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for iron, ' as expected on the basis of the electron concen-
tration, while for the Sb alloy it is slightly higher. These
differences are well outside of the experimental error.

It is interesting to observe that for Re in iron the
effective 6eld is of the same order of magnitude as that
previously found for Au in iron, ' but that the value for
Sb is much smaller. On the basis of y-ray anisotropy
measurements, Samoilov et ul. give II,ff&280 kOe for

4B. N. Samoilov, V. V. Sklyarevskii and E. P. Stepanov, J.
Exptl. Theoret. Phys. U.S.S.R. 38, 359 (1960) )translation: Soviet
Phys. —JETP 11, 261 (1960)g.

Sb in Fe. According to a note added to their paper by
those authors, this shouM be corrected to H, ff&180
kOe, which is not inconsistent with the value obtained
in the present work. H, ff for Re in Fe apparently has not
been previously measured.

The portion of the work done at the Argonne National
Laboratory was performed under the auspices of the
U. S. Atomic Energy Commission and the part done at
the University of Illinois was supported by a grant from
the National Science Foundation. K. P. Gupta assisted
with one of the experiments.

P H YSI CAL REVI EXV VOLUME 128, NUMBER 5 DECEM B ER 1, 1962

Relation between Absorption and Emission Probabilities in
Luminescent Centers in Ionic Solids

W. BKALL FOOLER AND D. L. DKXTKR
VrIiversity of Rochester, Rochester, Em York*

(Received June 26, 1962)

It is pointed out that the Einstein relationship between spontaneous emission probability and induced
absorption probability for radiative transitions is not generally valid for impurity centers in condensed
media. An alternative approach to the problem is available by which estimates of the possible discrepancies
can be made. Several mechanisms are discussed, particularly the Jahn-Teller effect, which depend on the
existence of the phonon 6eld and the lattice relaxation following absorption of a photon. In some simple
cases, such as the P center in KCl and LiF, the decay time predicted from the integrated absorption cross
section may differ by an order of magnitude from that observed. In other simple and cubic systems, where
the atomic symmetries are appropriate, the discrepancy may be even larger. In noncubic crystals similar
discrepancies may be expected.

I. ABSORPTION AND LUMINESCENCE
IN ATOMIC SYSTEMS

ECAUSE of the common occurrence of absorption
and luminescence of light in physical systems, and

because of similar characteristics of these two phe-
nomena, it has long seemed natural to discuss them in
terms of related concepts. The development of the Bohr
theory of the atom, together with the Planck radiation
law, made it possible for Einstein' to establish simple
relationships between absorption and emission parame-
ters in atomic systems. In his famous work Einstein
considered a simple two-state system and showed that
when such a system is in equilibrium with a set of
Planck oscillators (i.e., a radiation field), the principle of
detailed balancing leads to a predicted spontaneous
emission probability per unit time, A 2l, which is related
to the induced absorption (or emission) probability per
unit energy density per unit time, times unit frequency,
8is (=Bar), by the expression
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*Research supported in part by a grant from the U. S. Air
Force OKce of Scientific Research.' A. Einstein, Physik. Z. 18, 121 (1917).

where hv» is the energy separation between the two
states. The frequencies of absorbed and emitted light
(t ») are equal in this case.

Quantum-mechanical considerations applied to simple
systems lead to the same conclusions. '' Semiclassical
radiation theory is sufficient to compute the (induced) 8
coeKcient, and although it does not predict the existence
of spontaneous emission, quantum electrodynamics
does; therefore, although the Einstein relationship must
be used in connection with semiclassical theory to pre-
dict A», it is not necessary if the problem is treated by
quantum electrodynamics, and so in principle one could
forget it. In connection with isolated atomic systems,
the two schemes may be used equivalently; however, as
we shall see, in solids there are particular precautions
which must be taken.

In the simple atomic case, either of the above schemes
yields the following results for allowed (e1ectric-dipole)

~ L, I. Schi6, Quantum &1II'echanics I',McGraw-Hill Book Cora-
pany, Inc. , New York, 1949},Chaps. 10 and 14. W. Heitler, The
QNantlm Theory of Radiatiol (Oxford University Press, New
York, 1954), 3rd ed.

SE. U. Condon and G. H. Shortley, The Theory of Atomic
Spectra (Cambridge University Press, New York, 1935), Chap. 4.
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transitions':
2~e' Z~, vl&rsv)I'

2J;+1
8'=

3k2

Aj;=
3kc 2J;+1

4es~„sp, ,l&r„)ls

(2)

(3)

one photon per unit volume, ' that is,

Z,;=8,, (Ate, ,) (2mb/c).

In terms of the oscillator strength and decay times, we
have

Here 8,, per unit frequency is the induced transition
probability per unit energy density per unit time, 4 while
A j; is the spontaneous emission probability per unit
time; the dipole matrix element is

vr'c% ( 1 2J,+1
(;;)'4;; 2J;+1)

(10)

(r )=(r. )= + *(2 r )+ d, (4)

expressed in terms of the electronic wave functions of
the initial and final states 5, p of the levels i, j.

The probabilities in Eqs. (2) and (3) may be con-
veniently expressed in terms of the dimensionless "oscil-
lator strength, '" a tensor which in simple cases may be
treated as a scalar quantity,

Zs. v I &rsvp) I'

3h 2J +1
where m is the electronic mass. In terms of the oscillator
strength, then,

7M

f
marco ij

2e'a;Js (2J;+1)
f.2

mc' (2J,+1)

'Ace;, =
~

I".; I', ~. The factors (25+1) in E—qs. (2) and (3), and
in those following, arise from the degeneracy of the atomic levels;J is the angular momentum quantum number. The summations
over the states 8, y represent summations over the components of
the levels i, j.

'Note that our 8;; difters from that of reference 2; in the
derivation, 8;; always occurs as a multiple of the energy density
p(~), and there are constants which may be absorbed by either
p(v) or 8;,. Onr expression for 8;; leads to Eq. (1).

D. L. Dexter, in Solid State Physics, edited by F. Seitz and D.
Turnbull (Academic Press Inc. , New York, 1958), Vol. 6.

These equations may be considered as indicating two
experimental methods for the determination of the
oscillator strength, f;;, connecting a pair of levels t'

and j.
We may also express other measurable quantities in

terms of A ji and 8,;. In the absence of competing
processes, the reciprocal decay time Aji is evidently
directly proportional to the (integrated over energy)
absorption cross section, 2,;j, with a proportionality
constant depending on fundamental constants and on
the energy of the transition. The total absorption cross
section, Z;j, is equal to the probability of the induced
transition, multiplied by the energy absorbed in the
transition, divided by the energy Aux corresponding to

II. ABSORPTION AND LUMINESCENCE IN
IMPERFECTIONS IN SOLIDS

In order to gain some insight into the treatment of
this problem, we consider first in some detail the
Schrodinger equation of the solid. The total crystal
Hamiltonian, neglecting spin-dependent terms, is

X= T,+T~+ U (r,x).

Here T, is the electronic kinetic energy, T~ the nuclear
kinetic energy, and U(r, x) the (electron-electron)
+ (electron-nucleus)+ (nucleus-nucleus) potential en-

ergy. The symbol r will be used to denote the set of
electronic coordinates and x the nuclear coordinates.
The total wave function 4 is thus a function of elec-
tronic and nuclear coordinates, which is commonly
separated, following the Born-Oppenheimer approxima-
tion, ' into electronic and nuclear factors

O„„(r,x)—y„„(r)x„„(x).
The rationale behind this approximation is that the
heavy nuclei move so much more slowly than the elec-
trons that for all nuclear positions there is effectively a
stationary electronic state P„which depends para-
metrically on the set x. The nuclear wave function x in
turn depends not on the electronic positions, but only on
the electronic state e.

