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Impulse Approximation
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The impulse approximation is discussed and simple applications are made to two problems of current
interest, the determination of the co3lE coupling constant and the Regge pole predictions for high-energy
scattering.

I. INTRODUCTION

HE impulse approximation plays a fundamental
role in the 5-matrix theory of strong inter-

actions. It is involved whenever we deal with the
scattering by composite systems. The usefulness of the
impulse approximation in practice is well known, but
its fundamental role was not clearly recognized until
recently. Cutkosky' was among the first to realize its
importance. He tried to justify the impulse approxima-
tion in terms of dispersion theory. One of the essential
features in his approach is the construction of wave
functions in terms of scattering amplitudes which some-
how include the effects of anomalous thresholds.

The impulse approximation is usually derived in
Born approximation from the principle of superposition
of potentials,

V=+ V,2.

If one takes the S-matrix theory as more fundamental
than potential theory, the "superposition of poten-
tials" principle must, in fact, follow as a coeseqlence of
the impulse approximation, if at all. The impulse
approximation is then to be regarded as a fundamental
law of physics, and as such, its validity should be
studied in detail by experiment, not left to the whim
of the theorist. 1n the case of strong interactions, the
Born approximation is not valid, but still the impulse
approximation seems to hold. ' On the other hand, the
possibility exists that the assumption that the poten-
tials superpose may no longer be valid. Attempts to
"improve" the impulse approximation by using higher
order terms of the Born series are then not of much
help. The impulse approximation as usually given must,
of course, be modiied slightly to be consistent with
unitarity. How this is to be achieved is not entirely
clear, but this question can, in principle, be decided
by experiment.

II. ELASTIC NUCLEON-NUCLEUS SCATTERING

By means of the impulse approximation and a simple
model of the nucleus, we may express the scattering of
a single nucleon on a large nucleus at high energies in
terms of the fundamental nucleon-nucleon scattering
matrix. Let us review briefly this well-known theory. '
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Consider the elastic scattering of a proton with spin
s, and momentum p incident on a large nucleus of
species Z~ with spin J„assumed to be in its ground
state. The elastic scattering matrix is

S.L„,(E,0) = (Z~J, '; y's, ' out
I
Z~J, ; ys, in),

where
cosg=p' p.

We write 5=1+iT, where the transition matrix for
proton-nucleus scattering is given in erst Born ap-
proximation by

(y'I T
I y) = —(2~/4~)(y'I v

I y) (3)

Here the mass m is the reduced mass. If we set the
nucleon mass equal to ';, then 2222=A/(A+1) =1, for
large A. It is not essential to refer to the Born approxi-
mation, as this equation may simply be taken as the
definition of the potential V. The potential is introduced
only as a means of visualizing the scattering matrix.

In describing the scattering matrix in the elastic
channel by a Born-equivalent potential in this way,
there is no need to use a many-body potential for V.
One may remove any many-body complexity acci-
dentally introduced by replacing V by (PV(P, where 6'

is the projection operator for the elastic channel. This
procedure yields what is commonly called the optical-
model potential V(J,S; y', y). It is to be emphasized
that the use of the optical-model potential is based
directly on 5-matrix theory, and in no way implies the
existence of an ordinary potential. The optical potential
may not be used in a Schrodinger equation, for example.
In fact, as is well known, the optical model potential
will even be non-Hermitian when competing channels
are open.

III. IMPULSE APPROXIMATION

The impulse approximation states that the transition
matrix T for proton-nucleus scattering is the super-
position of the t matrices for the individual nucleon-
nucleon encounters of the incident proton with the
separate nucleons inside the nucleus.

The nucleon-nucleon transition matrix t is cus-
tomarily given in momentum space. In the c.m. system
it has the general form4

(y'I &
I y) =~+c(~2~+~»)+~~»~2~

+g (&1PO 2P+zlK&2K)+ I2 (%1PO 2P &1Ku2K)g (4)
4 M. H. MacGregor, M. J. Moravcsik, and H. P. Stapp, Ann.
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where the coe5.cients are functions of energy and scat-
tering angle. The vectors y and y' are the c.m. momenta
of the incident and scattered proton. The particle "1"
refers to the projectile proton, while "2" refers to any
of the struck nucleons inside the target nucleus. Finally,
0'yg refers to the component of y~*~~ in the direction
of the unit vector I'. The unit vectors E, P, and N are
parallel to the following:

P= y'+y,
K= y' —y,

N=4m&yX y'.

In a spinless nucleus, as many nucleon spins are up
as down. XVe may therefore average the 3 matrix over
the spins of particle "2" or equivalently, perform a
trace operation in the "2" spinor subspace. This spin
average yields an effective nucleon-nucleon transition
matrix,

ciently high so that the nucleons inside the nucleus can
be treated as an unbound and stationary collection of
protons and neutrons. The incident proton energy
must therefore be large compared with the average
kinetic (Fermi) energy of the nucleons within the
nucleus. This sets a lower limit on the incident energy
around 100 MeV. We have also neglected the effect of
multiple scattering.

