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The correlation factor f for an isolated impurity atom diffusing by a vacancy mechanism in a face-cen-
tered cubic lattice is calculated in terms of Qve vacancy jump frequencies near the impurity, mo, m», m»,

k&, and k&, as defined by Lidiard. In general, the correlation factor can be expressed as f= (2w&+7tk&)/
(2w2+2w&+78k&), where F is a function of ks/wo. In the limit where ks/wo-+ 0, Ii goes to unity. In the
limit where ks/wp -+ ca, F goes to 2/7. When the five frequencies above are the only vacancy jump frequen-
cies in the crystal, an expression for J"as a function of k2/mo can be found from a Bardeen-Herring calculation.
It is found that

11.56+50.106+40.006'
0.521+4.716+12.066'+8.0063

where S=ks/12wo and n= (ks —wp)/12wo. This method can be extended to other lattices. Applications to
data in the literature are discussed.

I. INTRODUCTION
' 'T is generally agreed that diGusion in crystals takes
~ ~ place by each atom making a series of jumps from
one site to another throughout the crystal. If each
atom pursues a random walk, the diffusion coeKcient
D for isotropic diHusion is given by

where X is the jump distance and ~ the jump frequency.
However, if the direction of a diffusive jump depends
to some extent on the direction of a previous jump, the
usual random walk treatment must be modified.
Then, '—'

D=eh't f,
where the additional factor f (called the correlation
factor) takes into account the correlation between the
directions of successive atom jumps.

In the present paper, a general expression for the
correlation factor for an impurity diffusing by a vacancy
mechanism in a face-centered cubic lattice is derived
in terms of five vacancy jump frequencies. Attention
is centered on the face-centered cubic lattice, ' however,
the general method used here can be applied to other
cubic lattices also.

2. IMPURITY DIFFUSION IN A FACE-CENTERED
CUBIC LATTICE

Following Lidiard's notation, 4 one may designate
vacancy jump frequencies in a face-centered cubic
lattice as follows: (1) ws is the frequency for exchange
with a neighboring impurity atom, (2) wt is the fre-
quency for exchange with a neighboring solvent atom
when the vacancy and solvent atom are both nearest

' J. Bardeen and C. Herring, in Atom ilIIosememts (American
Society for Metals, Cleveland, 1951), p. 87; also in Imperfections
in Nearly Perfect Crystals, edited by W. Shockley (John Wiley R
Sons, Inc. , New York, 1952), p. 261.' A. D. LeClaire and A. B.Lidiard, Phil. Mag. 1, 518 (1956).

'K. Compaan and Y. Haven, Trans. Faraday Soc. 52, 786
(1956).

4 A. B.Lidiard, Phil. Mag. 46, 1218 (1955).
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neighbors of the same impurity, (3) kt is the frequency
when the vacancy is a nearest neighbor of an impurity
but the solvent atom is not, (4) j't& is the frequency when
the solvent atom is a nearest neighbor of an impurity,
but the vacancy is not, and (5) ws is the frequency
when neither the vacancy nor the solvent is a nearest
neighbor of an impurity. It may be noted that the k&

jumps are just the reverse of the k& jumps. Since the k2

jumps cause a vacancy to become a nearest neighbor
of an impurity, they are called assocM, Iive jumps. Since
the k& jumps move a vacancy away from an impurity,
they are called dissociative jumps.

In a previous paper, '" it was shown that the correla-
tion factor for diGusion of an impurity by a vacancy
mechanism in a face-centered cubic lattice is given by

2wt+7Fkt

2ws+ 2wt+ 7tkt

where F is the fraction of dissociating vacancies (those
making Jtt jumps) which effectively do not return to the
site from which the k& jump was made. The probability
of return depends on the relative values of the vacancy
jump frequencies when the vacancy is not a nearest
neighbor of the impurity. If k2 and m 0 are the only two
such frequencies, Ii depends only on geometric factors
and the ratio ks/ws.

