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Two-Photon Photoelectric Effect
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The surface photoelectric current from a pure metal surface is calculated when the frequency of the
incident radiation is less than the threshold frequency but greater than one-half the threshold frequency.
To do this, second-order stationary perturbation theory is used. The current thus found is normally small.
However at great intensities, such as those produced by optical masers, the current might be measurable.

HE photoelectric effect for metals m.ay be sub-
divided into the volume photoelectric e6ect and the

surface photoelectric effect. ' The volume photoelectric
effect is due to the emission of the bound electrons in the
solid. This eGect is of little importance near threshold but
should not be neglected in general. ' The surface photo-
electric eGect is due to the emission of the "free"electrons
in the conduction band while they are interacting with
the surface barrier. The theory of the surface photo-
electric effect from metals has been thoroughly treated
by Mitchell. ' He assumed the electrons moved in a
Sommerfeld type of potential and that the energy
distribution of the electrons was given by Fermi-Dirac
statistics. He also assumed the wavelength of the in-
cident monochromatic wave is large compared to the
wavelength of the electrons in the conduction band.
Then by using first-order perturbation theory, he found
the current from the metal surface. He showed that
in the limit for long time, the time-dependent pertur-
bation theory gave the same result as that given by
stationary perturbation theory. This paper will draw
heavily upon his stationary perturbation calculation.

The inclusion of reflection and refraction in the
theoretical treatment of the photoelectric effect in a
reasonable manner is dif6cult. Mitchelp used the
measured optical constants in a purely classical treat-
rnent which implies a discontinuous change in the
optical constants at the surface. Since the surface photo-
electric eA'ect occurs in a depth of about 10 "' cm, 4 this
method is subject to a serious objection. Schiff and
Thomas' developed a quantum-mechanical theory of
metallic reflection in an attempt to resolve this diff.culty.
However their results proved to be too unwieldy to be
of much use. Makinson, ' in a compromise between the
pure classical treatment and the quantum-mechanical
treatment, tried a semiclassical treatment which added
little to the agreement between experimental results and
theory. Buckingham has refined Makinson's treatment
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to include the dependency of the surface barrier for an
electron upon the electron's momentum.

To an important extent, the lack of agreement which
exists between theory and experiment can be accredited
to the great difhculty in producing a pure metal surface
for experimental purposes. Minute quantities of dis-
solved gases may greatly change the photoelectric
characteristics of a metal surface. "

The treatment used in this paper which neglects
reflection, refraction, and surface roughness seems to
yield a quantum efFiciency much lower, for the first-
order perturbation calculations, than the observed
values. For sodium it is as much as several hundred
times lower. One would hope that this type of favorable
disagreement niight continue on over to the second-
order case also.

The advent of the maser has made available a very
intense monochromatic source of electromagnetic radia-
tion in the infrared and visible region. ' "The great in-

tensity and narrow linewidth of masers have made
possible the performance of several interesting experi-
ments and have encouraged the theoretical development
relating to nonlinear efI'ects. Franken" has produced the
optical second harmonic by using an optical ruby maser.
Kaiser and Garrettla have reported the observation of
a two-photon transition. Bloembergen. et al.""have
generalized the laws of optics to include the nonlinear
effects produced at maser intensities. Kleinman" and
Hraunstein" have discussed t.wo-photon processes in
crystals and nonlinear optical effects.

As previously mentioned, MitchelP used only first-
order perturbation theory in his theoretical treatment of
the surface photoelectric effect. For this approximation
no photoelectric current can be produced at frequencies
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less than the threshold frequency when the metal is at
absolute zero. What is attempted in this paper is the
calculation of the surface photoelectric current from
a pure metal, using the model which Mitchell developed
so successfully, but assuming that the frequency of the
incident radiation is less than the threshold frequency
but greater than one-half the threshold frequency. To
do this, we must use second-order perturbation theory.
Realizing the difhculty in achieving agreement between
photoelectric theory and experiment, we do not expect
to have our results compare in absolute size to experi-
mental results. However, it is hoped that our results
will indicate the lower bound for the current. The
actual current should be larger, possibly several orders
of magnitude larger as this seems to be the case with
previous first-order results.

The model which MitcheLP used, and which we will

use, assumes that the electron moves in a constant
potential inside and outside of the metal with a step
discontinuity at the metal surface. This model inherently
neglects the volume photoelectric effect. We shall
assume that monochromatic radia, tion is incident upon
the metal surface. We shaLL use second-order pertur-
bation theory to calculate the probability Aux in the
outward normal direction from the metal. This will

yield the current density due to a single electron. To
find the total current, we shall integrate our result for
a single electron over the total number of electrons
which can be excited to the free state. In our calculation
we shall neglect reflection and refraction of the incident
radiation. There exists little promise that the inclusion
of any of the previous treatments of reAection wouM

improve significantly the comparison of our results
with experimental results.