Using this approximation, one obtains the following
Schrodinger equations for the electronic and nuclear
systems':

I
T.+U(r, x))d,„(r)=E.(x)y. , (r),

LT~+E (x)]x„„(x)= B„„x„,„(x).

(13)

(14)

In these equations, E„(x) is an adiabatic electronic
eigenvalue. It is important to note that both P and x
form a complete set of eigenfunctions.

' M. Born and I.R. Oppenheimer, Ann. Physik 84, 457 (1921'}.
F. Seitz, Modere Theory of Solids (McGraw-Hill Book Com-

pany, Inc. , New York, 1940), Chap. 14.

These relationships and generalizations of them have
been widely used in atomic and molecular spectroscopy
for decades. It is natural that their use should have been
extended to imperfections in solids. It is this, generally
unwarranted, extension which is the subject of this
paper.
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We now write x=xp+u, xp representing the equi-
librium nuclear positions, and u the displacements from
these equilibrium positions. Of course, in principle, we
cannot know what the values xo are until we have solved
Eqs. (13) and (14). Since x(x) depends parametrically
on the electronic state n, we must think of the set xo as
being dependent on e. Nevertheless, it is useful to
introduce this separation and treat the set xp(n) as if
they were known. Next, we formally make a linear
transformation on u and, thereby, introduce a new set
of displacement parameters q, the normal coordinates
of the crystal, which have the property that
LB'E„(x)/Bq;Bq;j„.=,,=p ——0 for i' W.e note the im-
portant fact that the set of q depends on xo, and will
thus, in general, be different for different xo.

We then expand the adiabatic electronic energy
E„(x) in a Taylor series in q,

E-(x)=E-(xp)+Zp K'p "qp+Dp "qp'+ j, (15)

where
C„"=LBE (x)/Bq„]„=p

D„"= $B'E„(x)/Bq„'j,„=p.

The nuclear equation, Eq. (14), may then be approx-
imately written

Lr yE„(xo)+P„(C„"q„+D„"q„')jX„,„(x)
= h„„x„,„(x). (14')

Equation (14') may be transformed into a set of
harmonic oscillator equations. ' The "force constants" of
these oscillators will depend on D„",and the equilibrium
positions on C„".The lattice relaxation parameters C„"
are thus of utmost importance. In generalized treat-
ments of optical centers, one Ands that C„"account for
Stokes' shifts (that is, differences in energy between ab-
sorption and emission peaks) and bandwidths. "Most
important for this discussion, the potential U in the
electronic equation, Eq. (13), is a function of the
equilibrium positions of the nuclei, xp(rt) (as well as the
set of normal coordinates q), which are, in turn, de-
pendent on the electronic state through the lattice relax-
ation parameter C„"; thus a self-consistent procedure
must be employed. This may be expressed in another
way by saying that after absorption of a photon, when
the charge distribution of the excited electronic state is
different from what it was in the ground state, the
lattice will relax to a new equilibrium state, and the
lattice vibrations will change, i.e., there will be a new
set of xo and q. The point we wish to emphasize is that
as a result of this lattice relaxation and the consequent
change of U, the analytical form of the set of electronic
wave functions, as well as the energies of the stationary
states, will, in general, be different from those which
existed when the lattice was in its original configuration.

' K. Huang and A. Rhys, Proc. Roy. Soc. (London) A204, 406
(1950)."S. L Pekar, Uspekhi Fiz. Nauk 50, 197 (1953).

It is evident, then, that in general the states involved in
absorption and emission, although they may occupy the
same relative positions on an energy level diagram, and
may possess unchanged symmetry properties, are not
Precisely the same electrortic states

Since the importance of the above discussion hinges
on how C„"will change for states of interest, it is im-
portant to investigate the properties of C„", and thus
find out how lattice relaxation occurs. C„"may, in fact,
be calculated for a given electronic state through appli-
cation of the so-called Hellmann-Feynman theorem, "
which states that

BE„(x)/Bq„=Q „,,(r)
~
BU/Bq,

~
y„,,(r)). (16)

Investigation of Eq. (16)ha, s been carried out by group-
theoretical methods" "and we may state the result in
terms of the Jahn-Teller theorem. "This theorem states
that BE„(x)/Bq„Eq. (16), will be nonzero if the
electronic state rt is degenerate. (Exceptions can only
occur if (a) all of the nuclei are on a straight line, or (b)
the system contains an odd number of electrons and the
only degeneracy is the twofold framers" degeneracy,
neither of which exceptions is of interest here. $ Further-
more, lattice relaxation will occur, the effect being to
remove the degeneracy. Obviously, this relaxation must
be such as to change the symmetry properties of the
potential U'(r, x), as well as its "size." Then, the sym-
metry properties of the electronic wave functions P will
also change, in a self-consistent way. We see that the
Jahn-Teller theorem says nothing about nondegenerate
states; in such a case Eq. (16) must be explicitly
evaluated.

We note the fact that for many physical situations the
pertinent physics involved in the electronic equation,
Eq. (13), depends primarily upon the equilibrium posi-
tion of the nuclei, xo, and not on the details of the lattice
vibrations. There are several reasons for this, the main
one being that the amplitudes of lattice vibrations are
small, and the changes in the potential associated with
them may be treated by perturbation theory. Thus, in a
zero-order approach one may write

LT.+U'(r, xp)]4'-, *,(r) =E-'(xp)4'-. , (r) (13')

If the instantaneous vibrations q involve no important
change in the symmetry of the zero-order potential, U',
use of Eq. (13') is adequate. However, there are im-
portant cases in which one must consider the perturba-
tion caused by the vibrations. This is particularly true
if matrix elements for a transition are identically zero
when the g„p are used, and if the perturbation makes the

"H. Hellmann, Einfuhrnng in die Qganten Chemic (B. G.
Teubner, Leipzig, 1937), p. 285; R. P. Feynman, Phys. Rev. 56,
340 (1939);Theodore Berlin, J. Chem. Phys. 19, 208 (1951)."H.A. Jahn and E.Te11er, Proc. Roy. Soc. (London) A161, 220
(1937).

'3 W. L. Clinton and B.Rice, J. Chem. Phys. 30, 542 (1959).
'4 U. Opik and M. H. L. Pryce, Proc. Roy. Soc. (London) A2M,

425 (1957)."N. N. Kristofe1, Optika i Spektroskopiya 9, 324 (1960)."H. A. Kramers, Proc. Acad. Sci. Amsterdam M, 959 (1930).
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matrix elements involving 6rst-order p„'s nonzero. Such
cases will be discussed later; for the most part we shall
assume that U'(r, xs) is the important term in the po-
tential, qP„,„ is a good approximation to the wave
function, and E„'(xe) is an accurate eigenvalue.

