherent signals at optical
frequencies has stimulated research in their use
for communication purposes. Ways of processing optical
frequencies are considered that are similar to those of
the low end of the coherent frequency spectrum. With
the use of classical communication techniques, classical
performance criteria will be applied. One purpose of
this paper is to extend classical noise performance
criteria to linear quantum amplifiers in which the pre-
dominant noise is quantum mechanical in nature. These
criteria will be applied to a wide class of linear quantum
mechanical amplifiers.

The purpose of a sensitive linear amplifier is to in-
crease the power, or photon flux, of an incoming signal
with as small a noise contamination as possible so that
the signal may be conveniently detected at high power
levels. The incoming signal, if used for communication
purposes, carries amplitude modulation, phase modula-
tion, frequency modulation, or some other type of
modulation. Here we shall discuss noise problems mainly
in the context of amplifiers processing sinusoidal car-
riers with narrow band amplitude and/or phase modu-
lation. In this connection it must be noted that the
presence of a modulation of bandwidth B calls for a
minimum rate of detection. The received signal must
be detected within a succession of observation times
each of duration 7, where 7=2%B, in order to utilize
the information contained in the modulation.

Noise in masers, including sponteneous emission
noise, has been analyzed in many papers including the
classical papers by Shimoda, Takahasi, and Townes,!
and Serber and Townes.2 A quantum mechanical treat-
ment of the parametric amplifier and up-converter has

1 K. Shimoda, H. Takahasi, and C. H. Townes, J. Phys. Soc.
Japan 12, 686 (1957).
+ 2R.Serber and C. H. Townes, in Quantum Electronics, edited by
C. H. Townes (Columbia University Press, New York, 1960},
pp. 233-255.

been presented in a paper by Louisell e/ al.2 We shall
develop a unified set of equations for all “linear”
amplifiers, special cases of which are the maser, the
parametric amplifier, and the parametric up-converter.
On the basis of these equations and the criteria of noise
performance, it will be possible to present a proof on
the limiting noise performance achievable by any one
of these amplifiers used singly or in combination with
other linear amplifiers. The connection of the funda-
mental noise of these amplifiers with the uncertainty
principle will be studied.

I. NOISE FIGURE

In the noise theory of classical amplifiers (i.e.,
amplifiers operating with a very large number of
quanta) the deterioration of the signal-to-noise ratio
as the signal passes the amplifier is used as a measure
of amplifier noise performance. The signal-to-noise
ratio (SNR) is defined in the classical limit as the
ratio of signal power to noise power. Mathematically
one may describe a phase and amplitude modulated
signal in the presence of noise by

A(#)=Ao(t) cos[wot+eo(t) J464, cos[wet+¢o(®)]

404, sin[wot+o ()] (1.1)

The first term in this equation represents the signal in
the absence of noise. The remaining two terms are the
inphase and quadrature perturbations of the amplitude
due to the noise. These are slowly varying with time if
the noise is narrowband. We envisage an ensemble of
identical signal waveforms with accompanying noise.
The signal part may be extracted from the waveform
by taking an ensemble average indicated by the
brackets { )

<A (t)>=Ao(t) COSI:wot—i—(ﬁo(t)]. (1.2)

8 W. H. Louisell, A. Yariv, and A. E. Siegman, Phys. Rev. 124,
1646 (1961).
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The noise part is extracted as follows:

A@H— 4@y
= (54 5% cos woi+po(t) JH(04 2) sin?[ wot+eo(Z) ]
+(84 8 A o) sin2[wot+po(£) .

Additive stationary noise is characterized by

@A4,)=042 and {64,64,)=0.

(1.3)

(1.4)

The noise as defined here measures the mean square
deviation from the signal of the measured ensemble of
waveforms all containing the same signal. If the noise
is stationary, this mean square deviation becomes

(A=A Oy =(04,").

