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The properties of nuclear matter predicted for several difterent phenomenological potentials by the
reaction matrix theory of Brueckner have been calculated. The calculations have shown that potentials
which give supposedly equally good fit to scattering data do not necessarily lead to identical nuclear proper-
ties. Other approximation methods have been studied to determine their accuracy, with particular emphasis
on the iterated Born approximation, and on comparison with the Moszkowski-Scott separation method
and with the approximations of Mohling and of Pu8.

I. INTRODUCTION
' 'N a series of previous papers, ' methods have been
& ~ developed for the determination of the properties
of nuclear matter. This theory has been applied by
Brueckner and Gammel' (hereafter referred to as BG)
to extended nuclear matter using both Gammel-
Christian-Thaler potentials' and one of the sets of
Gammel-Thaler potentials, ' 4 The latter were modified
slightly to give correctly the low-energy scattering
parameters and deuteron properties. Accurate numerical
solutions of the equations of the theory gave a mean
binding energy of —15.2 MeV and equilibrium spacing
of 1.02 F for the modified Gammel-Thaler potentials, in
good agreement with semiempirical values for the
binding energy ranging from —15.83 MeV reported by
Green~ to —17.04 MeV obtained by Cameron, and
with the equilibrium spacing, ro ——(1.07+0.02) deduced
from high-energy electron-nucleus scattering.

A detailed discussion of the E-matrix theory and the
method of applying it to extended nuclear matter is
contained in BG. Consequently, we shall indicate here
only the basic equations, and in the next section
introduce our additional approximations.

In BG, the E matrix from which the energy is com-
puted is defined by the equation

&'~,1&= Vg, ai

+ X „,„. (1.1)
ro, n

pns& pZ
p~& pz

In this equation EI, and E& are self-consistent energies
for particles moving in the Fermi gas and E * and E„*
are energies appropriate to virtual excitations above
the Fermi surface. The single-particle potential is
determined from the diagonal elements of the E matrix
by the relation

~(P') =Z'(&'s, 's &'s, s.~)
— (1 2)

with the sum over all filled states. Finally, the average
binding energy per particle is

PF 0

(1.3)

The normal density is assumed to be determined from
the minimum of 8, as a function of density.

In the present paper we use an approximation of the
Brueckner formalism which is simpler than that used
in BG,

(1) to investigate the properties of nuclear matter
predicted by the theory for various phenomenological
potentials (six Gammel-Thaler potentialsr and the
Breit potentiaP);

(2) to check the rapidity of convergence of successive
Born approximations;

(3) to obtain a comparison with the results of the
separation method of Moszkowski and Scott' ";and

(4) to check the accuracy of the approximation
described by Bell" as the central element in the nuclear
matter theories of Mohling" and of Pu6 and Martin. "
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II. SOLUTION OF THE K-MATRIX EQUATIONS

In the investigations reported in this paper, we used
the procedure of BG with one further approximation:
We have assumed that the difference of energies in the
denominator of Eq. (1.1) is independent of the total
momentum. Thus, we make the replacement

Es+Et Ee—E'=—2'(Pgt) Es(P—„„)], (2.1)

with pst and p„,„the relative momenta. This approxima-
tion is accurate if Et has a quadratic dependence on p~
or if the relative momentum is large compared with the
total momentum. Consistent with the accuracy of this
approximation, we replace the total momentum, which
enters in the treatment of the exclusion principle, by its
average value compatible with a given value of relative
momentum, k. This is easily shown to be

(p') k (1+', k/pr+ ',-k'/pr')-
I

—
/

=spr' 1——
)( 4 )- pr (1+ok/pr)

k & kr. (2.2)

(1) Green's functions:

1 "k"'dk"j,(k"r)j &(k"r')f(E,k")
(2.3)

2LE(k) —E*(k"))
Gt(r, r') =

0

1.0—
I

0.8"

0.6--

04-.

0.2.-

equations and are not thought to introduce appreciable
errors into the results, particularly since we are primarily
interested in comparisons among various potentials and
approximation methods.

