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The hyperfine constants for B" and 0" have been calculated using a configuration interaction (CI)
function based on the usual Hartree-Fock (HF) representation (where the orbitals are expressed as linear
combinations of analytic functions) plus singly excited s —+ s' functions and, for oxygen, singly excited
p ~ p' functions. The s functions are made up of two second-degree polynomials, each multiplied by a
different exponential function. The p functions are linear combinations of several 2p analytic orbitals. The
energies were minimized with respect to the exponents of s functions. The values obtained are (experimental
results are given in parentheses): for the 'P state of B",u3/s —67 Mc/sec (73.3 Mc/sec); a&&&

——360.5 Mc/sec
(366.5 Mc/sec); Q=0.039 b (deduced from ban& 2 6——95.Mc/sec); for the 'P state of 0":a2= —216 Mc/sec
(—218.57 Mc/sec) a&' ———132 Mc/sec (—126.6 Mc/sec), a, = —3.8 Mc/sec (4.74 Mc/sec), a&'= —113
Mc/sec (—91.8 Mc/sec), Q= —0.024 b (deduced from b& —10.——4 Mc/sec). For oxygen, the CI calculation
where each excited p ~ p' configuration is represented by three independent functions is shown to be an ap-
proximation to the most general formulation of what Lowdin has called the extended Hartree-Fock (EHF)
functions. The unrestricted Hartree-Fock (UHF) functions have also been calculated. As the UHF functions
are not eigenfunctions of J', there is no unambiguous way to define functions for states corresponding to
definite values of J. For both boron and oxygen the values of the Fermi contact term obtained from pro-
jection of the UHF functions are in better agreement with experiment than the values calculated from the
UHF functions.

I. INTRODUCTION

N a previous paper' arguments were given to show
~ - that the multideterminant function which I,owdin'
has called the extended Hartree-Fock (EHF) function
is suitable to calculate the magnetic hyperfine constant
for the 'S3/2 state of N". Since the EHF function cannot
now be determined, we calculated the hyperfine con-
stant using three different procedures to approximate
the EHF functions: (I) a configuration interaction (CI)
function built on the usual Hartree-Fock (HF) single
determinant representation (where the orbitals are
linear combinations of analytic functions) plus singly
excited s ~ s' functions; (II) an unrestricted Hartree-
Fock (UHF) calculation (which is sometimes called
"spin-polarized" calculation) where the radial parts
of s orbitals with o. spin are difierent from those of P
spin (this function is not, of course, an eigenfunction
of 5'); (III) the projection of this UHF function to
obtain the function corresponding to the correct spectro-
scopic state.

In this paper we shall apply these three procedures
to two first-row atoms of the periodic table, 8" and
0'r, where P orbitals play an important role in the
hyperfine spectra. We will calculate the electric and
magnetic constants for the 'P3/2 and 'Pi(/2 states of B
and the 'I'2 and 3I-'I states of 0'"

It is straightforward to calculate the constants for
different values of J using procedures (I) and (III). For
oxygen, (II) gives functions which arenoteigenfunctions
of S' and in certain cases not eigenfunctions of I.'
either. Consequently, there seems to be no unambiguous

$ This work has been supported, in part, by a grant from the
Ordnance Materials Research Office, Ordnance Corps, U. S. De-
partment of the Army.' N. Bessis, H. Lefebvre-Brion, and C. M. Moser, Phys. Rev.
124, 1124 (1961).' P. O. Lowdin, Phys. Rev. 97, 1474 (1955).

way of defining these functions for different values of
J. Goodings' has calculated the magnetic hyperfine
constants for the 'PI~2 state of 8" using numerical HF
and UHF functions, but as far as we can tell no previous
work using analytic functions has been published for
either 8" and 0"

II. GENERAL CONSIDERATIONS

When the electronic wave functions of an atom are
written in Russell-Saunders (IS) coupling, the matrix
element of the magnetic hyperfine operator has the
general form4:

A (J,J') = 2/„P, () i(J,J')rxi

+Ad(J, J')nd+X, (J,J')u, ), (I)
where P„and P, are the nuclear and electronic magnetic
moments. The reduced matrix elements n~, nd, , n,„which
are independent of J and J', are defined as follows:

(2)

ng = — I.S —— I.S

Sx
~, =—(I.S~~P S(r,)s,

~~
JS).

3

n& is the contribution to the field created by the orbital
motion of electron i, which is situated at a distance r;
from the nucleus, 1; being the angular orbital moment;
nq is the contribution due to the magnetic moment of
electron i of spin s, ; n, is the contribution due to the

' D. A. Goodings, Phys. Rev. 123, 1706 (1961).' R. E. Trees, Phys. Rev. 92, 308 (1953).
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The values of the X's for 'I' states are given in the litera-
ture5 and for 'P states are given in Table I.