The value of Ii can be calculated quite easily in a few
special cases. I'or example, if k2 equals zero, no vacancies
return after dissociating, and Ii equals unity. Thus, if
ks/we~0, Eq. (3) reduces to

2wt+ 7kt

2ws+2wt+7kt

as was determined previously by Lidiard and LeClaire. '4
Equation (3) must also be valid for self-diffusion,

where m 2= m I=hi= k2= m 0. Compaan and Haven' ' find

s J. R. Manning, Phys. Rev. 116, 819 (1959).
6 K. Compaan and Y. Haven, Trans. Faraday Soc. 54, 1498

(1958).
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TABLE I. Conversion factors for equivalent distributions,

FIG. i. Face-centered cubic lattice.
Sites designated 1, 2, 3, and 4, are
6rst, second, third, and fourth nearest
neighbors of the impurity X. The
arrows with zan, m2, and k~ denote the
vacancy jump frequencies. A k2 jump
is merely the reverse of a k& jump.

that the correlation factor for self-diffusion in the face-
centered cubic lattice equals 0.78146. When these values
are substituted into Eq. (3), one finds Fmu, st equal
0.7359. Since I' does not depend on m2, m &, or k&, I' will

have this value whenever k~ equals mo. Thus, whenever
ks=w&, Eq. (3) reduces to

2wi+5. 151ki

2ws+2w i+5.151ki
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A third special case which might be treated is that
where ks/we —+~. At first glance, one might expect F
to equal zero in this case, since all dissociating va, cancies
must return to the impurity. However, as will be seen
later, F equals 2/7 when ks/ws —+~, and the coeKcient
of ki in Eq. (3) equals 2.

After these special cases have been considered, the
next step is to obtain a general expression giving F as a
function of ks/we. This is done in the present paper. To
accomplish this, vacancy jumps from both the first
and second coordination shells around the impurity are
treated in detail. The first coordination shell includes
all sites that can be reached in one jump from the site
occupied by the impurity. The second coordination
shell includes all sites that can be reached in two jumps
away from the impurity. In a face-centered cubic
lattice, the first coordination shell contains just the
nearest neighbors of the impurity', however, the second
coordination shell contains second, third, and fourth
nearest neighbors. (See Fig. 1.)

3. DERIVATION OP AN EXPRESSION FOR E

A. Symmetric Sites

In calculating the impurity correlation factor (and F),
one may consider an impurity atom that has just made
a diffusive jurnp by exchanging places with a vacancy.
In a cubic crystal, the correlation factor can be calcu-
lated directly from the average cosine of the angle
between the direction of this jump and that of the next
jump taken by the impurity. ' ' This calculation can be
aided by consideration of the crystal symmetry.

Without loss of generality, one may orient the crystal
so that the vacancy which has just exchanged with the
impurity is on site a, the site to the right of the impurity.
Also, the general angle 0, may be defined as the angle
between the line connecting the vacancy to the impurity

a First nearest neighbors are designated by 1, second nearest neighbors
by 2, third nearest neighbors by 3, and fourth nearest neighbors by 4.

b For example, a distribution with two vacancies on sites b will be equiva-
lent to a distribution with one vacancy on site a, since 2b =2(-,a) =a.

and the line connecting the impurity to the va, rious
sites p in the crystal. Then, the crystal sites can be
divided into groups' so that 0, and the distance of the
various sites from the impurity are the same for all sites
in a given group. There are five such groups for sites in
the first coordination shell in the face-centered cubic
lattice. These groups can be designated as groups a to e.
(See Fig. 2.) There are fifteen such groups in the second
coordination shell. These groups can be designated as
groups g to u (See Fig. . 3.) Values of cos9, and the
nearest-neighbor classifications for these groups are
listed in Table I.

B. Equivalent Distributipns

A va, cancy which has made a dissociative jump from
site u may subsequently make an associative jump,
which returns it to a site on the first coordination shell.
In a]l cubic lattices, there is either two- or threefold
rotational symmetry around the line connecting the

FIG. 2. Face-centered cubic lattice. Nearest neighbors of the
impurity X are designated by a, b, c, d, or e according to their
positions relative to sites X and a.
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FIG. 3. Lattice sites in the 6rst and second coordination shells
in a face-centered cubic lattice. The sites are projected on the (111)
plane containing the impurity and site u. The impurity is the
large atom in the center of the drawing. Sites in the first coordina-
tion shell are indicated by the letters u to e. Sites in the second
coordination shell are indicated by the letters g to N. Sites indicated
by circles and connected by straight lines lie in the same (111}
plane as the impurity and site a. Those standing free inside the
large triangles lie on the (111)planes immediately above or below
the plane of the drawing. Those inside the rectangles lie on the
second planes above and below the plane of the drawing. In an
accurate projection, all sites indicated inside the large triangles
would project directly at the center of these triangles.