We quote here the principal equations to be solved,
as adapted from BG:

For k& pr, we have set I', =0. These simplifications
reduce considerably the problem of solving the BG
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FrG. 2. Wave functions for BGT potential at ro 1.0(l F: (a)——for
klps'= 0.5 and l =0; (b) for k/pr =0.5 and f=1; (c) for k/pr =0 5
and 3=2.
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(b)

I zc. |.Green's functions for BGT potential at rp=1.00 F:
(a) Go(r, r.) for several values of k/pz, both on- and off energy-
shell; (b) G&(r,r,) for /=0, 1, and 2, and for k/pl =0.1 on-energy
shell. The BGT potential is the one used by Brueckner and
Gammel (reference 1).



NUCLEAR MATTER CALCULATIONS 2269

for on-energy-shell propagation, and with (2/E(k)—E*(k")$—6} in the denominator for off-energy-shell
propagation (see Fig. 1). 6 is the mean excitation
energy, assumed to be E(p&)—E(0). The Pauli step
function, f(P,k"), is that given in BG Eq. (34) with the
total momentum P replaced by P, of Eq. (2.2); it
excludes from the integrand values of k" not allowed by
the exclusion principle.

(2) Plane wave basis functions and Green's functions
as modified by the hard-core potential of radius r, :

-1000

-800

-600

QJ

) -40G-

-200.

—ON ENERGY SHELL
--"OFF ENERGY SHELL

s~(kr) = j&(kr) —I j&(kr,)Gt(r, r,)/G&(r„r, )j, (2.4)

F~(r,r') =G~ (r,r') fGq (r—,r,)G~ (r,,r')/G~ (r„r,)j, (2.5)

As shown in BG, the above de6nitions result from
requiring the wave functions (next equation) to vanish
at the core (see Fig. 2).

(3) Wave functions:

Un. s'(k, r) = s)(kr) 5u

200"

0 0.2 0.4 0.6 0.8 1,0, 1.2 14 1.6 1.8
k/p

"600-

+4' P r"dr'F~ (r,r')V~ r s'(r')U~q ~'(r'), (2.6)

where the Vp~ s'(r') are the phenomenological two-

body potentials.
(4) K matrices:

&+& j) (kr, )
(k~Zlk)=g g Cs(, —

zs ~=a—~ G, (y„y,)

+4s r'dr s~(kr) Q V~~ s'(r) U~E ~'(r), (2.7)
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where Cq~, is the appropriate statistical weight, and
s is the spin index (see Fig. 3).

(5) Single-particle potential:

=-200-
CL
bJ

) &Dj

(ys'—u)/2

V (p) =— k"dk' (k'
I
E

I
k')

7i

(uz+u) I2

+— k'sdk' (k'[Z lk')
I us —yl/&

2

pr' —p' —4k")
Xj 1+ 1, (2.g)

4pk'
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for p(pr. For p) pr, the 6rst integral vanishes (see
Fig. 4).

III. COMPUTATIONAL PROCEDURE

The computations were performed on the CDC-1604
solid-state digital computer. The compiler used was

L -800

(&)

-400-

FzG. 3. Diagonal elements of the E matrix for BGT potential
at ro=1.00 F: (a) S states; (b) E states; (c) D states; (d) total.
Statistical weights are included.
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~ g was used as the first guess. Each wave function iteration
took about one second (for 5, I', and D waves).

The E-matrix elements LEq. (2.7)] were computed
by numerical integration from r =r„„to r =r„„,where
r, was chosen such that contributions to the integral
from higher terms were negligible (the exponential
behavior of the Vii ~'(r) made this possible).

The potential energies LEq. (2.8)] were then com-
puted by numerical integration and the new energy
table was formed, with

"J00- E(k) = (k'/2M)+ V(P=k) (3 4)

SHELL

-l20 ~~ —,
0.4 0.8 l.2

k/p

20 24

FIG. 4. Self-consistent single-particle potential V(k)
for BGT potential at r0= 1.00 I".

NELIAC, '4 and initial compilation and debugging was
done on a Burroughs 220 at the U. S. Navy Electronics
Laboratory, San Diego, California. Subsequently the
problem was transferred to the computer at the
University of California at San Diego, on which 6nal
debugging and production runs were made.

The computational procedure was straightforward.
The Green's functions LEqs. (2.3) and (2.5)] were first
computed. The 6rst approximation for the energies
appearing in the denominators was

The binding energy was then computed from Eq. (1.3),
completing the major iteration. Four minutes were
required for a major iteration if the wave functions were
iterated 6ve times.

In the computations, all of the meshes used for the
numerical integrations could be varied. In addition, in
several cases both %eddie's rule and Simpson's rule
could be employed for the first seven points. Simpson's
rule was found to be adequate in all cases, and was
employed in the calculations reported.