The nucleon-nucleon f, matrix differs for p-P and n-p
scattering. In general, we expect that the protons and
neutrons in the nucleus may be described by the same
distribution function for light nuclei. Ue may then
simply write,

t= (1/A) (Zt,„+lYt„„),

where E and Z are the number of neutrons and protons,
respectively, in the given nucleus.

IV. THE OPTICAL-MODEL POTENTIAL

A significant cancellation has taken place. This effect
enhances the polarization observed in proton-nucleus
scattering as compared to the polarization observed in
proton-proton and proton-neutron scattering. In a
complex nucleus, the most important forces are, there-
fore, central and spin orbit, as required by the shell
model. Our results have an important consequence for
the meson-theory justi6cation of the shell model of the
nucleus, namely, that the shell-model potential is pri-
marily due to co-meson exchange.

Ke describe the distribution of nucleons within the
nucleus by a dimensionless distribution function p(x)
which will be taken to have a 9'oods-Saxon shape,

j'Xj= 2P/(A+ 1)]P'XI'. (12)

More precisely, for small scattering angles, the rela-
tivistically correct relation is

I1I P'X j=
I Pl I"X~.

The spin of the incident proton is S=-',e&. Thus,

(13)

I et the momenta p and y' refer to the c.m. momenta
of the individual nucleon-nucleon encounters, to be
distinguished from the momenta P and P' of the
incident and scattered nucleon in the actual nucleon-
nucleus scattering process in its c.m. system. An ap-
proximate relation between these is

p(r) = (1+exp(r —ro)/a] —'. (i)
The distribution function is approximately normalized
to the nuclear volume,

» jxj'
I jxj'I

(14)

4x
d'x p(x) =a= r,'—

3

The actual density of nucleons in the nucleus is thus
(A/ U) p(r)

Since the density of nucleon is given in coordinate
space, while the transition matrix is given in momentum
space, the superposition postulated in the impulse
approximation is somewhat ambiguous, the usual
choice is

(y'I i'I y&= (A/'U)(y'I pl y&(y'I l
I y&

This may be justi6ed by a classical optical analogy.
We have set here

(y'I pl y&= d'~ p(x)~"~"*

A certain number of physical assumptions have been
made in this description. The energy must be suffi-

The scattering at high energies is mainly forward or
near-forward (diffraction scattering). For small angles
we may write

a(p', 0) =MD,

c(p' 0)= 4i (p'/M '—) (sin9)Mg.
(15)

Here Mo and M~ are expected to be approximately
constant. These quantities may be related to central
and spin-orbit potentials, dered here

Mo= —(1/4n) ('U/A) V„
M, = —(1/4~) (~/A) V..

The factors 'U/A are introduced for convenience in the
final formula. We may write

f = —(1/4m) ('U/A) {V,+iV,P'X P. S/M '}. (1i)

Using the impulse approximation, v, e obtain

V.,„=(V,+iV, P'XP S/M„')(P'~ p)P&, (18)
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V. EXPERIMENTAL DATA

Hafner' has made a thorough experimental study of
the scattering of 220-MeV polarized protons by complex
nuclei, and analyzed these data in terms of an optical
potential. Aside from this work, surprisingly little has
been published on high-erIergy optical-model analyses.
Only the results for p-C" scattering are fully analyzed
in Hafner's paper.

Hafner used a Woods-Saxon shape for p(r), and
writes

V,= —Vr (0)—iV2 (0),
V,= V,(0)+iV4(0).

(2o)

The best-fit analysis was made under the assumption
that V4(0) =0. The results for p-C" scattering are

ra= 2.4F, Vr(0)= 10 MeV

u= 0.1F, V2(0)= 25 MeV

'0=58 F', Vs(0) =225 MeV.

Note the large size of V;(0). The good fit of the experi-
mental data with these parameters in part justifies the
use of. this type of phenomenological analysis.

VI. ESTIMATE OF THE ayNN COUPLING CONSTANT

We may use the above data to give an estimate of
the coEX coupling constant. One reason for believing
that this method of determination to be at least as
accurate as polological methods is that Vs(0) is large.
We are looking at the ~-exchange contribution where
it appears to be dominant.

Pion exchange does not lead to any contribution to
the spin-orbit force. Both the co-meson and the p-meson
exchange mechanisms lead to spin-orbit forces. In a
pole approximation,

42p smg 3gpox &1' &2 3gcax2v
c= — — +

8 2M' nz' 2' ' m' (21)

For the benefit of those who use a different notation,
we give here the Born-equivalent Lagrangian term

Z =ZgraNcvg'7IIQ~II (22)

The average value of ~~ ~. for a large nucleus is
zero, since

(~, ss),„=y1; (c, ~2),„=-1. (23)

Thus, when Z=S, the p-meson exchange contribution
just cancels out in impulse approximation, leaving only

' E. M. Hafner, Phys. Rev. 111,297 (1958).

or, going over to coordinate space,

V(r) = V,p(r)+ (5/M„c)2V, (1/r) (dp/dr) I S. (19)

To obtain the specifically nuclear part of the optical-
model potential, the Coulomb effects must be sub-
tracted out in the p-p matrix beforehand.

the ~-meson exchange contribution. This cancellation
phenomenon has important consequences for the shell
model of the nucleus. It operates for central forces as
well as the spin-orbit force, and in particular, the one-
pion exchange force, which is proportional to ~~ ~2

averages to zero. This leaves the ~-meson exchange
force to play the dominant role in the nuclear potential,
both for the central and spin-orbit forces, ignoring cor-
relation effects. This has also been emphasized by
Sakurai~ in many papers.