We shall find that we get a current from the surface
when we are at maser's intensities. Furthermore, the
escaping electrons, for which we have neglected any
type of collisions, will be associa, ted with an energy
level 2hv above their initial energy level. Thus, the
Einstein photoelectric equation, which holds at absolute
zero, must be modified to state that the maximum
kinetic energy of a photoelectron is equal to the sum
of the energies of the photons absorbed less the work
function of the metal. For our case this becomes

Kzt „,,„=2I2) —(t .

9'e wiLL first. calculate the needed wave functions to
second order and then the photoelectric current for the
specified frequency interval.

Let the potential energy of the electron, excluding
its interaction with the radiation field, be given by
V(x', y', s'). Let the radiation field be described by the
vector potential A and the sealer potential 4, which we

~@& equal to zero, Then from the Lorentz rely, tion, we

have that
V A=O.

The wave equation for such a nonrelativistic electron
is given by

fP if'te e222 8$
V'2+ A V'+ +V P=~7z

2m mc 2mc' 8t'
(2)

To place this equation in dimensionless forni, we make
the following substitutions:

v =xp(7'/v2, xp ——)2/mc, t'= xpt/c,

W= V/mc2, G= eA/mc'v2.

We then have that

V2$ WP—+i =2—iG UP+ G
Bt

We express f in terms of a series expansion as follows:

P —g y(2t)et(a+na) t

where &z is the summation index which assumes the
integer values from —~ to ~, where o. is a constant
which corresponds to —Xp/fic times the energy of the
electron when A=0, and (p is 2)rXp/c times the frequency
of the radiation held. I.et the vector potential term be
given by

G =Ke'"+Me-'"'
)

Substituting this expression for G and the expansion
for P into Eq. (4), we obtain

p ([P—W —(~+ ~~)—2K M]p(22) e'(-+-) '

2iK qp(22)—ei(a+«. +a) ' 2iM gp(22—)e'(a+» ""
~(2t)ei(a+«+2a)t ~p(22)ei(a+na —2a)t) 0 (g)

For presently obtainable electromagnetic fields, the
number

~
G~ is much less than one. We assume that

p(22) is of the order of
~

G~)"). Then from Eq. (9) we
have, by neglecting all terms of second and higher order

[P—lV —(a—(p)Q( —1)—2iM V'P(0) =0 (10)

[P—W —n jf(0)=0, (11)

[ v —w- (ct+pp))P(1) —2iK vg(0) =0, (12)

We note that P(1) corresponds to an energy level It)

below the initial state while P(—1) corresponds to an
energy level ht above the initial state, and P(0) corre-

The coeS.cient of each term such as e'"+'""must be
equal to zero for the above equation to be satisfied.
Therefore, we may write

['P—W —(n+ Pep) —2K M)))t (k) —2iK VP(k —1)
—2iM V)ft(k+ 1) APE(Ip+2) —K'f(lt 2) =—0 (9)— .
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sponds to the wave function when there is no electro-
magnetic field present.

The metal surface will correspond to the yz plane and
the metal will extend to —~ in the x direction. We
shall take the xy plane to be the plane of incidence of the
radiation, the angle of incidence to be 0. Ke assume
that the electron sees a constant potential inside the
metal which is less than the constant potential it sees
outside the metal.

Solution for Q(0)

If the potential t/ has the form

We shall assume that the wavelength of the radiation
is large compared to the wavelength of the electron so
we may neglect the spatial variation in G. This is
equivalent to assuming that cp/%2(&P„P„, P,. With this
assumption and Eqs. (13), (7), and (24), our equation
for 1b(—1) becomes:

For x(0,
LV'+W —(n —s))$f(—1)—2iG(0) Vp(0) =0; (26)

for x)0,
LV2 —(n —a))$f(—1)—2iG(0) Vf(0) =0. (27)

then we have

V= —hv, x(0
=0, x&0

W= —W = —2m', 'Ap/c, x(0
=0, x&0

Let us de6ne the quantities p~ and v~ such that

P~=LW. (n —pp)]—"", P~'=P~'+Pp'+P*' (2g)

v L (n cp) jl/2 v12 vl 2+.P 2+.P 2 (29)
13

For x(0 and P~,)0 we let

and we may write Eq. (11) as

(V2+W —n)f(0) =0, x(0
(V2 —n)f(0) = 0, x)0.

(14)

(15)

lt (—1, H) = fe'~'**7Z

For x&0, we have

P(—1, H) =ge'»"VZ.