The following meshes (in fermis or inverse fermis)
yielded agreement of calculated binding energy to
within O. i MeV of the most accurate results obtainable
with our code:

(1) Green's functions LEq. (2.3)]and wave functions
LEq. (2.6) J:

E(k) =k'/2M k& pp
=pp'/2M, k& pp,.

E*(k")=k'"/2M, all k".
(3.1)

r,r'= 0.4(0.05)0.7 (0.1)1.5 (0.2)2.3 (0.5)4.3 (F),
k"=0(0.05)10 (F ') for Gi(r„r,)

=0(0.2)10 (F ') otherwise. (3.5)

The integration was done numerically to an inter-
mediate value of k, k;„~, and the integral from k;„~ to
in6nity was replaced by an analytical approximation to
the following integral:

The additional precision for Gi(r„r.) was desired be-
cause of its importance in the modified Green's functions
LEq. (2.5)] and in the core term in the E-matrix
equation LEq. (2.7)].

(2) E-matrix elements $Eq. (2.7)]:
j i(k"r)j i(k"r')dk".

&ins

(3 2) r,r'= 0.4(0.05)0.7(0.1)1.5 (0.2)2.3 (0.5)8.3 (F), (3.6)

Here we have assumed that E(k)&(E*(k"&k;„~) and
E*(k"&k; t)=k"'/2M. On subsequent iterations, for
k&2.6pp, values of E(k) and E*(k") from the previous
iteration were used in place of Eq. (4.1) t with
E(k&pp)=E(pp)]. For k"&2 6pp we u.se (as in BG)

Vi).~'(kr&4 3k)=8p ji(kr), .

for the following values of k:

k=0.1(0.2)0.9pp on- and oR-energy shell

=1.0(0.4)1.8pp oR-energy shell.

(3.7)

(3.8)
E*(k"&2.6pp) =k'"/2M. (3.3)

Each cycle leading to a new table of E(k) and E*(k") is
called a major iteration.

The wave functions were then computed by iteration
of Eq (2.6). On .the first iteration, the si(kr) LEq. (2.4)]
were used as the 6rst guess. On subsequent major
iterations, the wave function from the previous iteration

'4 H. Huskey, M. H. Halstead, and R. McArthur, Communica-
tions of the Association for Computing Machinery 3, 463 (1960);
K. S. Masterson, Jr., zbfd. 3, 608 (1960).

p =0(0.05)1.0pp. (3.10)

The E matrix and energy tables were interpolated
quadratically as necessary.

(3) Potential energies
C Eq. (2.8)] and self-consistent

total energies:
k'= 0 (0.05)1.8pp,

p= 0(0.2)2.6pp.
(3.9)

(4) Mean binding energy LEq. (1.3)]:
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TABLE I.Parameters of the Gammel Thaler potentials (reference 7).BGT is the potential used by 3rueckner and Gammel. ' r, =0 40 F
except as indicated. Triplet and singlet states are designated by 3 and 1, respectively, and parity by + and —.As explained in text,
BGT odd-state potentials were used instead of the GT odd-state potentials in all calculations where not otherwise indicated.

Potential

4100
4200
4205
SGT
4305
4400

3U+
(MeV)

—87.724—726.69—877.39—877.4—1964.4—2019.9

3p +
(fermi) '

1.2183
1.9554
2.0909
2.091
2.4247
2.3259

3U~+
(MeV)

—272.87—121.04—159.46—159.4—67.106—22.719

3p rjr+

(fermi) '

1.2183
0.97772
1.0454
1.045
0.80823
0.58147

'UI.S+
(MeV)

0
0—5000—5000—5000
0

PI S
(fermi) '

~ ~

3.7
3.7
3,7

1U+
(MeV)

—425.5—425.5—425.5—434—425.5—425.5

lp +
(fermi) '

1.450
1.450
1.450
1.450
1.450
1.450

BGT
All others

3U—

—14.0
0

pc 3Up

22.0
22 Ob

0.80
0.80

—7315—7317 5b
3.7
3.7

1U—

130.0
70

1.0
1.0

See reference 1. b re =0.4125 F.

The normal computation procedure was to compute
Green's functions, wave functions, and E-matrix
elements for each value of k;, and to do the energy
computations after all the E-matrix elements had been
computed.