impurity to a neighboring site. Because of this sym-
metry, the probability of a vacancy returning to one
site in a given group a to e is the same as the probability
of it returning to any other particular site in that group.
Also, the actual probabilities of return to the various
nearest neighbor sites have an effect on the average
cosine (and hence on the correlation factor) equivalent
to a certain probability of return to site a alone. ' Thus,
for our purposes, a vacancy distribution on the various
nearest-neighbor sites can be replaced by an equivalent
distribution on site a; and a certain fraction of the
vacancies which actually return to sites b, c, d, and e

can be thought of as having "effectively" returned
to site a.

The same principle of equivalent distributions can
be applied to second, third, and fourth nearest neighbors.
A vacancy distribution on the second nearest-neighbor
sites may be replaced by an equivalent distribution on
sites i, a vacancy distribution on the third nearest-
neighbor sites by an equivalent distribution on sites h,
and a vacancy distribution on the fourth nearest-
neighbor sites by an equivalent distribution on site g.
If P is the probability of a vacancy being at site n, the
equivalent probability P~ at site p is given by

P~ cos8~= P cos8 . (6)

The equivalent distributions on sites a, g, h, and i are
listed in Table I. The numerical coefficients in the last
column of Table I, equal to Pr/P, were determined
from Eq. (6) and the cosine values which are listed in
the third column of Table I. Vse of these equivalent
distributions greatly simplifies the calculation of F.

C. Calculation of E when ks/ws —+ ~

In the calculation of the correlation factor, vacancies
which effectively return to site a can be treated as if
they had never left site a at all. Thus, the actual fre-
quency 7k& of dissociative jumps from site a can be
replaced by an effective frequency 7Fki, as in Eq. (3).
By definition, F is the fraction of dissociating vacancies
which do rot effectively return to site a. One finds by
summing over all possible ki jumps from site a,

1 P= P—g(kr)Gal+Pa(ki)aii+P'(kr)lir, (7)

where P, (ki), Ps(kr), P, (ki) are the probabilities that
the ki jump will take the vacancy to a site g, h, or i;
and G~, II~, I~ are the probabilities that the vacancy
will effectively return to site a from a site g, h, or i.

As a simple example, one may consider the case where
all ki jumps are equally likely and k&/ws —+oo. There
are four h sites, two i sites, and one g site. Thus,
Pg(ki) = 1/7, Pi, (ki) =4/7, and P, (ki) = 2/7. When
ks/wo —+re, the next jump of the vacancy after a ki
jump must be a k2 jump, which will return it to the
first coordination shell. From site g, the vacancy can
return only to site a. Thus, all vacancies from site g
actually return to site a, and Gz= 1 in this case. From
a site h, the vacancy may jump either to site a or to a
site b. As a result, one finds Hir, = s (1+a).The factor s
in front of the parentheses arises because there are two
equally likely k2 jumps for a vacancy from site h, whose
contributions must be averaged. The factor (1+-,')
gives the eQective probability of return contributed
from each of these jumps. Here vacancies which return
directly to site a give a unit contribution, but those
which return to a site b give only a half-unit contribu-
tion. (According to Table I, a vacancy at a site b is
equivalent to half a vacancy at site a). From a site i, the
vacancy can jump to site a, to two b sites, or to a site c.
According to Table I, a vacancy on a site c leads to zero
equivalent distribution on site a. Thus, by the same
reasoning as that above, Iii=t4(1+-,'+-,'+0). When
these values are substituted in Eq. (7), one finds

1—Ii= — 1

F= 2/7.

It may be noted that Ii does not go to zero even when
ks/ws —moo. The ks jumP from a site k ori does not need
to be the reverse of the preceding k& jump. This allows
II~ and J~ to be smaller than unity and leads to a value
of Ii greater than zero. Similar results are found in most
other cubic lattices. Physically, I' is the fraction of ki
jumps which result in the vacancy effectively escaping
from site a. Those vacancies which return on the next.
jump directly to site a have not effectively escaped
from this site and can be treated as if they had never
left site a at all. However, vacancies which arrive at a
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site b or c after a k2 jump from a site h ori have partially
escaped from site a. This makes F larger than zero.
The partial escape of the vacancy from site a allows
the impurity greater freedom in its direction of jump.
Thus, it also increases the correlation factor.