Let us illustrate the above concepts by a simple ex-
ample. (For a more quantitative discussion of the type
of center we are about to discuss, see Sec. IV, B.) We
assume that we have a center which is a substitutional
impurity in a cubic crystal. This center, as a free ion,
will be assumed to have an 5 state and a P level, be-
tween which electric dipole transitions may occur. The
effect of a cubic crystal 6eld will be essentially to leave
these as S and P levels. Suppose now that the center is
in the S state; i.e., &=pe. Consistent with this, the
surrounding ions execute small vibrations about an
equilibrium position xs with C„s=O, and U'(r, x&) equal
to a cubic potential. Now, according to the Jahn-Teller
theorem, the P level consistent with U', being orbitally
degenerate, will be such that C„~/0; thus if the center
is excited to the P level, lattice relaxation will occur to
remove the degeneracy of the excited states. The lattice
conhguration consistent with the P level will then no
longer have cubic symmetry, and in turn the P and S
states will not remain purely P- and S-like but will be
mixed with other angular terms. The new set of elec-
tronic wave functions, consistent with the new set of
xs(P) is thus expected to be quite diferent from the
original set, and matrix elements for emission may be
expected to be diferent from those for absorption.

We may describe the above processes in terms of
"configurational coordinate" diagrams whose interpre-
tation, however, differs somewhat from the usual one. '
Suppose that the important mode of vibration when the
center is in the 5 ground state is a breathing mode, i.e.,
neighboring ions are vibrating radially, in phase. Then
the potential U(r, x) will always have cubic symmetry.
We may then plot the energy of the system vs q&, where

q~ is the coordinate corresponding to this mode of vibra-
tion (Fig. 1a). This energy vs qi curve is drawn as a
solid line, labeled "15." Consistent with the system's
being in this state, C„' =0. Also consistent with this
nuclear configuration, there exist the rest of the com-
plete set of electronic states P„,whose E vs qi curves are
symbolically drawn as dashed lines. These curves will, in
general, have diferent minima and curvature than
those of the 15 state. We may think of the higher states
as "virtual" states, in the sense that they exist only
when the electronic system is in the 15 state, consistent
with the particular set of xo and g existing at that time.
The dashed P-state curve passing through 8 actually is
triply degenerate under the qj. mode of vibration.

Suppose now that a photon is absorbed and the
system excited to the P, state; this is represented in
Fig. 1(a) as a transition from A to B. A Jahn-Teller
lattice relaxation will occur; the new potential after
relaxation will be U[r,xs(P, ),qsj, with a new set of
xs(P, ) and a corresponding new set of normal modes, the

Energy

Other electronic
states

iP

Other electronic
states

I IgPx, Py~P~

ts
cq =0

I

glS
9 .~~

(a)

0

(b)

"important" one being qs. (For simplicity, we assume
that there exists a single important mode, qs. ) U no
longer has cubic symmetry.

Since the q~ mode no longer exists after relaxation, we
must draw a new configurational coordinate curve,
Fig. 1(b). In this figure the P,' state will be repre-
sented as a solid line, with C„~''=0. All the other states
are "virtual" states, in the sense used above. We call the
excited state P-' because it will not be strictly P-like,
but will contain other angular momentum components;
similarly with the new P', ', P„', 15'. Note that P ' and
P„' are no longer degenerate with P,'; they may or may
not be degenerate with each other, depending on the
nature of q2. Emission will now occur between C and D,
and there will be a Stokes' shift given by Eg~—Eg~.

On the basis of the above discussion, we must con-
clude that Einstein's relationship between 2;; and 8,,
will, in general, not be valid in the case of imperfections
in solids, because, among other things, it will no longer
be true that oi;,=oi, ; and Ps, ,~(rs,)~'=Pi, ,~(r, ~)~'.
(We note here, in order to avoid confusion, that we are
not including in this discussion the possibility of cascade
processes, in which absorption occurs to a level j, and a
separate, e.g. , nonradiative process sends the system
into a distinctly diferent electronic level k, from which
it emits. Such processes do occur in certain cases, of
course, but consideration of them is beyond the scope
of this discussion. )

Itis, in principle, possible to derive something analo-
gous to the Einstein A —8 relationships for solids. As
we may infer from the above discussion, however, this
problem is much more complicated than that for the
2-level atom. The point is, basically, that the electronic
system is interacting not only with a blackbody radia-
tion field, but also with a vibrational field whose charac-
teristics in general depend on the electronic state. Not only

Fin. 1. (a) Configurational coordinate curves of energy vs gi for
various electronic states. The electronic system is in the iS state;
i.e., P~,»=0. 1S—P absorption takes place with an energy peak
corresponding to (J3 A). (b) Con—figurational coordinate curves
of energy vs g2. The electronic system is in the P,' state; i.e.,
Q„&"=0.The Jahn-Teller eGect has removed the degeneracy of
P,' with P ' and Py Pz 1S' emission takes place with an energy
peak corresponding to (C D). —



B. FOKI Ek AN D D. L. DEXTER.

fr„k(E)=
f'.ff(E k)

'

Sp ff(E„k)

4x~e'E k S„k (E)
Zl(r p&l' (18)

3hc pv 2J +1
In these equations, as in the ones following, we use the
subscripts k and re to denote electronic levels in a par-

must the ex~steece of Planck photon and phonon oscil-
lators be taken into account, but also the dependence of
the electronic wave functions on the configurations of
the nuclei, the equilibrium values of which in turn de-
pend on the electronic state. Thus, this entire problem
must be treated in a self-consistent way.

Fortunately, it is possible to eliminate the use of
detailed balance arguments, and to arrive at separate
expressions for absorption and emission parameters (by
using quantum electrodynamics); accordingly, we feel
that it is wisest in principle to abandon the A —8
coeKcients approach entirely, and to think of absorp-
tion and emission as generally separate processes which
in some simple cases may be directly related. In this
connection we note that in non-ionic condensed systems
it. might well be sufficient to consider deviation from the
Einstein relation as a small perturbation. However, in
ionic systems this cannot be a satisfactory approach,
and in neither case is it necessary.

Ke should emphasize that usually, in ionic systems,
it is still pertinent, useful, and desirable to specify
purely electronic transitions i —+ j and j—+i. Several
factors are involved in this statement. The most im-

portant is that, because of the large difference in elec-
tronic and nuclear masses, we can "follow" an electronic
state as relaxation occurs after an optical transition. In
addition, lattice relaxation can be expected to occur in
times very short compared with 7-, perhaps in 10 "sec
rather than &10 ' sec. Another factor is that, because
of the strong interactions in ionic systems, it frequently
is impossible to distinguish particular vibrational transi-
tions during an electronic transition, and only a
broadened electronic transition can be observed. The
broadening can be described in terms of an appropriate
average over the vibrational transitions, a unique set of
which can be ascribed to a given electronic transition.