A signal-to-noise ratio may be defined, based on a time
average, over an observation time 7', long compared to
the inverse bandwidth of signal and noise. The signal
power is

(1.5)

1 T
S=~1—1/ A1) cos*(wot+do)dt=3[A¢E () |v, (1.6)

where the square bracket indicates a time average.
The noise is defined correspondingly as

1 T
e / (A2 ()~ (A )yt
' :%{<5Ap2>+<5/1q2>}av=<5Ap2>- (17)

The last equality holds for stationary noise. The noise
figure of an amplifier is defined as the signal-to-noise
ratio at the input of the amplifier divided by the
signal-to-noise ratio at the output?

F=(Si/Ny)/(So/No). (1.8)

In defining S;/N; one envisages measurements of the
signal and noise at the amplifier input and output by a
noise-free measurement apparatus. The noise figure is
usually defined by choosing a standard input noise cor-
responding to thermal noise of the input source of
290°K. If the amplifier is linear,

SQ=GS,',

and the amplifier noise is additive,

(1.9)

No=GN+N,, (1.10)
then, one has for the ‘“excess noise figure,” F—1,
F—1=N,/GN,. (1.11)

The excess noise figure measures the increase of the
mean square deviation of the normalized signal as
caused by the amplifier noise.

' When adapting the noise figure of linear amplifiers
for the quantum case, one faces two problems. First of
all, one must establish that linear quantum mechanical

4 H. T. Friis, Proc. Inst. Radio Engrs. 33, 458 (1945).
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amplifiers, like linear classical amplifiers, introduce
additive noise. Secondly, in the limit when quantum
effects are of importance, physical measurements, in
general, introduce uncertainties, i.e., noise, and it is
not clear that the concept of a noise-free measurement
as envisaged in the classical noise figure definition can
be applied. Thus, for example, simultaneous measure-
ments of amplitude and phase of an electric field cannot
be carried out with arbitrarily high precision but must
obey the principle of complementarity. It is clear,
therefore, that special measures have to be taken if the
uncertainty introduced by the measurement is to be
negligible compared to the noise in the system.

In quantum theory, a physical quantity is described
by an operator. The expectation value of the operator
represents the result of a set of measurements on an
ensemble of identically prepared systems. In the evalua-
tion of quantum noise we shall consider field amplitude
measurements on an ensemble of amplifiers all of which
are fed by a transmitter signal that is nonthermally
attenuated (such as the attenuation of a radiation field
by the inverse square law). At the transmitter the
signal has a classical power level and, thus, can be
accurately phase and amplitude controlled. If a meas-
urement of the electric field E(f) at the receiver inputs
is performed at the time {, the signal is defined by (E (%)),
and the noise by® (E(£)2)—(E(#))% By performing many
such measurements at random time instants delayed
with respect to each other by times long compared to
the inverse bandwidth of the receivers, one finds the

signal power
S=KE®Y I,
and the noise power
N=[(E@®»—(ED) ]

Such measurements do not mutually intefere, and,
therefore, are not accompanied by a fundamental un-
certainty. These measurements are analogous to the
“noise-free’” measurements implied in the classical
signal-to-noise ratio definition. The signal-to-noise
ratio is thus

S/N=[EO J/ EQ)—E@OF T (114)

With the aid of definition (1.14), Eq. (1.8) may be
used as the definition for the quantum noise figure. In
the case of linear quantum amplifiers, as discussed in
this paper, Egs. (1.9), (1.10), and (1.11) are also made
valid. It is not expedient to normalize the quantum
noise figure to thermal noise. It is more appropriate to
normalize it to the minimum noise within the observa-
tion time 7 of ky/2 that is associated with attenuated
signals that before attenuation were classically phase
and amplitude controlled (see Appendix). Then, if we
express the amplifier noise power multiplied by the
observation time 7 in terms of a photon number #, at

(1.12)

(1.13)

5 R. Senitzky, Phys. Rev. 111, 3 (1958).
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the amplifier output,

N o= hvng, (1.15)

one has
F—1=2n,/G. (1.16)

Since the basic noise energy to which we compare the
amplifier noise corresponds to half a photon within the
observation time, it is natural to measure the output
noise content, referred to the input by division through
G, in terms of the energy of half a photon af the output
frequency. In this sense, Eq. (1.16) can be applied to
the general case for different input and output fre-
quencies if G is interpreted as the photon number gain.