In order to investigate the rate of convergence of
successive Born approximations and to evaluate the
rate of convergence of the wave-function iteration pro-
cedure, the code was designed so that E matrices could
be calculated after each wave function iteration, and
from these the binding energy was computed, Two
procedures for itegrating the wave functions were
employed. In order to obtain the successive Born
approximations, two tables of wave functions were used.
The "old" table was used on the right side of Eq. (2.6)
to generate a "new" table )the left side of Eq. (2.6)).
In order to increase the rate of convergence, the two
wave-functions tables were replaced for the remainder
of the calculations by a single table, and the integration
was performed with the same table used for both sides
of Eq. (2.6). In addition, instead of starting each major
iteration with

Un ~'(r) = bn. s((kr) (3.11)

as the initial value for the right side of Eq. (2.6), as was
done for the Born approximations, we saved the wave
functions from the previous major iteration as the
"first guess" in the subsequent major iteration.

The above procedure was used for angular momentum
states with l=0, 1, and 2. The contribution from higher
states has been previously shown to be negligible. '

IV. RESULTS

A. Application to the Gammel-Thaler and
Breit Potentials

As a check on the method, we first determined the
energy and equilibrium density of nuclear matter using
the Brueckner-Gammel-Thaler (BGT) potential pre-
viously used by BG. The result was a binding energy
of —16.9 Mev at ro ——1.00 F, compared to the BG values
of —15.2 MeU at ro=1.02 F. This difference gives a

measure of the error introduced by the approximations
of this paper. In Figs. 1 through 4 we present some of
the intermediate quantities computed (Green's func-
tions, modiled basis functions, wave functions, E
matrices, and self-consistent single-particle potential)
for the BGT potential with rs ——1.00 F (pr ——1.52 F ').

To determine the variation of nuclear properties with
various phenomenological potentials, we have calculated
energy and equilibrium density for a set of Gammel-
Thaler (GT) potentials and for the Breit potential.
The Gammel-Thaler potentials differ from each other
primarily in the central-tensor force ratio and the
magnitude of spin-orbit force in the triplet even states.
They give equally good fit to the binding energy and
electric quadrupole moment of the deuteron and to the
triplet neutron-proton scattering length, as well as
good fits to scattering data up to about 90 MeV. Their
parameters are given in Table I.Except where otherwise
noted, the BGT odd state potentials were used in place
of the GT odd state potentials because of a different
core in the latter. This substitution was checked and
was found to introduce negligible error.

The Breit potential is of the form

V = V&'&+ V.+Vr5'„+ Vr, s (L S)
+V,LQ,.- (L S)sj. (4.1)

The operator LQts —(L S)'j has the value —L(X+1)
for uncoupled states, 5=1., and is zero otherwise. V(') is
the one-pion-exchange potential,

y (~) —~ (~) .~(~)—3P7rC

f ( 3 3) e'
)( o (rl .~(&l+gts~ 1+ +

4x

+a&'& e&'&b(x), (4.2)

where p, is the pion mass, and x=p r (in units where
c=5=1).The delta-function term can be neglected in
actual computations. The coupling constant, f', is
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TABLE II. Parameters of the Breit potential (reference 8). Values of coeKcients a„ in Eq. (4.4) are in MeV. Notation same as in Table I.

Potential

1U+
lU +
3Uy
3U~-
3Ul, s1U-
3U+
3U~+
3UI,s+
3U +

21.925
0.333
0
1.5
0
0
0
0
0
0

—19.6303
0.5—14.28

50.8984
0—96.0—47.667

17.3933
0
0

—194.782
0.1

18.72
—83.3812

0—71.001—18.47
7.775
0
5.3333

66.4334—2.0—17.3
8.7693
0

18.0—1.00
13.535
0
0

—15.2873—5.1083
0—3.1988—2.9794
8.0—3.55
3.0

14.35—13.5917

—14.5395
—0.2333—5.3

1.6172—76.4565
125.8

0—1.4971
7.4875—7.4167

1.115
0.2—1.3
0.52

43.8285
5.01
0
0
0—1.6667

0
0
0
0—7.4186
0
0
0
0
0

V=+„a„e '*/x". (4 4.)

The values of a„are listed in Table II. For singlet even
states, gee/14= 0.94. It is unity otherwise. All potentials
have a hard core corresponding to x,=0.35. For
singlet-even and triplet-odd states the neutral pion
mass is used, and for singlet-odd and triplet-even states
a weighted mean of charged and neutral pion masses is
used in the proportion of two to one. With p, =135
MeV and p =139.59 MeV, this has the effect of
requiring two core radii, 0.5116 F for the first and
0.5002 F for the second group of states.