Kith this philosophy we specialize Eqs. (2) and (3) to
the case of absorption and emission in a dielectric
medium; following the notation of reference 6, we obtain
for the spontaneous emission probability

beff (Ekm)
a „„(E)= ~(E„,.)

gp

4e'Ek ' Sk '(E)
x 2 I &r„)I', (17)

354c' P, v 2Jk+1

and for the absorption cross section (as a function of
energy)

—1
&km h, ff(Ek„) ff(E„k)ff(Ek )

E„,p, ,, l&r„&I (uk+1)
x . (19)

E,.g, ,, l(r„&l (2J„+1)

In terms of the oscillator strength,

Beff(Emk) 1 2fr e tS

~mk fm k)
Sp ff(E„k) ffff*'c

(2o)

so we also have a relationship between f k and p. k

analogous to Eq. (7),

fmk

—1
&km

BP ' O'C'm(*& E k

h.n(Ek )- 2c'ff(Ek ) Ek '

Zp, vl&rvp&I' (2jk+1)
x2, I(»l'(2~-+1)

If the system is tightly bound, m*=m and B,ff/Bp
= 1+ (ff'—1)/3 (as we shall see); in this case,

fmk 3 ACfff Emk 1

n'+2 2e' Ek„'ff(Ek )

Pp, ,l(r, p&l' (2&k+1)
x . (22)

Z, ,l(r, ) I' (2J-+1)

Equation (19) is the modified Einstein relation, in
analogy with Eq. (10). In these equations, h.ff is the
effective field at the absorption or emission center, while
bp is the average field in the medium. Ek and E k are
the absolute values of the energies of emission and
absorption, respectively; they will not, in general, be
equal. The indices of refraction ff(E k) and ff(Ek ) are
evaluated at the peak energies of absorption and emis-
sion; they may be expected to be diferent, although
usually not by a grea, t a,mount. S k (E) and Sk '(E) are
shape functions centered close to E k and Ek, re-
spectively, and normalized such that J'SdE=1. For
some purposes, as in atomic spectroscopy, they may be
replaced by delta functions. The parameter m~ is the

ticular way. The 6rst letter in a subscript refers to the
electronic level of the system before a transition ta,kes
place, and the second refers to the level into which the
transition is made. Thus, for example, in Eq. (17) A k

signifies a transition from level k to level ns, while in
Eq. (18) o k signifies one from levels fff to k. It is to be
noted that because of lattice relaxation the states in the
two levels fff, Eqs. (17) and (18)are not exactly the same,
although they are related adiabatically.

The ratio of the integrated absorption coefFicient

k =J'0 —kdE and the reciprocal decay time rk
=J'A kdE is given by an expression analogous to
Eq. (10),

+mk jeff (Emk)
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appropriate value of the effective mass of the electron
undergoing transition.

Equations (17)—(22) involve an implied assumption;
namely, we assume that the factors B,fg, n, E, and
Ps, ~~(r)~', which all arefunctions of E, varysuKciently
little with E over the width of the band that the explicit
E dependence may be absorbed into the shape factor
5(E), and the other quantities may be replaced with
their values at the line peak. This is essentially equiva-
lent to a generalized Condon approximation and is a
reasonable procedure for our purposes. S(E), which is
commonly close to a Gaussian in shape, is primarily
determined by the "appropriate average" over vibra-
tional transitions referred to above, but deviations of the
order 25% can easily occur because of variations with
L~ of h, tt, m and Ps, , ~

(r) ~'."
III. MACROSCOPIC PARAMETERS

Ke now investigate the e6ects of the macroscopic
factors N(E), h, tr, cd, and m* on the transition proba-
bilities, i.e., the difference between Eq. (10) and
Eq. (19).

A. Indices of Refraction

The presence of the indices of refraction in our equa-
tions comes from the following considerations'. The
absorption cross section is obtained by dividing the
transition probability for absorption by the rate of
energy Qux corresponding to one photon per unit
volume, that is, by I'hs'v/4n. . In this expression, I is the
index of refraction of a transparent medium, while v is
the energy velocity. In this case, then, v= c/e and we
see that the absorption cross section must be divided by
e. In the case of emission the transition probability is
divided not by an energy Aux but by an energy density,
that is, by e . But further, the emission probability is
proportional to the density of photon states, i.e., to the
cube of the photon momentum. This means that we
must further multiply by e', leaving a net factor of e
for the emission probability. This leaves a factor of
Ln(E I,)e(E~ )j ' in our ratio of Z q to r I, ', Eq. (19);
in typical cases this represents a factor of (1.9) ' for LiF
to (5.4) ' for T18r, for wavelengths in the visible region.

The indices of refraction used here are those charac-
terizing the bulk medium at the energies corresponding
to the energy of the photon involved in the transition,
and in general e will not be the same for absorption and
emission. In one typical case (i.e., the F center in KBr),
the diGerence in emission and absorption energies is
such that the index of refraction for absorption is 1.57,
while that for emission is 1.54."It is thus accurate to
use the listed average value for e in such a case. For
Ag+ in XaCl the corresponding values are 1.73 and 1.65.
In some other cases the change will be considerably
larger, up to a factor of 2, but only when absorption

"D.L. Dexter, Phys. Rev. 96, 615 (1954).' See C. Kittel, Int~odlction to Solid State Physics (John Wiley
Bz Sons, Inc. , New York, 1956), 2nd ed. , p. 115 for curves of n vs
energy.

occurs in a center near the region of fundamental ab-
sorption of the host crystal and emission appears with a
sizable Stokes' shift.

B. Effective Field

In calculating transition probabilities one must con-
sider the actual Geld at the center, B.ff, which in general
will be different from the average field in the medium,
bo. For an extremely disuse center, h,~f=bo, on the
other hand, for an extremely tightly bound center, '

h.ft= he 1+ -+O((n' —1)/3)'+J+X+E' . (23)
3

In Eq. (23), L1+ (rP 1)/—3j constitutes the Lorentz
local-field ratio, and would be the only important term
for an extremely well-localized center in a tightly bound
matrix; the next term is of the order of the square of the
Lorentz correction; J, X, IC represent corrections
arising from overlap of neighboring atom wave func-
tions, exchange eGects, and higher multipole inter-
actions, respectively.

In many cases of interest neither of these extremes
applies. The e6'ective Geld will be an explicit function
of the electronic state and the positions of the nuclei,
and must be evaluated in a self-consistent fashion. For
example, if the ground electronic state of the impurity is
well localized, as is also the excited state immediately
after excitation, h,«(E k) may be considerably greater
than So. If, after relaxation occurs, the excited state
and/or ground state electronic wave functions change to
more diffuse charge distributions, the ratio h, tf (Ey )/hs
Inay become considerably smaller. Therefore, it is not
to be expected that h, tt(Eq ) = h, tf(E t). It is reason-
able to expect, however, that the square of the ratio of
these is of the order of unity, with a change of no
greater than a factor of 4 in most cases of interest.

C. Frequency of Absorbed or Emitted Light

In a fundamental calculation based upon a complete
solution of the crystal Schrodinger equation along the
lines of Sec. II, one would, in the process, calculate the
energy levels as a function of lattice configuration, and
thus the frequency of absorption and emission peaks (as
modified by the considerations in the last paragraph of
Sec. II). In the absence of such a computation, however,
and no completely satisfactory calculation has as yet
been performed, one may still make use of the observed
frequencies in our equations concerning transition
probabilities. As we have mentioned before, in most
cases these frequencies will not. be equal (i.e. , there will
be a Stokes shift to lower energy in emission), and this
eGect must be accounted for in the calculation of transi-
tion probabilities. In most cases, the absorption peak
frequency exceeds the emission peak frequency by a
factor of order 2, usually somewhat less. A semi-
quantitative argument predicts an upper limit of a



factor of 2, but deviations can be expected in any par-
ticular case."All other parameters being unchanged, a
Stokes' shift of a factor of two would lead to a decrease
of a factor of 2'= 8 in the emission probability computed
from Eq. (19) as compared with Eq. (10).

D. Effective Mass

The mass m~ appearing in Eqs. (20) and (21) will for
diffuse centers be the effective mass, which may be
experimentally determined by cyclotron resonance or
other methods. For very tightly bound centers, m*= m,
the electronic mass.

IV. CHANGE OF MATRIX ELEMENT

We have seen that factors of the order (10)+' may be
expected to modify the Einstein A —8 relationship, Eq.
(10), in typical cases because of changes in "macro-
scopic" parameters. However, more interesting and
larger effects might be sought which are specifically re-
lated to the changes in electronic wave functions as
lattice relaxation occurs. These should be manifested as
differences in the optical transition matrix elements be-
tween absorption and emission, i.e., as "matrix element
effects. "This topic has not previously been discussed to
our knowledge, and a major purpose of this paper is to
point out some of the phenomena which may be ex-
pected to occur.