II. THE EQUATIONS OF LINEAR AMPLIFIERS

Consider a system of weakly interacting particles
that, in the absence of radiation, has V available energy
levels. If the particles obey Bose-Einstein statistics, the
entry of a particle into a particular level (i) and its
exit from this level may be described by creation and
annihilation operators, b;" and b; that obey commutator
relations.

[64,0;"1=64),
[bi,b]‘] =0.

The operation of b; on a wave function of the system
with #; particles in level ¢ produces a wave function
with #;,—1 particles in that level, the operation of b,
produces one with #,4-1 particles in the level 7. The
number of particles in level ¢ is given by

1;=b;1b,.

(2.1)
(2.2)

(2.3)

If the particles obey I'ermi-Dirac statistics, a Bose-
Einstein description is possible,? provided that the
number of available states in a particular level is much
greater than the number of particles occupying it. If
the states within a particular energy level are all equiva-
lent for the physical processes envisaged, wave func-
tions may be constructed that correspond to a discrete
number of particles in a particular energy level with
no distinction made between different states within that
level.® Creation operators ;" and annihilation operators
b; that increase or decrease the number of particles in a
particular energy level upon operation on a wave func-
tion can be shown to obey the commutation relations
(2.1) and (2.2), provided the number of particles in the
energy level is much less than the number of states of
the level.” Linear quantum amplifiers must of necessity
operate by means of transitions from and to weakly
occupied levels since nonlinear effects occur as soon as
the deviation from Bose-Einstein behavior of these
levels becomes appreciable.

8 For example, if one is interested only in the interaction with
an electromagnetic field of the spin of weakly interacting particles,
all states of the particles that have the same spin are equivalent.

7H. A. Haus, Internal Memorandum, Massachusetts Institute
of Technology Research Lahoratory of Electronics, 1962
(unpublished).
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The electromagnetic field is represented by the
creation and annihilation operators ¢;,' and a; for
photons in the modes 1, j, etc., of the electromagnetic
system. These obey the usual commutation relations

(2.4)
(2.5)

aa;t—a;ta;=35,,
Qq;— Q;a;= 0.

When the fields are made to interact with matter,
coupling results among the various operators of the
system. In the interaction representation, differential
equations in time are obtained relating the time rate
of change of every operator to all the other operators of
energy levels and electromagnetic modes partaking in
the interaction. These equations are, in general, non-
linear. However, under proper “biasing” or “pumping”
conditions linear interactions may result among some
of the energy-level and photon operators of the system.
Thus, consider a system like the three-level maser in
which a pumping excitation establishes a steady state
in the occupation of two energy levels. If a small signal
is applied with a frequency corresponding to the energy
difference between one of the pumped levels and an
intermediate level, the small perturbations produced in
the steady state of the strongly excited levels may be
disregarded, and linear equations are obtained for the
operators of the weakly excited level and the photons
of the small applied signal. In more complicated devices,
more level and photon operators may be particpating
in the interaction initiated by the applied small signal.
In any case, if the device is to act as a linear amplifier
for some photons it is a necessary requirement that the
equations of motion permit a linearization of the equa-
tions for the signal photon operators and the operators
directly involved in the small signal interaction. If the
amplifier is to be time independent, a further require-
ment is that the coefficients of the differential equations
be time independent. These two requirements strongly
restrict the form of the equations. Integration of the
differential equations in time leads to linear relations
among the operators at an initial time #p, and final
time ;.

Taking as an example a system within which a
photon operator interacts with an energy level operator,
one has two possible cases:

a(h) = Maaa (tO)+MubbT (150)7

(2.6)
b (tl) = Mbaa (tO) +]l/[bbb1‘ (tg),
or

a(t1) =M coa(to)+M osd(10),
b(t1) = Mya(to)+ Mub (o).