Curves of binding energy vs ro for the Gammel-Thaler
and the Breit potentials are given in Fig. 5. The binding
energy and equilibrium spacing for these potentials are
given in Table III. We also include in this table the

-8-
f

-10-

BREIT
POTEh! TIAL

-18-.

-20--
~ CALCULATED PPlNTS

-22 .

0.8 09 LO l. l l.2

ro (FERMISj

I

l4

FIG. 5. Binding energy vs r& for the phenomenological,
potentials of Tables I and Il.

given in terms of the related constant, go', by

(47r) 'f'=go'(p /2M)'~g s/14' (4 3)

where M is the nucleon mass. All the other potentials
on the right side of Eq. (4.2) have the form

binding energy for the various potentials at ro ——1.00 F,
including the effect of some modifications to the Breit
potential and (for comparison) to the BGT potential.

These results for the Gammel-Thaler potentials show

the considerable sensitivity of the binding energy and

density to the central-tensor force admixture of the
Gammel-Thaler potentials, the energy varying from
—14.1 to —22.3 MeV and the spacing from 0.90 to
1.08 F. The potentials with stronger central forces give
greater binding at higher density. The results also
indicate that the even-spin-orbit force has negligible
effect.

The results obtained for the Breit potential show

even more sensitivity to the potential form, since the
binding energy —8.3 MeV at a spacing of 1.28 F is
quite far from the empirical value. The considerable
difference between the results of the Gammel-Thaler
and Breit potentials appears to be due to these features
of the Breit potential: (a) larger core radius, (b) strong
odd-state repulsion, (c) quadratic spin-orbit terms, and

(d) weaker even triplet central force. These changes
were introduced to give an improved fit to high-energy

scattering data and to match the one-meson-exchange

potential at large separation. Breit and his co-workers

point out, however, that this potential is not unique,
and that several features of the potential were to some

extent arbitrary. It is also probable that the condition
of matching the meson potential should not be litera]ly
interpreted for distances inside 2 or 3 F.If this condition
is altered, a weaker even-state tensor force could be
used, with a corresponding increase in the even triplet
central force. The results of the calculations of the
present paper point clearly to the need for further
investigation with the goal of determining a truly
unique potential.

B. Convergence of Successive Apyroximations

Equation (1.1) for the Ematrix and Eq. (1.2) fo'r

the single-particle potential energy can be solved by
successive approximation. It has been suggested that
to a good approximation the energy can be obtained
from first and second. Born approximations applied to
the long-ranged part of the interaction after the
repulsive core has been separated and treated more

exactly.
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To study the accuracy of various approximations to
Eqs. (1.1) and (1.2), we have first used the procedure
of BG to treat the effects of the repulsive core, obtaining
the equations quoted in Sec. II. A complete discussion
of this treatment can be found in BG.

In solving these equations, we can determine the
eGects of two types of successive approximations. Since
Eq. (2.6) for U« ~'(k, r) was first solved by iteration
starting from s~(kr) as the first approximation, it was
ea,sy to evaluate the energy for various iterations of the
wave function. This we term the first, second, etc., Born
approximation, although this term is not strictly correct
since we have treated the core exactly.

The second successive approximation is in the evalua-
tion of the Green's function, Gg(r, r'), Eq. (2.3).We have
started in our calculations with the Qrst input for EI,

TABLE III. Binding energy and equilibrium spacing for poten-
tials discussed in paper. Results indicated for modided potentials
are calculated with a single-particle potential, V(k), self-consistent
with respect to the modiled potential.

Potential

GT 4100
GT 4200
GT 4205
BG

(a) full
(b) without 'Vr+
(c) without P states
(d) without P-state core

GT 4305
GT 4400
Breit

(a) full
(b) without P states
(c) without P states

'V,+ and 'U,+
(d) without P-state core
(e) without P and D core

Minimum
binding
energy
(MeV)

—16.9

—18.8—22.3

—8.3

Equilib-
rium

spacing
(F)

1.08
1.01
1.01

1.00

0.94
0.90

1.28

Binding
energy at
rp=1.00 I'

(MeV)

—16.9—2.8—18.1—23.1—18.4—20.8

—0.3
92—12.7

—14.6—15.2

simply
E(k)=k'/2M.