In applying our discussion of matrix element effects
we will use Eq. (19), which expresses the ratio of
quantities which may be experimentally determined,
i.e., 7. and Z, in terms of the summed squared matrix
element ratio. In principle, this may be done exactly, in
line with our prior discussion; in practice, the effective
fields are not known, and approximations must be made.
In the use of Eq. (19) we shall always assume that
8 ff(Ek )—8 ff(E 0) ~ As mentioned in Sec. III, this
might possibly introduce an error as large as a factor of 4
into the ratio. The reader should keep this point in mind
as we later look at the sizes of matrix element effects.

The preceding discussion has been quite general and
applies to any center in any type of environment. In
what follows, we discuss only substitutional centers in
cubic crystals, except where noted. It is evident that
similar effects will occur for interstitial impurities, where
the crystal field might very well not have inversion
symmetry.

For convenience, we shall divide the "matrix element
effects" into the following categories and discuss several
systems as examples: (A) Matrix elements for absorp-
tion and emission are essentially the same. (B) Matrix
elements are larger for absorption than for emission.
(C) Matrix elements are larger for emission than for
absorption. In (D) we shall briefly discuss centers in
noncubic environments.

A. Matrix Elements Practically Unchanged

This would be expected to occur in at least two ex-
treme cases in solids: (1) In tightly bound, quasi-atomic

centers in which either U(r, x) is not strongly dependent
on x, or x is not strongly dependent on the electronic
state. In this case C„"would be the same for states o&

interest, i.e., independent of e, and there would be little
or no Stokes' shift in luminescence. (2) In continuum
treatments of very loosely bound centers, such as some
theories of the F center. " In this case the electron in-
volved in the transition is assumed to "see"a spherically
symmetrical dielectric continuum in both ground and
excited states to a sufficient degree that hydrogenlike
wave functions are valid for both cases.

An example of a system of type (1) would be rare
earth ions having transitions involving inner, shielded
electrons. " (Typical transitions of this type have an
oscillator strength =10 7.) Because of the shielding
effect of outer electrons, lattice relaxation is expected to
be very small, and emission is expected to have a decay
time calculable on the assumption that the matrix
elements do not change to any appreciable degree.

Ke mention again that we are considering only cases
in which emission occurs between the same levels as
does absorption. Undoubtedly there are cases of im-
portant cascade processes involving the rare-earth
transitions. These may be complex and of several types,
and deviations from Eq. (19) should by no means
always be attributed to matrix element effects of the
type considered here.

As an example of (2), we have performed a calculation
using Pekar's wave functions" in the following way: We
used his hydrogenic 1s wave function, appropriate to
the lattice in the ground-state configuration, and a
hydrogenic 2P function with damping length determined
by the Coulombic potential consistent with this 1s func-
tion to calculate the dipole matrix element for absorp-
tion. We then took his 2p wave function, appropriate to
the lattice in the relaxed configuration, and a hydrogenic
1s function with damping length consistent with this 2p
function to calculate the dipole matrix element for
emission. We found that the ratio of these is given by

(r). ;, 1+0.3122&/N2 —1j
(r),b, 1+0.3914Le/n2 —1)

(24)

In this equation, e is the static dielectric constant of the
system, while e is the index of refraction. The ratio
varies from 0.94 for Pe/e' —1)=1 to 0.86 for [e/rP —1)
=6, a range which includes all the alkali halides; so we
see that the ratio of the square of the dipole matrix
elements will be between 0.7 and unity on the basis of
this model. We might comment here, however, that this
model of the F center is for several reasons not con-
sidered valid, "and so these results are not to be taken as
accurately indicative of the expected values of the Ii-
center dipole matrix elements.

As another example of a spherically symmetric system
'9 For examples of optical properties of such centers, see L. J.F.

Broer, C. J. Gorter, and J. Hoogschagen, Physica 11, 231 (1945).~ W. Beall Fowler and D. L. Dexter, Physica Status Solids 2,
819 (1962).
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of type (2), we consider a purely hydrogenic system
whose characteristics are solely determined by the
effective nuclear charge, Z. It is easily shown that for
such a system, the square of the dipole matrix element
is proportional to Z ', while the energy of a 1s ~ 2p
transition is proportional to Z', thus, ~(r)~' is pro-
portional to E '. If we assume that a Stokes' shift may
occur through a lattice relaxation expressible solely in a
change in Z, we have

Thus we see that a normal Stokes' shif t with
E, ;,&E,b, would yield ~(r) ~,b,'& ~(r) ~, ;,s. The pre-
dicted Stokes' shifts in ionic crystals on the basis of the
theory of a polarizable dielectric continuum range from
about 50 to 90'P~ for most ionic crystals, so that on this
basis we might expect the squared matrix element ratio
of Eq. (25) to be between 0.6 and 0.1.

It is likely that in most cases of imperfections in ionic
crystals case (A), when it applies, is not very interesting.
Changes of the order 10 or less are all that can be ex-
pected in the squared matrix elements between absorp-
tion and emission.

3. Matrix Elements Larger for Absorption
than for Emission

This effect is expected to be important for centers
which have allowed absorptions (such as 5 —+ P) and a
fairly strong interaction with, say, nearest-neighbor
ions. (We use "allowed" and "forbidden" in the sense of
the one-electron, electric dipole moment selection rules. )
In this case U(r, x) will be a strong function of the x,
which in turn will be strongly dependent upon e through
C„"; furthermore, since dipole transitions involve a
change in symmetry of n (from 1s —+ 2p, say), one would
expect lattice relaxation to occur via the Jahn-Teller
effect which could change the angular dependence of U,
as well as its radial dependence. Accordingly, the elec-
tronic wave functions would have different angular de-
pendence, and the emission matrix elements might be
smaller than those for absorption.

The importance of an effect of this sort will depend
strongly on the magnitude of the electron-lattice
coupling, which is indicated by such things as Stokes'
shifts and line widths. Thus, for example, we would ex-
pect that this effect could be of some importance in the
ease of the Ii center, as well as in other systems which
manifest allowed 5 —+ P absorptive transitions (i.e., Tl+
in KCl).