The first system of equations is of the type obtained by
Serber and Townes? for the ideal maser. In this system,
the creation operator 4" of the energy level couples to
the annihilation operator a of the photons, In the second
system the annihilation operators of the energy level
b couples to a. We shall later see the significance of this

(2.7
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latter type of coupling. An analysis of the parametric
amplifier leads to equations of the form (2.6) where b7
is replaced by a creation operator representing the
photons at the idler frequency.?

The general form of the linear equations is immedi-
ately apparent for a linear system of arbitrary degree of
complexity. If one comprises all operators representing
“output” quantities at ¢=# in a column matrix v,
those representing ‘“‘input” quantities at {=¢#, in a
column matrix u, one may write the general linear
relations in matrix form as

v=Mu.
In the example of Eq. (2.6)

“z[:*(;))] and VZ[;(;))]

The requirements of linearity and time independence
have led to an equation of the form of (2.8). There is
another important condition that has to be met by Eq.
(2.8) which restricts the matrix M: The commutator
brackets of the operators must be conserved. Indeed,
considering a system with photons and Bose-Einstein
particles, the commutator brackets are invariants of the
complete (nonlinear) equations of motion. The linear-
ized equations that describe the small signal inter-
actions, must conserve commutator brackets insofar as
they are good approximations to the behavior of the
same set of operators in the complete equations. Con-
sider next a system with photons and Fermi-Dirac
particles. One notes that the complete equations of
motion preserve the commutator brackets of the photon
operators and anticommutator brackets of the particle
operators. As mentioned before, one may construct
effectively Bose-Einstein operators from the input
Fermi-Dirac operators. Corresponding operators may
be constructed for the output. These will also be
effectively Bose-Einstein provided the number of par-
ticles in the level of interest has remained small com-
pared to the number of states in the level (as needs be
if the amplification is to be linear). Therefore, the com-
mutator brackets of the constructed operators are also
conserved in the amplification. Let us study the matrix
C consisting of the commutator brackets of the opera-
tors contained in the input matrix u. It is easily seen
that this matrix is constructed by

(2.8)

C=uuf— (llzﬁlt)b (2.9)

Here the subscripts ¢ indicate the transpose. The
operators obey initially the commutation relations
(2.1), (2.2), (2.4), and (2.5). Photon operators and
level operators commute. The commutator relations
can be conveniently summarized by defining a matrix
P of the same order as u by

P=diag(=£1, &1, £1, -- - 1), (2.10)

H. A. HAUS AND J.
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where for the ith diagonal element, the plus sign is
chosen when an annihilation operator appears in the
ith row of the matrix u, and the minus sign if a creation
operator appears. Using this definition for P, one has
from Eq. (2.9)

C=uu'— (u;/ u,);=P

at =1t,. Because

(2.11)

C(t)=C(w),
one has from Eqs. (2.8) and (2.12)

vi—(v,'v);=P=Mua™M'—[ (a'M"),(Mu),
=M(uut—u,fu,)M'=MPM!'.

(2.12)

It follows that
MPM't="P. (2.13)

One may easily check that in the special cases of an
ideal maser and parametric amplifier mentioned previ-
ously, the expressions as derived in references 2 and 3
obey the relation (2.13). Here this relation has been
derived in general as a consequence of the requirement
of conservation of commutator brackets. It is this
relation that imposes a fundamental limit on the noise
performance of all linear amplifiers. It is of interest to
show that in an amplifier with photon gain greater
than unity the signal creation (annihilation) operator
must couple to at least one annihilation (creation)
operator of a molecular state or of a photon of frequency
different from the signal frequency. Suppose the output
photons pertain to the operator a;, the input photons
to ax. Let these, in turn, correspond to v, or v, and #,
or u,". If the signal level is sufficiently large, one may
disregard the uncertainty contained in the commutator
relations, i.e., one may set

(O V) = 102 0t ), (2.14)
where 7, is the number of output photons,
(e 10y =1, lrt 1, "), (2.15)

with #,, the number of input photons. All the other
input quantities are assumed unexcited