This we call the erst major iteration. In successive
major iterations, we determine V(k) from the previous
major iteration for (k

~

E
~
k).

A typical result for the binding energy as a function
of successive Born approximations for the wave function
is given in Table IV. The results of successive major
iterations for the single-particle energies is given in
Table V. These results show that the E matrix must be
computed to at least third order in the interaction and
that the self-consistent energy must be determined from
E matrices which themselves have the single particle
energies accurate to at least first order in the Ematrices.

The importance of using energies which are self-
consistent both as a function of phenomenological
potential employed and as a function of rs (e.g., of
Fermi momentum) is illustrated by the self-consistent

TABJE IV. Illustrative binding energy sequence for successive
iterations of the wave function Eq. (2.6).Energies are in MeV.

Major
iteration

Born
approximation

Binding
energy

+1.304—19.590—25.974—26.824

+7.578—8.337
—11.756—12.022—12.046—12.049

potential curves of Fig. 6(a) fin which we show the
V(k) appropriate to several different phenomeolongical
potentials at pp= 1.52 F ' (re= 1.00 F)$, and Fig. 6(b)
fin which V(k) is shown for several values of ppj. To
test the dependence of the calculations on V(k), we
calculated at several densities the binding energy for
the BGT potential using the V(k) which was self-
consistent at the energy minimum (rs ——1.00 F). The
result, shown in Fig. 7, clearly indicates the importance
of the self-consistency requirement; there is no sign of
saturation near normal density —the minimum is —23.2
MeV at r0=0.79 F.

The slow convergence of the Born approximation
sequence for the wave function is to a considerable
extent due to the noncentral forces. For the BGT poten-
tial, the binding energy at normal density (k&——1.52 F—')
in the absence of the even tensor force is —2.8 MeV
compared with —16.9 MeV for the full potential. This
contribution of —14.1 MeV from the tensor force is to
be compared with —9.0 MeV determined in second
Born approximation by Moszkowski and Scott.'

TABLE V. Iteration sequences for Brueckner method and for
Mohling-PuB approximation as implemented in this paper. Calcu-
lations are for BGT potential at rp=1.00 F. The self-consistent
potential V(k) was averaged between iterations for the Mohling-
Pu8 approximation, improving the convergence of the binding
energy sequence to that shown.

Major
iteration

Binding energy in MeV
3rueckner Mohling-Puff

method approximation

—32.963—15.720—16.936—16.887—16.892

—2.110—15.338—17.554—17.990—18.045—18.033—18.017

C. Comyarison with the Seyaration Method
of Moszkowski and Scott

Scott and Moszkowski have determined binding
energy and density for the BGT potential and for
potential 4305 of Gammel and Thaler (see Table I),
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FIG. 6. Variation of self-consistent single-particle potential
V(k) (a) with choice of Gammel-Thaler potentials, "at rp = 1,00 F

&

(b) with Fermi momentum, p~, using the BGT potential.

using an approximation procedure based on the simi-
larity of the wave function due to the core to that for
free scattering. This method is described in detail in
their papers, 9' and we only give the results here.

They found at normal density binding energies of
—14.2 and —23.6 MeV, respectively, for the potentials
BGT and GT 4305 (modified to include the BGT
triplet-odd parameters). They included contributions
from all states with l &4. Their results for just 5, I', and
D waves were —13.6 and —22.8 MeV, respectively.
The more accurately determined values obtained by the
methods of this paper are —16.9 and —21.0 MeV for
the same potentials. In addition, the same calculation
fails to obtain saturation for the modified GT 4305
potential, in contrast to our minimum, —22.1 MeV at
r0=0.91 F. Their results, and ours, are shown in Fig. 8.

In Table VI we present a breakdown of the contribu-
tions to the binding energy for the BGT potential as
computed with our code and as reported by Scott and
Moszkowski. m The contributions of the D states (and
probably of higher states) are given with reasonable

FIG. 7. Binding energy vs r0 for BGT potential using self-consistent
single-particle potential, V(k), for rs ——1.00 F at all densities.

a~curacy by the Moszkowski-Scott method (within
0.5 MeV). However, the S- and P-state contributions
differ from our values by —5.2 and +2.3 MeV, respec-
tively. A major portion of the differences is probably a.

consequence of neglecting higher order terms. It should
be mentioned that the Moszkowski-Scott method
employs a relative momentum approximation for the
energy dependence, as we have in this paper. Therefore,
their results are more properly compared to our results
than to those of BG.