D. General Expressions for t"~, H~, and I~

A vacancy, immediately after making a k& jump from
site a, will find itself on the second coordination shell

on a site g, h, or i. If it returns to the first coordination
shell on its next subsequent jump, it can be considered,
at least partially, to have returned to site a, as dis-
cussed above. When k&/wpW pp, the vacancy very likely
will rot return to the first coordination shell on this
next jump. It may, however, either on this jump or
some subsequent jump, arrive at a site on the second
coordination shell. From here, it then can return to the
6rst coordination shell. This probability of indirect
return in two or more vacancy jumps must be included
if one wishes to calculate the full probability of effective
return for arbitrary k&/wp. First, the distributions of
vacancies which arrive at the various sites on the
second coordination shell can be calculated. Then one
can find the probability that these vacancies will return
to the first coordination shell and contribute to F.
From this, a general expression for P in terms of kp/wp

can be obtained. This is discussed in the following
paragraphs.

As was noted above, a vacancy distribution on the
second coordination shell can be replaced by an equiva-
lent distribution on sites g, h, and i. One can define G„
Gg, and G; as the equivalent distributions on sites g, h,
and i, respectively, arising from vacancies which start
on site g and return to all the various sites g to N on the
second coordination shell. Similarly, one can define H„
H~, and H; as the equivalent distributions for vacancies
which start on a site h, and I„I~, and 7; as those for
vacancies which start on a site i. Only the first site on
the second coordination shell which the vacancy reaches
after leaving its starting point (g, k, or i) should be
included in determining the eRective arrival prob-
abilities G„H„I„etc.

One can use these quantities to obtain general ex-
pressions for Gg, Hg, and Ig. For example,

G„=G.+G,G~+4G„Hg+2G, Ig. (10)

Here G represents the effective probability of return
from jumps that take the vacancy directly from site g
to a site neighboring on the impurity. This is the term
considered in Sec. C. The other three terms on the right
represent the contributions from paths which require
two or more jumps to return the vacancy to a nearest-
neighbor site. For example, the term 2Gjg contains
the effective probability G; that the vacancy will arrive
at one of the i sites after one or more jumps from site g
multiplied by the probability Iz that it will then effec-
tively return to site u. The factor 2 arises because there

are two i sites. Similarly, the term 4G&H& gives the
eRective probability that the vacancy will arrive at an
k site and then subsequently return to site e. (There
are four k sites. ) Also, G,G~ gives the effective prob-
ability that the vacancy will arrive back at site g and
then return to a. By following this same pattern, one
obtains equations for H& and I&,

H g =H,+HpG~+4HgEI g+ 2FI;I~,

Is =I.+I,Ga+4IaHz+2I;Iz.

E. Calculation of CoeKcients

(11)

(12)

Equations (10)—(12) give recursion relations between
Gz, Hz, and Iz. It is only necessary to calculate the
coeKcients G, H, I, G„H„X„etc., in order to obtain
numerical values for Gg, Hg, and lg. These values then
can be substituted into Eq. (7) to give an explicit
expression for F.

The method of determining G, H, and I has already
been discussed in Sec. C. The expressions in Sec. C must
be modified, however, to take into account the increased
number of possible jumps from sites g, h, andi. This may
be done by adding a factor giving the probability that
a jump from a site g, h, or i will be a k& jump. In general,
G~= (1)[kp/(11wp+kp) j; H, = (p)[2kp/(1—0wp+2kp) j;
and I,= (p) [4k,/(8wp+4k p) j. The denominators in
these expressions equal the total jump frequency from
sites g, h, and i, and the numerators equal the effective
frequency of return to site a by a k. jump.

The quantities G„H„I„etc., can be determined by
a straightforward Bardeen-Herring diffusion of prob-
ability calculation. ' One first calculates the probability
that the vacancy will arrive at the various sites on the
second coordination shell after one jump from the
original site (g, k, or i). Then those vacancies which have
arrived at sites on the first or second coordination shells
are removed from further consideration, and one pro-
ceeds to calculate the probability that the remaining
vacancies will arrive at a site on the second coordination
shell on the next jump. This can be repeated for as many
jumps as necessary. The total probability of a vacancy
arriving at a given site is found by summing the
probability of the vacancy arriving at this site after
each of the various jumps. The equivalent distributions
on sites g, h, and i can then be calculated from the values
of cose given in Table I. Summing all contributions from
sites which are fourth nearest neighbors of the impurity
gives G„H„and I„' summing all contributions from
third nearest neighbors gives Gq, Hq, and Iq,' and
summing all contributions from second nearest neigh-
bors gives G;, H;, and I;.