(witu)=0, (wa;NY=1, i=n. (2.16)
We thus have from Eqgs. (2.8), (2.14)-(2.16),
2| M yun| 211 (2.17)

| Mmn|? is the photon gain of the amplifier. But, from
Eq. (2.13)

2 Pl M i | 2= P (2.18)
We recall that P;=41, depending upon whether u;
stands for an annihilation operator or creation operator.
Thus, this equation shows that |M,.,|? is necessarily
less than unity, unless at least one of the P;’s is of
opposite sign to P,.,. A simple situation exists when #,,
interacts with only one other operator u;,

!Mmm|2+(Pll/Pmm)lelP:l. (219)
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The ideal maser, Eq. (2.6), uses the same input and
output frequency, the photons of which couple to a
single level operator &' (=u;). The gain |Mum|? is
greater than unity, because Py/Pum is equal to —1.

The parametric amplifier using the same input and
output frequency couples the signal photon operator
a1=1, to the idler photon operator a,'=u; Again
Py/Ppm=—1 and the gain | Mm|2>1.

The ideal parametric up-converter couples the input
signal frequency operator a;=u, to the output fre-
quency operator a@s=u; Py/Pus,=1 and the gain
IMml|2<1-

A system within which a photon operator a=un
couples to a level operator b=, exhibits gain less than,
or at most equal to, unity since P/ Ppm=1. [Compare
Eq. (2.7).]

An interesting special case is the “lossless scatterer,”
with the P;.’s all of the same sign. The coupling between
a transmitting antenna and a receiver may be repre-
sented in this way. Here all #’s represent annihilation
operators a; pertaining to the same frequency, but
different spatial modes. The relation (2.13) assures
conservation of the total photon number, but only a
fraction |Mjx|? of the input (transmitter) photons
represented by, say (u;'u,) reach the receiver as output
photons (v;12;).

III. AMPLIFIER NOISE

It should be recalled that the #’s contain the ¢’s and
b’s, or their Hermitian conjugates. In the study of
signal and noise we are interested in averages of ex-
pectation values of electric field components, whose
operators are given by

() =hsilatei—azeioi), (3.1)
where k; is some real constant dependent upon the
geometry of the system.

Let the photon operator a;, or a;f, be represented by
u;, so that

(E;())= =ksi(u;tetioit—u et iwity
= 2k; | (u;)| cos (wit+®), (3.2)

and
LB, (1)) Jov= 2k | () |2 Jav=2kAL [ ;") |2 ]av,

because the average indicated by the square bracket is
equivalent to a time average. Similarly,

E; (8% Jav= R [(ujtus+mi5T) Jav.

Since the final expressions are symmetric in # and ut
and do not depend on time, both cases #;=a; and u;= a;!
lead to the same final expressions for [(E(#))*].v and
[(E(£)%Jav. Thus one may use the #’s directly to obtain
the required averages.

Suppose the matrix M of Eq. (2.8) represents an
amplifier with its input described by the operator #,
and its output by .. Then the output signal-to-noise

(3.3)

3.4)
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ratio is given by [compare Egs. (1.14) and (3.2)-(3.4)]

S e
No  [(on'om)+ (Omtm’)— 2] (vn) izjav
Now, from Eq. (2.8)
=i Mmats. (3.6)

Because all inputs but the signal input m are fed by
incoherent noise, we have for ¢, j=m, n

(ui)=(u:?)=0,

(ustu;)=0, if u; stands for an annihilation operator,
=8y, if #; stands for a creation operator,

(3.7)

(3.8)

{wau;T)y=0, if u; stands for a creation operator,
= 4§, if u; stands for an annihilation operator.

Thus
(Um) = M (), (3.9)

and
(V0 (O T) = 2| (v} |2
=2 | M |24 | Mo |2 { Tttt ) = 2| ) 17}
(3.10)

But the input noise is taken as the noise accompanying
a signal after a large radiative attenuation. This noise
expressed in terms of a photon number is equal to the
uncertainty noise of 3 photon as shown in the Appendix.
The input signal-to-noise ratio to which the noise figure
will be normalized has the same form as Eq. (3.5)
except that u, replaces v, and is equal to

Si/zv'i= Ztnn]av;

where [#, J.v is the average number of input photons.
Introducing Egs. (3.9)-(3.11) into Eq. (3.5) and using
the noise figure definition (1.8), we have

F= (| Muwi|?)/ | Moma|*.