We may extend our brief discussion of the Jahn-
Teller effect (Sec. II) in considering the point-ion model
of the F center. "According to this simple model, the
potential "seen" hy the P-renter electron is

(26)

"8, S. Gonrary and F.J. Adrian, Phys. Rev. 105, 1.180 (1957).

where R; is the position of the sth point ion. One may
investigate the symmetry properties of this potential by
expanding

~

r—R;~ ' in spherical harmonics; if the ions
are at perfect-cubic-lattice positions, one finds that

U() =g()+~()U (8,~)+
Here g (r) and h (r) are functions only of

~

r ~, and further,
h(r) is considerably smaller than g(r) T.hus, to a good
approximation, the F-center ground state is an s state,
the first excited level is a p level, and transitions be-
tween them are allowed. However, the p level has
threefold orbital degeneracy; therefore, when the system
is in the excited p state the Jahn-Teller effect will occur.
This will remove the orbit:al degeneracy of the p level in
destroying the cubic symmetry of the system. This is
intuitively reasonable and corresponds to a noncubic
lattice relaxation under the infiuence of the non-
spherically symmetric p field, say along the s axis.
Calculations have been carried out on various aspects of
this effect; for example, it has been predicted that in
I.iCl, the nearest neighbors along the s axis move out-
ward, while those on the x and y axes move inward. "

Accordingly the potential 6eld "seen" by the electron
is different in the two electronic states. In particular,
we find that this type of distortion not only changes

g (r), the spherically symmetric term of U(r), but it also
introduces a term 1(r) Fs(8,&). Thus the potential, even
in our static, point-ion approximation, is no longer of
cubic symmetry. This means that the excited state
f, will contain p- and f like -components, while P„ the
ground electronic state, will have, after relaxation, s-
and d-like characteristics. The change in the spherically
symmetric part of U(r) will alter the amount of p-like
function in the excited state and the amount of s-like
function in the ground state, while the Ps(cos8) term in
the potential will introduce f like -function to the ex-
cited state and d-like function to the ground state.
Thus, the electronic wave functions after relaxation will

be of the form

4' (r) = p (r)+ v'~(r)Ps(cos8)

4.(r) = 9.(r) cos8+9 f(r)Ps(cos8)

The dipole matrix element in emission will then be

(q,+ q qPs(cos8)
~
r cos8~ y„cos8+ rp~Ps(cos8))

= (&, I
r cos'8I &u)+(q dPs(cos8) I

r cos8I a„sc8)o
+(pqPs(cos8)

~
r cos8~ q ~Ps(cos8)). (29)

For several reasons this matrix element can be changed
from that involved in absorption: First, q, and q„ for
emission may be "smaller" than for absorption as a
result of normalization. Second, the analytic form of p,
and q„will change, as mentioned above, because of the
change in the spherically symmetric part of the po-
tential. That is, the radial parts of the wave functions
will change, as discussed in (A), above. Third, it should.
be pointed out that in the sum of the three matriy

» R, F, +food and J. Korringa, Phys, Rev, 13$, 1138 (1961),
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elements, Eq. (29), the sigws may not all be the same
and cancellation may occur. It is apparent, then, that
it is quite possible for s and p functions to be "sub-
tracted out" of the ground-configuration functions to an
extent which could reduce the matrix elements con-
siderably (apart from the effect of noncubic relaxation).
Noncubic eGects could also be such as to cause cancella-
tion of the matrix elements in Eq. (29).

This is all very well and good; even a simple model of
the Ii center might well predict a matrix element eGect
such that emission matrix elements are smaller than
those for absorption. However, it is not all clear whether
this simple model provides a valid description of this
system. Before discussing this further, let us investigate
the experimental situation regarding the F center. We
may do this by comparing the measured J"-center oscil-
lator strength' " (actually, the measured Z) with the
reciprocal lifetime (or 3 coefficient). '4 Using Eq. (19),
let us assume that S.zz and Ps, ~ ~

(r)
~

' are the same for
absorption and luminescence of the F center in KCl. We
also assume that the measured oscillator strength is due
to both the '5~~2~ 'I'~~~2 and '5~~2 ~ V'3/2 transitions;
thus the sum of the factors (2Js+1)(2J +1) ' in
Eq. (19), corresponding to the two transitions becomes
(2Xs+1+2Xs+1)/(2Xsr+1)=3. Under these as-
sumptions, using the measured values E b, =2.3 eV,
E 1 0 eVy we compute a decay time r =9.3&( 10
sec, as compared with the measured value of 60X10—'
sec. There is thus a discrepancy of a factor of seven. "
This discrepancy may, qualitatively, be explained in
terms of our previous discussion. A factor of 7 is not
surprising on the basis of matrix element effects.

However, it is not at all clear, in the case of the Ii

center, whether the mechanisms which we have been
discussing are the primary ones. This is true because we
have neglected the effect of the presence of any other
levels in the system, in particular, the existence of a
"2s" state.

There are several ways in which the 2s state could
aGect the primary optical processes in the F center:

(1) If the 2s state were much higher in energy than
the 2p level (before and after relaxation), there would be
very little e6ect.

(2) If, in the relaxed lattice, the 2s state were below

the 2p, the excited system would spend most of its time

"R. H. Silsbee, Phys. Rev. 103, 1675 (1956). The oscillator
strengths quoted in our paper are actually calculated from
measured absorption cross sections, using Eq. (20) with g,zz/sz
=1+(zz'—1)/3 and m*=zzz, and thus our use of Eq. (22) with
such oscillator strengths is equivalent to the use of Eq. (19).

'4R. K. Swank and F. C. Brown, Phys. Rev. Letters 8, 10
(1962)."P.J. Botden, C. Z. van Doom, and Y. Haven, Philips Re-
search Repts. 9, 469 (1954)."A calculation along the lines of Eq. (22) has apparently been
carried out by J.J. Markham, Bull. Am. Phys. Soc. 7, 197 (1962),
assuming matrix elements to be the same. He calculates r =5X10~
sec for the P center in KCI; it is not clear to us how he gets this
6gure, but the ratio of his and our predicted results corresponds
roughly to (Egbg) ', so that perhaps he equated all factors of
E, z. to Ess. in Eq. (22).

in the 2s state, and emission would be largely forbidden.
Further, there would be a definite temperature depend-
ence of the decay time, probably quite strong, indicative
of the Boltzmann probability of occupation of the
higher state.

(3) If, in the relaxed lattice, the 2s state were afzotpe

the 2p level, low temperature emission would be pri-
marily from a 2p state and thus be largely allowed.
Furthermore, there could also be a temperature depend-
ence here of the decay time up to a factor of 2.

(4) The 2s and 2p levels could also be mixed via odd-
parity lattice vibrations. This would be a dynamic eBect
which will be discussed below.

It is easy to show that, in a spherically symmetric
potential well (which is quite close to the point-ion
potential for a perfect cubic lattice) the 2s state lies
much higher in energy than the 2p level. It is not clear,
however, how this will change after lattice relaxation.
In any quasi-hydrogenic model, the 2s state will be
much closer to the 2P; however, only in the pure
hydrogenic potential would they be expected to coin-
cide. Thus, it seems likely that the 2s state lies some-
where above the 2p level in energy.

The data of reference 24 do not help much in in-

terpreting the situation. According to reference 24, the
decay time for P-center luminescence in KC1 goes from
approximately 0.85& 10 ' sec at O'K to 0.6& 10 sec at
100'K. The behavior is approximately linear on a plot
of 1nr vs T. This type of curve may be explained in
several ways: (a) It is consistent with a center having
2 slightly separated excited levels, the radiative transi-
tion probability from each being close to the same;
however, no change in emission spectrum. with tempera-
ture has been reported. (b) It might also be explained

by the normal temperature-dependence of the quanti-
ties in the expression for r ', Eq. (17), on the assump-
tion of only one excited level. This would, in fact,
require a slightly larger temperature dependence of the
matrix elements than one might expect for an "allowed"
transition. However, if dynamic mixing is at. all im-

portant, this might not be too surprising.
It is evident, then, that the F-center decay time is

subject to several independent interpretations. It is

perhaps unfortunate that this is not a clearcut case,
since it is one of the very few for which data exist on
goth Z and 7='. As a general rule, if Z has been large
enough to measure, 7- ' has been too large to measure,
and vice versa.