The effective return probabilities for a face-centered
cubic lattice were calculated by the above method. In
each case, the vacancy distribution was calculated in
detail for six jumps, and the probability that a vacancy
would arrive at a site in the second coordination shell
was determined for these jumps (jumps number one to
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TAmE II. ERective arrival probabilities and eRective
probabilities of direct return.

Gp =1.25 mo/(11mp+k2)
Gk =1.42 zoo/(1»mo+k2)
Gs =0.160urp/(11mp+k2)
G& =k2/(11~o+k2)

H g =2.20 mo/(10m p+2k2)
IIk =0.77 mp/(102vp+2k2)
IIt., =0.68 mp/{1(hep +2k2)
&a = $ k2/(10' +2k2)

I0 ~0.42 mo/(8mo+4k2)
Ik =0.89 mp/(8wo+4k2)
Is =0.245 mp/(8m'o+4k2)
I& =2 k2/{8mo+4k2)

six). Then, the contributions from the remaining jumps
(jumps number seven to infinity) were estimated by
assuming that successive contributions would continue
to decrease in a regular manner. The contribution from
these remaining jumps will be small (less than 10% of
the total) and the trend in the contribution from each
successive jump seems well established by the detailed
calculations for the 6rst six jumps. Thus, the error in
these estimations should be small. This should introduce
very little error in the 6nal 6gures for G„B„I„etc.
The Anal values are given in Table II. It is believed
that in most cases the error is less than 2% of these
values. The accuracy in the final expression for Ii

seems to be even better than this.

and
6= (ks —wp)/12wp,

S=ks/12wp.

(16)

Equations (13)—(15) can be solved for Gz, HIi, and Iz.
When this is done, one finds

Gz =o 'S(1.52+7.846+8.006'),

Hg=o. 'S(1.68+7.775+6.006'),

Irr =o'S (1.66+5.59k+. 4.002P)

o.=0.521+4.716+12.066'+ 8.006'.

(19)

(20)

When these values are substituted into Eq. (7), with
all k» jumps assumed equally likely, one obtains

11.56+50.106+40.006'S/F=1—— (22)
7 ~0.521+4.716+12.06(9+8.00LP

4. DISCUSSION

The va, lue of F as given by Eq. (22) depends only on
the ratio ks/wp. Figure 4 shows 7F, which is the coeK-
cient of ki in Eq. (3), as a function of ks/wp. This varies
from seven for ks/wp ~ 0 to two for ks/wp -+pe. In no
case does the coefficient of k» equal zero. If k2=mo, the

F. Equation for E

When values of the G, II, and I quantities from
Table II are substituted into Eqs. (10)—(12) one obtains

(0.896+6)Ga—0.4/3Ha-0. 0267Iii =S, (13)
—0.183G~+ (0.743+26)Hri —0.113Iii——1.5S, (14)
—0.035Ga—0.297Hii+ (0.959+48,)Iii ——2S, (15)

where

Iro. 4. Plot of 7' as
a function of mp/ks (from
left to center) and ks/wp
(from right to center).

0 I I I l I 1 t [

0 0.2 0 fI 0.6 0 B I 0 0 8 0 6 0.4 0 2 0

v/o/ kz ~ ~ kz/wo

quantity 6 equals zero, and S equals (1/12). Thus
Eq. (22), in agreement with Eq. (4), yields 7F=5.15
when k2= m'0.

In the derivation of Eq. (22), it was assumed that ki
and ks do not depend on the type of site (g, /g, or i) in the
second coordination shell which is involved in the
vacancy jump. One can, without great effort, refine this
model and assume separate jump frequencies for each
of these sites. (Extensive additional calculations are
necessary only if frequencies different from mo are
assigned to jumps outside the first coordination shell. )
However, the introduction of other jump frequencies,
whose value is not known, complicates the final ex-
pression and does not lead to any new understanding
of experimental results. Thus, it seems that a better
approach is to regard k» and k2 as average values,
averaged over the sites g, h, andi.