(30)

(31)

(W. n)'"=—P, P'=P'+Pp'+P',
(—)'"=v, v'=v. '+p, '+p.', (16)

I =e~pyw+e &cup

Z=e~ezs+ e
—~pzz

7

(1'I)

(18)

The solutions for these equations are well known. If
we let

Ke note that p&, may be real or imaginary. It is real if
the electron has energy above the vacuum level. As
Mitchell has pointed out, the solutions must correspond
to waves leaving the surface both inside and outside
of the metal. Equations (30) and (31) are consistent
with this.

For the particular solution let us use

then the solutions are: P(—1, I') = (2i/a))G(0) VP(0). (32)

For x(0,

for x&0,
P (0) = a (e'e"+be 'e**)I'Z. —

P(0) =de"&"Y'Z.

The general solution for f ( 1) will be the—sum of the
(19) homogeneous solution and the particular solution. The

general solution for f( 1) is:—
(20)

For x(0,
We see that y. will be real and positive if the electron
has a positive energy (free for x)0) or it is a pure
positive imaginary number if the electron has a negative
energy. We are free to choose P,)0.

Since 1t (0) and Bp(0)/Bx must be continuous at x=0,
we have

4 ( 1)= fe""'l'Z+—4 ( 1,&);—
4( 1)=ge'"**1'Z+—4( 1, ~). —

(33)

(34)

Since G(0) Vf(0) is continuous at x=0, we have

d =a(1+b),

dv. = a(1 b)p. — (22) We also have the condition that BP( 1)/coax m—ust be
continuous at x=0. Therefore we have

Solution for g( —1)

The vector potential may be written as

A=2Ap cos{2m.vLt'+(x' cos0+y' sine)/cj}. (23)

f= L2G*(o)W.dj/~(P~* vi')—
Second-Order Equation

(36)

Then from Eq. (6) we see that

G(0)ei(s aos p+p siup)ca/PR

G (0)= eAp/mc'V2'.

From Eq. (9) we see that the equation for f(—2) to
second order is given by

(24)
LV' —W —(n—2~)l4 (—2)

(25) =2iG(0) VP(—1)+G (0)P(0). (37)
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The homogeneous solution fol Eq. (37) is:

For x&0, P2,&0,

escape. The current density vector for a single electron
is given by

i'=i+ J,
(38) whereQ(—2, H)=re em~*YZ;

P (—2, B)= se'&s.*YZ
for x)0,

where

p2 ——[W.—(Q—2M) j'~' and y2 ——[—(n —2M)]'~'. (40)

To obtain Eqs. (38) and (39) we have again used the
condition that the wave function must correspond to
waves leaving the surface as MitchelP has pointed out.

For the particular solution let us use

4 (—2, J') = [G'(0)4 (0)i»l
+ (2i/o))G(0) V[/( —1, H)+-,'-P( —1, P)]. (41)

i = —(f 2/'~o') (0*'V-O'W'),

J= —(4ec/X, ')~',
(45)

(46)

where i = eh/m. Equation (45) corresponds to a flow of
electrons from one region to another while Eq. (46)
corresponds to the current due to the electron oscillating
in the radiation field. Since J does not imply a net flow
of electrons we shall neglect this term. We shall be
interested in the x component of j for x)0. Ke have
for the x component then that

j(*)= —(2|/~~o')(4*~4/~x —H4*/»). (47)

From the boundary condition that P(—2) must be
continuous at x=0, we have

r =s+2G,'(0)W,d/oP. (42)

Ke also will make use of the boundary condition that
8$( 2)/Bx m—ust be continuous at x=0. Therefore we
have

For the case where vo) v) vo/2, where vo is the thresh-
old frequency, the only part of the wave function which
does not decay exponentially for x)0 is given by

P"(—2) =se'»' YZ (48)

If we average over the y and s variables, we have that

j(x)= —sf'y~~s*/Xo'.

To compute the photoelectric current, we will calcu-
late the current density due to a single electron and then
integrate over the conduction electrons which can where R(p,) is given by

j(x) = —128 p l
a

l
'R(p.),

s= (2/oP)G, .'(0)lV,d[—P2,—2Pi, —2yi, +y j/
(

(&, +p, ) (43) We note t;hat y, and. 7~, are pure imaginary numbers,
while y2, is real.

We have then tha, t

P 2(P 2+2~ W )1 2(3W ++ P 2+2[(~+P 2) (2~+P 2) j1~2+2[(lV P 2) (W ~ P 2) jl/2}R,)= (51)
4(o —W,+2P '-+2[(2(v+P ') (2a) —W +P ')j""

and p is given by

) = (Ã*'(0)W.)/(~o'~'). (52)

We may now relate lal' to the mean density of
electrons in the metal and thereby to the Fermi-Dirac
distribution. We have that

4p
j,(x) = —— R(P )dP,dP„dP„

and for P,'+P„'+P,.2 —Wf &0 we have that

j,(x) =0.