The input signal has dropped out as is characteristic
of a linear amplifier. The noise figure F of (3.12) can
be made unity. It is found, however, that the gain
| Moua|? of the “amplifier” is then also necessarily
equal to unity. If one wants gain, F must be optimized
for fixed gain. Another way of accomplishing this is to
use the definition of “noise measure”® M,

M=(F—1)/(1—1/G). (3.13)

Here G is the photon number gain, in the present case
| M |2 The noise measure M has a nontrivial mini-
mum as we now proceed to show. We obtain

M= (Ziwn| Mui| )/ (| Mypn|*—1).

(3.11)

(3.12)

(3.14)

8H. A. Haus and R. B. Adler, Circuit Theory of Linear Noisy
Networks (Technology Press, Cambridge, Massachusetts, 1959),
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According to Eq. (2.13)

2 Pis| Mmi| 2= P
Thus
!an12_1= _'Zz;én(Pu/Pnn)lezlz
Since we are, in general, interested in photon gain,
| Momn|2>1, it follows that the right-hand side of (3.15)

must be positive. In such a case, since P;;/P,,==1,
it follows immediately that

Zi;én'Mmil2Z_Zi;én(pii/Pnn)leilz

(3.15)

+ (Ppm/ Pnn)—1. (3.16)
Thus, from (3.14)-(3.16) we find
M>1. 3.17)
At high gain M =F—1. It follows that in that case
F>2. (3.18)

The quantum noise introduced in an amplifier leads to
a noise-to-signal ratio at its output double of that at
its input, if the input signal-to-noise ratio is assumed to
be that of uncertainty noise. Considering specific de-
vices, we note that the ideal maser characterized by
Eq. (2.6) has a noise measure of unity, because the
equality sign in Eq. (3.18) applies, as one can easily see.
The same is true for the parametric amplifier. In general,
one can see that coupling of the signal photon annihila-
tion operator to other annihilation operators tends to
increase the noise figure by virtue of the fact that
negative terms appear in the sum on the right-hand
side of Eq. (3.16).

We have introduced the concept of noise measure
because it possessed a nontrivial minimum, whereas the
noise figure could be made equal to unity at a complete
sacrifice of gain. There are other advantages in the use
of “noise measure” that have been successfully em-
ployed in the analysis of noise in classical linear ampli-
fiers.® Using the concept of noise measure one may
state in simple terms the limit on the optimum noise
performance of a passive interconnection of linear
two-port amplifiers (amplifiers with one input terminal
pair and one output terminal pair). In the classical
circuit-theoretical application for which this theorem
was originally derived it states® that any passive inter-
connection of two-port amplifiers resulting in an over-
all two-port amplifier (amplifier with one input ter-
minal pair and one output terminal pair) leads to an
optimum (minimum) noise measure that cannot be
lower than that of the best amplifier, namely, the
amplifier with the lowest value of optimum noise
measure. This proof can now be easily extended to the
case of an interconnection of linear quantum amplifiers.
In the quantum case, two-port amplifiers are those that
are described by one input signal photon operator and
one output signal photon operator as discussed in this
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section. A passive interconnection is one with a net
positive (or zero) internal loss of photons. Systems with
linear frequency transformations are not ruled out.
Thus the proof in the present section, extended along
the lines of reference 8, in effect shows that the optimum
noise measure of a linear quantum mechanical system
with one input and one output cannot be better than
unity (F=2 at high gain).

IV. SIMULTANEOUS PHASE AND AMPLITUDE
MEASUREMENTS

The technical purpose of amplifiers is to raise signal
levels so that signal processing may be effected at
conveniently high power levels. In the process, ampli-
fiers must introduce as little noise as possible. Since we
have found that all linear quantum amplifiers introduce
noise, one may ask the question whether, in those cases
in which ultimate sensitivity is desired, one should not
dispense with linear amplification. We shall discuss this
question as one of principle, although it is clear that
technical requirements may call for linear amplifica-
tion for reasons other than those considered here.