At any rate, the data of reference 24, although not
unambiguously interpreted, certainly serve to reinforce
the point of view presented in this paper. Equation (19)
is rot valid if the matrix elements are cancelled. , and

certainly Eq. (10) is not.
We have performed a, similar calculation (for r ' viz

the basis of the measured Z) on the "allowed" transi-

tion, 'I-'q —+ '50, in KCl; Tl, This has ag. absorption peag.
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at 6.3 eV, and an emission peak at 5 eV."Measurement
of Z leads to an oscillator strength of 0.5; if the matrix
elements do not change, Eq. (19) predicts a decay time
of 2)&10 ' sec. To our knowledge the decay time for
this transition has not been measured.

We may point out that this system is more compli-
cated than we have indicated. First, more than one
emission peak is associated with the 6.3-eV absorption,
and second, there is still some question as to the assign-
ment of energies to transitions (that is, does the 5-eV
emission occur between the same levels as the 6.3-eV
absorption'), and it also appears that metastable
trapping states occur near the excited states. "

C. Matrix Elements Smaller for Absorption
than for Emission

We shall discuss two cases of this: (1) Transitions
involving change of multiplicity, or spin Rip. Matrix
elements for such transitions depend upon the spin-
orbit interaction and on the electrostatic splitting be-
tween terms of different multiplicity. (2) Transitions
for which the matrix elements would be zero in absorp-
tion if only the equilibrium positions xp(0) of neigh-

boring ions were considered. Such matrix elements may
become nonzero when the Quctuating Coulomb potential
due to lattice vibrations is considered.

(1) Since this effect is largely governed by the spin-
orbit and electrostatic interactions, we must investigate
how strongly these interactions depend on the equi-
librium positions of the lattice ions. This dependence
will, of course, vary from center to center; the properties
of a very tightly bound center might be largely insensi-
tive to the positions of neighboring nuclei, a more
loosely bound center might interact strongly with the
neighbors, and an extremely diffuse center might ignore
completely the details of the locations of its neighbors.
Again, as an indicator, we may observe the size of the
Stokes' shift. We may also investigate whether free-ion
wave functions adequately describe the electronic prop-
erties of the center. If there is a sizeable Stokes' shift, or
if free-ion wave functions prove inadequate in de-
scribing the center, we might expect a rather large
matrix element effect in ionic systems.

As an example of this, we consider the familiar
5~ 'P transition in thallium-activated alkali halides.

This system has been studied extensively, both experi-
mentally and theoretically, and several tentative con-
clusions have been drawn concerning it." '0 First, the
'5 —+ 'P transition apparently has a moderate Stokes'
shift; E,b,—1.2E, ;,. Second, it was shown in references
26 and 29 that free-ion wave functions do not ade-
quately describe the system; it was proposed that

"R.S. Knox and D. L. Dexter, Phys. Rev. 104, 1245 (1956).
's W. Bunger and W. Flechsig, Z. Physik 67, 42 (1931).' For a bibliography of experimental vrork, see F. Stockmann,

Larsdott BornstesgTables (S-pringer-V, erlag, Berlin, 1955), Vol. I,
Part IV, pp. 999—1Q07.

~ Robert S. Knox, Phys. Rev. 115, 1095 (1959).

mixing of wave functions centered on nearest neighbors
is necessary for a complete description of the system.
Dipole matrix elements involving such functions will

generally be strongly dependent on the positions of the
neighboring ions, since they will involve two-center
integrals, and if the contribution to the wave functions

by the near neighbors is large, the matrix element effect
will also be large. However, we must remember that in
this case the matrix element effect is not essentially a
symmetry effect. That is, the transition probability is

largely governed by the magnitude of the spin-orbit and

electrostatic interactions, which, in turn, depend on the
distances to the neighboring ions. The symmetry of a
distortion will not affect these interactions nearly as
much as the size of the distortion. Furthermore, the
importance of nearest-neighbor positions on the above

quantities is small enough that we might expect, say, an
eBect of a factor of 5 in the squared matrix element ratio
from these considerations, but probably not a factor
of 50.

Performing a calculation similar to that of Sec. 3, we

And, accepting the assignment that the 'S~'P ab-

sorption is at 5.0 eV and the corresponding emission at
4.2 eV, that if the matrix elements do not change, the

decay time for this emission should be of the order of

10—' sec.
The decay time for this transition has apparently

been measured'~; in the range of 22 to 72'C, it varies as
v='=5e '"~, where 5=2.9&(109 sec ' and &=0.66 eV.
There is some question as to the interpretation of this,

but one thing is clear: Such behavior is not consistent

with a model of a simple "two-level" system. However,

the temperature at which measurements were made is

high (F-center measurements have been made at 0—

150'K), and low-temperature measurements might well

reveal different behavior.

(2) In this case, static lattice considerations $i.e.,
setting x(0)=xp(0)] do not act to make allowed ab-

sorptive transitions which are forbidden in the free ion

(that is, when the lattice is in its ground-state con-

figuration). However, even at O'K the ions of the lattice
are vibrating, and if one considers this dyrsassiic effect,

one may Gnd that modes exist which make the matrix

elements non-zero. That is, matrix elements involving

P„P LEq. (13')j may be zero, while those involving P„
fEq. (13)) may be nonzero. This, of course, is consistent

with our Born-Oppenheimer wave functions of Sec. II.
Thus, there may be a small probability for absorption;
after absorption, there are at least three possible

situations:

(a) Lattice relaxation in the excited state does not,
from static considerations $i.e., setting x(exc) =xp(exc)$,
make emission dipole matrix elements nonzero. Thus,
the mechanism for emission is also the dynamic effect,
which may or may not become much more effective
than it was in absorption. It is apparent that after
lattice relaxation there will exist a new set of vibrational
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modes, whose effect might be quite different from that
of the original set. In particular, the number and
effectiveness of odd-parity modes could change greatly.
Undoubtedly, the modes of the perfect lattice will be
perturbed by an impurity center, and localized modes
might appear. There are at least two cases in which one
would expect a signi6cant change in the number and
effectiveness of odd-parity modes: (i) if the angular part
of the electronic charge distribution changes greatly
during an optical process, and (ii) if the "size," or
effective radius, of the charge distribution changes
much.

(b) Lattice relaxation does, from purely static con-
siderations, make emission dipole matrix elements non-
zero. Then the emission mechanism is a static effect, and
emission probabilities are expected to be much greater
than the corresponding absorption probabilities.

(c) Lattice relaxation may occur to one of two or more

configurations, whose energy difference in equilibrium
is small. The lowest in energy of these static conlgura-
tions might not be consistent with nonzero matrix
elements, but another might. This would then be
equivalent to having a metastable trap, only slightly
lower in energy than Chat of a luminescent center. The
familiar Boltzmann factor would govern the relative
probability of occupation of these levels, and would thus
also govern the decay time.

Case (a), then, insofar as the dynamic effect is slight,
is essentially a situation in which matrix elements do
not change appreciably, and as such belongs in Sec. A.

For case (b) to occur, lattice relaxation must intro-
duce a perturbing potential of the correct symmetry to
make. transitions allowed. This lattice relaxation, of
course, must be consistent with the charge distribution
causing it. Clearly, this case will not be operative in all
instances of forbidden absorptions, and one must in-
vestigate each particular system separately.

One could not predict case (c) except on the basis of
detailed calculation; its occurrence would seem to be
less likely in cubic systems than in noncubic systems.
Because of the Boltzmann factor dependence of the
decay time, one might hope to detect this effect by
measuring the decay time as a function of temperature.
Interpretation of such an experiment might be rather
dificult, however, since case (a) decay times will also be
temperature dependent, as will be other aspects of
emission.