The presence of an impurity may affect solvent-
vacancy jump frequencies at considerable distances
from the impurity. This would result in there being
many more jump frequencies than the five considered
here. However, the main jump frequencies affecting F
are those for a vacancy in the second coordination shell.
Thus, for any reasonable group of iump frequencies
varying monotonically with distance from the impurity,
a good approximation to Ii can be obtained merely by
replacing wp in Eq. (22) with an average frequency,
averaged over all jumps from sites on the second
coordination shell to sites on the second or third coordi-
nation shell.

5. COMPARISON WITH EXPERIMENT

A. Correlation Factor

When impurity correlation factors can be measured
experimentally, Eq. (22) can help determine jump
frequency ratios. For example, Mullen has shown~

f, (D;/D, ) (wp/k, )f=1-
(wi/ki)+3. 5F

r J. G. Mullen, Phys. Rev. 121, 1649 (1961).
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Aw/wp —(nip/m )'"—1, — (25)

where m and mp are the masses of the two isotopes,
and the experimental quantity E, where

(AD/Dp)

(nzp/m. )'"—1
(26)

will equal f
Mullen~ has measured values of E for Fe" and Fe"

diffusing in copper and silver. He 6nds values of E as
low as 0.59 for diffusion in copper and 0.49 for diffusion
in silver. If it is assumed that Eq. (25) is very nearly
correct and hence that E=f„, one can use Mullen's
values of E along with Eqs. (22)—(23) and appropriate

s A. H. Schoen, Phys. Rev. Letters 1, 138 (1958).' K. Tharmalingam and A. B.Lidiard, Phil. Mag. 4, 899 (1959).
' C. Wert and C. Zener, Phys. Rev. 76, 1169 (1949).
"C.Wert, Phys. Rev. 79, 601 {1950).

where f; and f, are the impurity and solvent correlation
factors and D; and D, are the impurity and solvent
diffusion coefficients. This equation can give limiting
values for k./ws.

At present, isotope effect experiments seem to provide
the best means of measuring impurity correlation
factors. Two isotopes of the same impurity will have
slightly different jump frequencies because of their
difference in mass. It has been shown'' that the
measured difference in diffusion coefficient AD will be
related to the difference in jump frequencies ~w by the
equation

DD/Dp f.(Aw/——w p), (2&)

where f is the correlation factor of one of the isotopes
and Dp and mp are the diffusion coefficient and jump
kequency of the other. According to classical rate
theory, "" the jump frequency should be inversely
proportional to the square root of the mass. Thus,
according to this theory,

diffusion coefficient data'"" to estimate jump fre-
quency ratios. When this is done, one finds ws/ks must
be greater than 2.1 for iron diffusing in copper and
greater than 2.9 for iron diffusing in silver. These are
reasonable values. They correspond to a repulsion
between the impurity and a vacancy which is on the
second coordination shell, since an associative jump is
less likely than other jumps. This is consistent with
Lazarus' screening theory. '4 In this theory, iron is
assumed to have a negative excess valence with respect
to the noble metals. Since a vacancy also has a negative
excess valence, the iron impurity should repel the
vacancy.

It is possible that Eq. (25) is not even approximately
correct. For example, reduced masses which take into
account the other atoms near the impurity probably
should be introduced. "This could strongly affect the
above analysis. Further isotope effect measurements for
self-diffusion are needed to clarify this matter. At
present though, it appears that Mullen's results can
be explained quite reasonably merely by allowing xo
to be larger than k2.

B. Drift Mobility

The factor P also appears in the equation for the drift
mobility of an ionic impurity in an electric 6eld. ' As a
result, simultaneous determinations of impurity corre-
lation factors and drift mobilities vill provide an
especially good means of determining F and k&,/'zo. "
Equation (22) will help in such an analysis.

' A. Kuper, H. Letaw, Jr., L. Slifkin, E. Sonder, and C. T.
Tomizuka, Phys. Rev. 96, 1224 (1954); 98, 1870 {1955)."C.T. Tomiznka and K. Sonder, Phys. Rev. 103, 1182 (1956).

1 D. Lazarus, Phys. Rev. 93, 973 {1954);Impurities and Im-
Perfectr'oas (American Society for Metals, Cleveland, 1955),
p. 107.

's G. H. Vineyard, J. Phys. Chem. Solids 3, 121 (1957).
's J. R. Manning, Phys. Rev. 125, 103 (1962).
r~ J. R. Manning, J. Appl. Phys. 33, 2145 (1962).