We have defined the quantum noise figure on the
basis of a noise-free measurement. In this context it is
immediately apparent that the use of an amplifier is
not desired in those cases in which a “noise-free”
measurement can be administered to the incoming
signal, namely, an instantaneous amplitude nmieasure-
ment alone.

If one envisages simultaneous amplitude and phase
measurement the situation is not that simple and de-
serves further study.?® Suppose we intend to measure
with an ideal measuring apparatus the phase ¢y and
amplitude 4, of an incoming wave. The measurement
introduces an rms uncertainty in phase A¢ and in

photon number Az such that at best
AnA¢p=1. (4.1)

But if 4 is measured in units of power, Az is related to
the inphase uncertainty of amplitude A4, by (cf. Eq.
(1.1]

Ao (84 )= 74 A A y=hvin, (4.2)
where A4 , is defined as ({64 ,2)Y2. Further
Ap=AA /A, (4.3)
We thus have
TAA pAA =Ly (4.4)

for an ideal measurement apparatus. If the measure-
ment apparatus is preceded by an ideal linear amplifier
of high gain then the measurement does not have to
introduce an uncertainty beyond that introduced by
the amplifier noise. The minimum amplifier noise at
high gain referred to the input is equal to that caused
by quantum attenuation and, when measured in terms
of energy, is according to Eq. (3.18) equal to half a

¢ H, Heffner, Proc, Inst. Radio Engrs. 50, 1604 (1962).
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photon within an observation time. Further, the noise
is stationary. It follows from (1.4)

(047 =(347). (4.5)

Using Eq. (1.7),

(04 2y=71(AA p)?=Lhy. (4.6)
Using (4.5) and (4.6) we find that the uncertainty
introduced into the final measurement by the amplifier
noise is just equal to that introduced by an ideal de-
tector not preceded by an amplifier, Eq. (4.4). It is
characteristic of linear amplifiers that the final measure-
ment results in equal inphase and quadrature uncer-
tainties whereas a measurement performed without the
use of a preamplifier may choose the relative magni-
tudes of each, subject only to Eq. (4.1).

ACKNOWLEDGMENTS

The authors gratefully acknowledge helpful discus-
sions with Professor F. M. H. Villars of MIT and
Dr. F. Horrigan, presently of Saclay.

APPENDIX
Radiative Attenuation Noise

Using Eq. (2.8) to represent radiative attenuation,
we interpret #; as the annihilation operator of the input
photons at the transmitter, vz as the annihilation opera-
tor of the output photons at the receiver. All the other
operators in u represent spatial modes not used for the
transmission process and are unexcited, (u#;)=0, {u;u;)
=0, (uu;1)=1 for 15%1. We have for the signal-to-noise
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ratio at the receiver, as in Eq. (3.5),
Q—
N/ [(@tontomty—2] (i) | 2w

Introducing Eq. (2.8), where according to Eq. (2.13),
with P=1,

(A1)

MM+=1 (A2)

one has

5.
2{ M | *[| () |*aw

- (| M| Lot st umt — 2| Cug) | 2 Jaw+ D o] Mlcil2)-

The first term in the denominator represents the at-
tenuated noise of the transmitted signal. The additive
noise introduced in the transmission process is repre-
sented by 3 ix| M 1|2 and is stationary. If the attenua-
tion is very large, |M;|?<1, and if the noise accom-
panying the signal at the input is not inordinately
larger than that imposed by the uncertainty relation,
then this term is negligible compared to the second one.
Then the noise at the receiver is entirely determined by
the zero-point fluctuations of the modes other than the
one used for transmission regardless of the input noise.
Further, using Eq. (A2)

it M| 22y | M i) ?=1.

| M| 2L |} | a2 s

the average number of received photons as long as this
number is much larger than unity. We find

(S/N)recgztn]av.

(A3)

(A4)
Finally,