The failure to obtain saturation for GT 4305 is
to a considerable extent a consequence of using the
Brueckner-Gammel self-consistent V(k) for the BGT
potential instead of a properly self-consistent V(k). As
we have already shown (Figs. 6 and 7), the dependence
of the computed nuclear properties on the self-
consistency of the single-particle potential, U(k), is
very marked.

Kohler" and Scott and Moszkowski" have reported a
"new separation method" which converges more rapidly
than the method used to obtain the results above. How-
ever, the new method gives less binding for the calcula-
tions reported, which wouM lead to even poorer agree-
ment with our results.

D. Comjparison vrith the Mohling-Pu5
Ayjproxim ation

As emphasized by Bell, the central element of the
nuclear matter theories of Mohling and of PuB is a
scattering operator defined by Eq. (1) of reference 11,
which differs from Eq. (1.1) as follows:

(1) The excited state energies, E,*, are replaced by
p,s/2M.

(2) The exclusion principle is ignored for scattering
into intermediate states.

' S. Kohler, Ann. Phys. (,New York) 16, 375 (1962)."B.L. Scott and S. A. Moszkowski, Nuclear Phys. 29, 665
(~962).
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TAN, E VI. Analyses of contributions to binding energy as cal-
culated in this paper and by Moszkowski and Scott (see reference
10). The tensor contribution was calculated by setting 'V&+=0
and computing the binding energy (a) with a single-particle
potential U(k) that is sejf-consistent with respect to the modi6ed
phenomenological potential, and (b) with the single-particle
potential U(k) with which the S-, P , and-D-state contributions
were computed. Moszkowski and Scott used a 6rst-order approxi-
mation to a self-consistent V(k) to compute the tensor
contribution.
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FIG. 8. Binding energy vs r0 for BGT and modi6ed GT 4305
potentials as computed by Brueckner method (this paper) and by
the Moszkowski-Scott method. "

The energies E; of particles in the Fermi sea are
determined as in BG from Eq. (1.2). This approxima-
tion method is clearly a large departure from the BG
method. Bethe has suggested that the Mohling-Puff
approximation may nevertheless be quantitatively
accurate, with the corrections arising from the two
changes approximately cancelling.

In order to avoid in our calculations the difficulties of
a vanishing denominator in Eq. (1.1) on the first major
iteration (in which all energies are approximated by
kinetic energies), the Pauli exclusion principle was
invoked. for this iteration only. Because the initial con-
vergence of successive major iterations was very poor
(ten iterations for convergence to within +0.02 MeV),
we averaged the single-particle potentials between
iterations, and obtained the sequence indicated in
Table V.

The results of this method are given in Fig. 9. The
variation of energy with density is appreciably diferent
for the two methods, with the Mohling-Puff approxima-
tion equilibrium values being —18.6 MeV at 0.90 F
compared to our value of —16.9 MeV at 1.00 F for the
BGT potential, and similar disagreement for the
GT 4400 potential. In both cases, the value of ro at the
energy minimum is 10/q less than our value.

V. CONCLUSIONS

Our results indicate a definite dependence of the
predicted properties of nuclear matter on the choice
of phenomenological potential. Although these calcula-
tions are not a sufficient criterion for selecting a "best"
or "proper" potential, they do emphasize the desira-
bility of further investigation in phenomenological

-]2

I'xG. 9. Binding
energy vs r0 as com-
puted by Brueckner
method (this paper)
and with the Moh-
ling-Puff approxima-
tion (see text).
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potentials, with particular emphasis on a criterion for
uniqueness. The uncertainty in the triplet-even poten-
tial does not appear to have been resolved satisfactorily
by requiring asymptotic match to the one-meson-ex-
change potential. The choice of the core radius is also still
somewhat arbitrary for those potentials employing a
hard core. Determination of the optimum core size from
experimental considerations would be very valuatle.
Gammel and Thaler considered their sing, let-even
potential to be a unique solution for a Yukawa potential,
with r,=0.4 F, but were unable to differentiate in
triplet-even states between cores of 0.3, 0.4, and 0.5 F.
Breit and his co-workers' state that the employment of
hard cores was arbitrary.