(56)

(57)

Therefore, where 8'~ is the Fermi energy, we have tha, t

2dP, dP„dP,
slal'=

Se{1+exp[(P2—W,)c2/8~27]}

The second-order current term is given by

(54)

4p R(P,)dP,dP„dP,
j,(x)=—— . (55)

1+exp[(P' —Wr) c'/8)r'T$

VVe assume that we may set T=O'K and still
have a reasonable approximation. We have then for'

p.'+p„,'+p,2—W, &0 that

4p
j~(x)= ——

7r2

pfTgl/2

Or (TVa —2o))1/~

(Wr P:)R(P.)dP-. (58).
If lV —2'(0, then the lower limit is zero, otherwise
lt is (W —2M) ~ .

We may write Eq. (58) in the following form:

85C 4+51voj (x)=- + (3n'e)'"
4'm CPA'

Po

XI—E~:4 (0) sin40, (59)
v'

We may set dp„dp, =pdpdo and p,'+pp= p'. The limits
of integration for 0 are 0 and 2m and for p, 0 and
(Wr —P,')'I2. Integrating over 0 and p, we have
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~here zz is the number of conducting electrons per unit volume. The number I is given, by

(~ -&)'f'

«(p —2n)' '

(tz —1—X')X'(X'+2rt —tt)'"(3tz+zt —V+2)(st+a') (2zi+X')$'"+2L(tz —X') (tz —rt —V)j'"}
dX (60)

4zt —tz+ 2/~+ 2) (2rt+y&) (2zt —tz+y&) ]t t&

where

A=Pe/pop, st =zo/zop, tz= 8 e/zop. (61)

A comment should be made on. the 8 dependency of
the current. Equation (59) implies the current is a
maximum for 0=90 . As Allitchell pointed out in his
first paper, this is due to the neglection of reQ.ection and
refraction. Normally the maximum for the 6rst-order
photoelectric effect occurs when the angle of incidence
is about 60'.

The integral of Eq. (60) is reasonably easy to inte-
grate numerically for a particular metal and for a given
incident frequency. For sodium we have

I=0.11,

where we have used the value of" 2.28 eV for the work
function" 3.12 eV for the Fermi energy. Also, we set the
wavelength of the incident radiation equal to 7000 A.
After using the relationship that A.,(0)=E,(0)X/4zr and
substituting numerical values for the constants, we
have for the current

jz(x)="/.8X10 "E,'(0) A/cm', (63)

where E,(0) is the x component of the amplitude of the
incident radiation expressed in volts per meter.

Equation (63) seems to imply an extremely small
current. However, it is not as small as one might
initially think. Franken' has estimated that an electric
field of the order of 10' V/m was produced by focusing
the output of an optical ruby maser in his experiment

"Handbook of Chemistry and Physics (Chemical Rubber Pub-
lishing Company, Cleveland, Ohio, 1958), 40th ed. , p. 2557.

z F. Seitz, The Modern Tlzeory of Solids (McGraw-Hill Book
Company, Inc. , New York, 1940), 1st ed. , p. 146.

on the generation of optical harmonic. Then Eq. (63)
would imply that, even for a very small spot size, this
field intensity would yield a current which would be of
a measurable size. Peak power of 107 W/cm' for an un-
focused optical maser has been reported. "This corre-
sponds to an electric field of 6X10"V/m. The spot size
is probably the order of 0.5 sq cm and the time duration
is probably of the order of 10 ' sec. This gives a total
energy content of only about 0.05 J. A field of 6X10P
V/m yields a very large current according to Eq. (63).
One would expect that other factors might begin to
enter which would limit this to a smaller value. In
particular the metal surface may be unduly heated.

For optical frequencies, 6eld intensities of the order
of 10' V/m will not produce fmld emission. The reason
is rather simple. The 6eld does not act in one direction
long enough to free the electron from the natal.

It is of interest to note that E '(0) varies as the
reciprocal of the spot area squared for a maser which
has a constant energy output. However, the total
current produced varies as the reciprocal of the area
since the current is the product of the current density
times the area. Therefore, one may greatly reduce the
thermal effects of the incident radiation by increasing
the spot size of the optical maser.

There are many techniques which may have to be
used and/or developed to observe this phenomena but
it is not the purpose of this paper to design such an
experiment.

Ke have not proven that the second-order eBect is
observable but we have shown that it might be. The
question as to whether there is any metal surface which
yield a measurable current of this type before the
surface undergoes serious heating is yet to be resolved.