As an example of the above discussion, we consider
NaCl:Ag. It has been found that this system has
several weak absorption lines, with oscillator strength—0.001."These have been attributed to S—+ D transi-
tions, which are forbidden from static lattice con-
siderations, but which become weakly allowed through

» W. Martienssen (private communication reported by refer-
ence 32).

the dynamic considerations of odd-parity lattice vi-
brations. ""

After absorption, lattice relaxation will occur; we
investigate which of the cases (a), (b), and (c) will apply
in emission.

For case (b) to occur, relaxation would have to be
such as to mix P state into either (or both) S and D
levels. This would come about through a perturbing
potential proportional to cosa, which is odd under
inversion. However, the D-level charge distribution does
possess inversion symmetry (as do all hydrogenic charge
distributions), so it is dificult to see how a case (b)
equilibrium distortion could occur in a way consistent
with a D-type charge distribution. Case (b) thus is
probably not operative here.

From our general discussion above, it seems unlikely
that case (c) occurs here either. If the matrix elements
do not change, and if the important absorption and
emission energies are 5./ and 4.96 eV, respectively, "
NaCl:Ag should have a decay time ~—2.1X10 ' sec,
assuming 6J=0, according to Eq. (19),at absolute zero.
As far as we know, this decay time has not been meas-
ured. "' Knowledge of its value and of its temperature
dependence could add greatly to our knowledge of the
nature of this system's lattice relaxation. A most inter-
esting effect is demonstrated in this system, namely, a
change in absorption strength with temperature, be-
cause of the amount of odd-parity lattice vibration
present. "

As another instance of case 2 it is apparent that an
S~F transition in an impurity ion imbedded in a
crystal would probably show a strong effect. The F-level
charge distribution has inversion symmetry; when the
electronic system is in the excited state, one would ex-
pect a Jahn-Teller distortion to occur which would
introduce a perturbing potential t(r)Fs((), q). This has
inversion symmetry and so is consistent with the F-level
charge distribution. This distortion would mix I' state
into the F level and D state into the S state. Thus,
purely static considerations would yield nonzero radia-
tive transition probabilities in emission.

It is not clear whether any systems exist in which
S—+ F transitions are of paramount importance. Diva-
lent manganese in solids is thought to undergo transi-
tions from a 'S state to states made up of 4D, 4G, 4F, and
4I' states, '6 but as far as we know a detailed and

"J.M. Conway, D. A. Greenwood, J. A. Krumhansl, and W.
Martienssen (to be published)."R.S. Knox (private communication).

'4 F. Seitz, Revs. Modern Phys. 23, 328 (1951).
35 H. W. Etzel, J.H. Schulman, R. J. Ginther, and E.W. Claffy,

Phys. Rev. 85, 1063 (1952)."'Eote added ie proof. Recently the decay time of the 4.51 eV
emission in KCl:Ag has been measured by Tomura and Nishimura
Pvfasao Tomura and Hitoshi Nishimura, Paper IG-11, Inter-
national Conference on Crystal Lattice Defects, Kyoto, Japan,
1962j.They find that r = 1.36)& 10 sec. This is larger than that
roughly estimated by us for NaCl:Ag and is consistent without
conjecture that the emission process in these substances is phonon
assisted, and that there is no large static matrix element effect.

C. C. Klick, Suppl. Brit. J. Appl. Phys. 4, S74 (1954).
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trustworthy analysis of this system has not been made.
There are several experimental clues which make us
suspect that the matrix element e6ect is not important
in at least the most familiar transitions, however. A
consistent model of the Mn++ center in Zn2Si04 links
the 5200 A emission band to a 4700 A absorption band s'

Thus there is a small Stokes shift, indicating that the
interaction with the lattice may not be great. Further,
the decay time is largely temperature independent, and
of the order of 10 ' sec"; if the matrix element e6ect
were not important, this would be consistent with an
oscillator strength of about 10 . This is, in fact, quite
close to the oscillator strength (—10 r) observed for
Mn++ ions from MnSO4 in solution in H20."We must
emphasize, however, that it is far from clear that the
phenomena which we describe are connected with

5—+ I' transitions.

D. Centers in a Noncubic Environment

The considerations of the preceding sections will be
applicable in the case of centers in noncubic environ-
ments. In most cases, however, it is not likely that there
will be a spectacular increase in matrix elements after
absorption and lattice relaxation. This is true because in
most noncubic 6elds of interest practically all transi-
tions with hmq= hns=0 will be allowed in absorption,
from static considerations. For example, in a tetrahedral
environment both D and F atomic states acquire some
P-like character, and thus transitions are allowed to a
ground state (without having to involve lattice vi-

brations) ."
37 C. C. Klick and J. H. Schulman, J. Opt. Soc. Am. 42, 910

(1952).
's CHR. Klixbull Jjtrgensen, Acta Chem. Scand. 8, 1495 (1954),

and accompanying articles.
"Note added in proof There exist. s a fairly sizeable amount of

literature on crystal Geld theory with regard to complex ions, such
as Mn~ and Co~. The case of Mn~ in a cubic crystal Geld is
reviewed by McClure (D. S. McClure, in Solid State Physics,
edited by F. Seitz and D. Turnbull (Academic Press Inc. , New
York, 1958), Vol. 9, pp. 499—502j, who gives references to the

Absorption of this type is apparently observed in

AgI, in which the Ag+ ion is in a tetrahedral. en-

vironment. ~'

V. CONCLUSION

We have shown that the Einstein relation is not in
general valid in the case of imperfections in solids.
Several types of mechanisms are suggested, in particu-
lar, the Jahn-Teller efi'ect, which might introduce dis-

crepancies into results derived through the use of the
Einstein relation. The Ii center is the system in which

the most clear-cut case of discrepancy is known. Other
systems are discussed, and it is expected that failure of
the Einstein relation will manifest itself in important
ways in instances other than the E~' center, when addi-
tional experiments are performed.
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original work. The interesting transitions in Mn++ occur between
a S ground state and an excited level which in the free ion is G,
but which splits into several components in the crystal Geld. The
considerations of our paper should help to understand this system.

Another interesting system is Co~ in a tetrahedral Geld. As we
point out in Sec. IV D, a tetrahedral Geld will make transition
probabilities between almost any two levels nonzero; however,
such a Geld also splits the levels, and there will be components of
these levels between which transition probabilities mll be zero.
Thus interesting eftects may indeed occur. In the particular case
of Co~ there exist atomic levels 4I' and 4F which under the in-
fluence of a tetrahedral Geld becomes 4T~, and 4Tj, 4T~, 422, re-
spectively LA. D. Liehr and C.J.Ballhausen, J.Mol. Spectroscopy
2, 342 (1958)j.Absorption is observed from the 4Ae ground state
to both 'T~ states, but not to 'Te LR. Pappalardo and R. E.Diets,
Phys. Rev. 123, 1188 (1961)g. In fact, crystal Geld theory predicts
zero matrix elements between 4Ae and ~2's Lsee A. D. Liehr and
C. J. Ballhausenj. Garlick LG. F.J. Garlick (private communica-
tion) ), however, has informed us of a preliminary study of emission
between these levels for Co~ in ZnS. The decay time appears to
be &10 4 sec. If matrix elements for absorption and emission are
the same, Eq. (19) predicts a decay time &1M sec (assuming

f ~& 10 e). A detailed analysis of this system may show that the
apparent discrepancy is due to effects of the type which we have
discussed.

We are grateful to Professor Garlick for permission to quote his
unpublished results.