Our calculations have shown that the integral equa-
tions of the Brueckner theory can be solved by succes-
sive approximation. The requirements are that the wave
function iteration, which corresponds to successive Born
approximations, be carried to at least the equivalent of
the third Born approximation for reasonable accuracy



K. A. BRUECKNER AND K. S. MASTERSON, JR.

(+0.5 MeV), and the self-consistent single-particle
potentials determined to first order in the E matrix,
The sensitivity of results to the tensor-central force
admixture demonstrates the requirement for accurate
treatment of the tensor force.

The Moszkowski-Scott separation method does not
account for the effects of the tensor potential or the 5-
and I'-state contributions to suKciently high order for
accurate results, largely for the reasons stated above.
However, the Moszkowski-Scott calculations do give
good qualitative and semiquantitative (to second order)
results in a simple and intuitively pleasing calculation,
presumably for any potential provided the self-con-
sistency requirement is met.

The Mohling and Puff-Martin approximation, as
we have employed it, also gives semiquantitative results,

leading to errors in binding energy and equilibrium
spacing of about 10%. No appreciable reduction of the
computational complexities results from this approxi-
mation, so that its utility is questionable.
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Investigation of the Influence of Angular Momentum on Fission Probability

JOHN GILMORE, STANLEY G. THOMPSON, AND I. PERLMAN
Lawrence Radiation Laboratory, Unimrsity of California, Berkeley, California

(Received July 23, 1962)

A nuclear emulsion technique has been used to determine total fission cross sections in the following
heavy-ion bombardments: (C"+Tm'"; 0"+Ho"'), (0"+Tm'"; Ne"+Ho"'), (C"+Re"'& 0"+Ta'"),
(0' +Re' '; Ne"+Ta' '). Each pair of bombardments resulted in the same compound nucleus, and excita-
tion energies could be made equal in the two cases by adjustment of bombarding energies. The ratio of the
fission cross section to a calculated compound-nucleus-formation cross section, oy/0;, was taken as a measure
of fission probability in each bombardment. Larger fission probabilities were observed to occur for the
systems having greater angular momenta.

S TUDIES of heavy-ion-induced nuclear reactions
have included a number of investigations of the

fission process. One conclusion from these investigations
is that fission represents a significant fraction of the
total reaction cross section, even for relatively light
nuclei. In the bombardment of rhenium with N" ions,
Bruin, Polikanov, and Flerov report that fission
accounts for about 30% of the reaction cross section at
a bombarding energy of 100 MeV. ' This proportion
increases to more than 50% when Au's' and Bi"' are
bombarded with heavy ions.

One factor contributing to such high probabilities
for fission is that the compound nuclei are neutron
deficient, with relatively large values of the fissiona-
bility parameter Z'/A. High neutron binding energies
in these compound nuclei also favor the competition
of fission over neutron emission.

Compound nuclei formed in heavy-ion bombardment
are further characterized by formation with as much as
100 5 of angular momentum. The possibility that

*Work done under the auspices of the U. S. Atomic Energy
Commission.

'V. A. Druin, S. M. Polikanov, and G. N. Flerov, Soviet
Physics —JETP 5, 1059 (1957).

angular momentum may aBect fissionability has been
discussed by Pik-Pichak. ' Using the liquid drop model
to evaluate the saddle-point deformation and rotational
energies, Pik-Pichak showed that the barrier against
fission decreases with increasing angular momentum.
Calculations of this type have also been performed by
Hiskes. ' Another approach to the evaluation of an
angular momentum effect has been taken by Halpern4
and by Huizenga and Vandenbosch. 5 These authors
point out that if an appreciable part of the excitation
energy is taken up in rotational motion, the level width
for neutron emission becomes small relative to that for
fission.

The object of this work was to determine the e8ect
of angular momentum on the probability for fission in
heavy-ion bombardment. Pairs of isotopes were bom-
barded with diferent heavy ions to give the same

' G. A. Piit-Pichak, Soviet Phys. —JETP 7, 238 (1958).
John R. Hiskes, Ph.D. Thesis, University of California

Lawrence Radiation Laboratory Report UCRL—9275, 1960
|,'unpublished).

4 I. Halpern, Ann. Rev. Nuclear Sci. 9, 245 (1959).
5 J. R. Huizenga and R. Vandenbosch in nuclear Reactions

/North-Holland Publishing Company, Amsterdam, Netherlands
(to be published) j, Vol. 2.