Using the formula,

c= 4i(p /2M„)2sin8(Q/2) (1/42r) V„

we may solve for the coupling constant,

(g ~2v2/42rhc) = (222„2/32rs) ('U/2) V, .

We may insert the numerical data:

V, =225 MeV, '0=58 I",
222„=787 MeV, 2=12,

Ac=197.33 MeV F.

This gives the estimate

(g„~p'/42rAc) =2.9.

(24)

(26)

We must correct for the eclipse effect. Since the mean
free path ) for the proton inside the nucleus is only 2 F
(based on total neutron-C" cross section), the target
nucleons on the far side of the nucleus will be shielded
and contribute less than those on the near side. This
effectively decreases A by a factor of 4 or 5, and corre-
spondingly increases the coupling constant.

We also remark here that we have omitted the con-
tribution of the q meson as we believe its spin is zero.

T &= (p' —p'')'= (p~~—r)'. —(27)

J.J.Sakurai, Phys. Rev. 119, 1784 (1960);G. Breit, ibid. 120,
287 (1960). The nomenclature we use for mesons in the present
paper divers from that used by Sakurai. The p meson is the 750-
MeV, T=J= 1 two-pion resonance, while the co meson is the 787-
MeV, T=0, J=1 three-pion resonance.

VII. KINEMATICS

For small-angle scattering, we may consider the
nucleus to be at rest both before and after scattering
in the lab system, and that the projectile nucleon does
not change its energy in the scattering.

In the lab frame, the momentum pl, of the incident
nucleon is the same for the nucleon-nucleus scattering
problem as for the individual nucleon-nucleon en-
counters. Neglecting binding effects and multiple
scattering, as we may for high-energy grazing collisions,
the elastic scattering angle 0~ is the same for both
nucleon-nucleon and nucleon-nucleus problems in the
lab system. Hence, in this limit, the momentum trans-
fers in the two problems, f and T, respectively (not to
be confused with the transition matrices) are approxi-
mately equal,



J 0 H A iU G . 8 E L I iX I' A N T E

5/m, m, = s/m, m, , (30)

Here m~ has a difierent meaning on the two sides of the
equation.

VIII. REGGE POLES AND THE IMPULSE THEORY

The high-energy behavior of all scattering processes
is currently thought to be dominated by the Pomeran-
chuk Regge trajectory in the crossed channel. Hence,
the nucleon-nucleon scattering amplitude is given by'

%nucleon-nucIeon(S, ~) ~ f'(~) (S/mp+ ')

For small momentum transfers we may set

(31)

The general relation, for large angles, is much more
complicated.

The invariant energy variables, s and S, respectively,
are given in the two scattering problems by

s= —(P,+P,)'=m, 2+m, '+2m, co, , (28)

where "i" means "incident" and "t" means "target. "
The right side of this equation is written in the lab
system. The only difference between s and S lies in the
target masses to be used. Ke thus obtain

5=As+31 '(1+2') (»)
and at extremely high energies, we have simply S=As.
Equivalently, we may say that the combination s/m, m;
is the same for both problems,

Ke therefore obtain the following prediction for nu-
cleon-nucleus scattering at high energies,

Mnucjeon-nucleus(5, T) ~ Ab(T) (5/mmmm, ) 1 1 (34)
S-+oo

Again, we neglect the eclipse effect for convenience.
We may state this result in the form of a theorem:

"If a particle A scatters on a composite system con-
sisting of e 8 particles, then the scattering amplitude
for this process is equal to n times the amplitude for
A-8 scattering in the high-energy diffraction limit,
provided we use the invariant variables s/m~m; and t."
This theorem was 6rst empirically discovered in applica-
tions of Regge analysis to high-energy scattering data.

One might speculate that the nucleon, at least for
grazing collisions, may be considered as a composite
system of a core and a pion cloud. For glancing colli-
sions, the core is shielded, and the scat tering of nucleons
by anything reduces to the sca, ttering of that thing by
the pions in the cloud. In that case, pion-pion, pion-
nucleon, a,nd nucleon-nucleon scattering will all be
governed by the same Regge pole, including the same
b(t), except for an over-all factor related to the number
of pions effectively present in the cloud. This number is
about two.

Finally we may remark that it is quite likely that the
impulse approximation becomes an exact theorem in
the high-energy limit. This may be an essential input
in the S-matrix theory of many-particle systems.
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