The constants aJ .

ag ——(IJ) 'A(J,J),
a'g ——I '(2J—1) 1A(J, J—1),

and bg have been determined from atomic beam experi-
ments for both the' 'I'3~~~ and' 'P~~~ of B".Recent para-
magnetic resonance measurements' of 0" have con-
firmed earlier work' for the 'P2 state and have also
given the constants aJ, . a~', and bq for the 'P» state.

It is by now well known that the HF function, for
atomic states with filled s shells makes a zero con-
tribution to a, LEq. (4)). To have a nonzero value, it is
necessary to use a wave function where the s orbitals
are in some way "polarized. " In the 'S3/2 state of N"
which we have examined before, ' the p orbitals are all
singly occupied, and thus our function only needed to
introduce s polarization. Boron in its 'I'@2 ground state
has only a single p electron; polarization of only the s
orbitals also needs only to be considered here. In oxygen
the contributions n~ and ad LEqs. (2) and (3)$ to the
magnetic constant are themselves not properly ex-
plained by a one-determinant HF function. Using such
a function, it can readily be shown that the value of a&

for oxygen should be zero when experimentally one
finds it to be about +5 Mc/sec. This nonzero value can-
not only be the result of s orbital "polarization, " for if
this were true, then it could easily be demonstrated that
the value of ai should be about —18 Mc/sec. If we are to
account for the observed value, "polarization" of the p
orbitals is also necessary.

The single-determinant representation for oxygen in
the 'I's ground state has p orbitals, both singly and

' See, e.g., G. Breit and W. A. Wills, Phys. Rev. 44, 470 (1933).' G. Wessel, Phys. Rev. 92, 1581 (1953).' H. Lew and R. S. Title, Can. J. Phys. 38, 868 (1960).
S. Harvey (private communication).

i) R. A. Kamper, K. R. Lea, and C. D. Lustig, Proc. Phys. Soc.
B70, 897 (1957).

Fermi contact operator. The electric quadrupole hyper-
fine constant is

by= —e'QX, ( J, J)n„

where Q is the nuclear electric quadrupole moment and

3 cos'0, —1

doubly occupied:

+s=
I V»ri~s9sA(mr)ks(mr)A(ms)A(ms) I, (9)

where the y's are orbitals of symmetry s (l= 0) and the
P's the orbitals of symmetry p (3= 1). All the orbitals
of p symmetry have the same radial part and differ
only in their angular part, which can be characterized
by the magnetic quantum numbers m;. In oxygen the
function with maximum projection of Mr, (M& ——I = 1)
corresponds to the values

mr=+1, ms ——0, ms ———1.

In the usual or "restricted" HF function (among other
requirements) spin orbitals with the same e and l
values but with diGerent spins or with diferent mag-
netic quantum numbers all have the same radial parts. '"
If these restrictions are not imposed, then we can write
an "unrestricted" Hartree-Fock (UHF) function of the
form

4'„nF ——Ig,p, 'gets'Xi(mr)Xi'(mi)Xs(ms)X3(ms) I. (10)

In this function the p's are of s symmetry, the X's of

p symmetry. The primed and unprimed orbitals are
solutions of different HF equations and correspond to
different projections of spin. The radial parts of the x's
which correspond to different values of m,. may all be
di8erent.

The function of type (10) is not an eigenfunction of
either S' or L'. lt cannot be used to calculated quantities
which correspond to different eigenfunctions of J' un-
less (a) one transforms this function into one which is an
eigenfunction of S' and I.'; or (b) a number of simplify-
ing assumptions are made in order to be able to calculate
these quantities.

A function which would have the correct symmetry
properties would be a generalized (or extended) Hartree-
Fock (EHF) function which ear be defined as

+EHF ~+UHFy

where 0 indicates the projection operator for both 5'
and L'. The EHF function is a linear combination of
Slater determinants built on nonorthogonal orbitals and,
as we have mentioned before, there is at present no
way of ending the orbitals which minimize the energy
of Eq. (11).We will have to use approximations to these
orbitals.

Previously we have shown' that first-order correc-
tions to orbitals of s symmetry can be obtained from a
CI function built on a one-determinant function and all
singly excited s ~ s' functions. %e shall show that the
first-order corrections to the p orbitals can also be ob-
tained from a CI function which includes all single
excited p ~ p' configurations.

The simplest approximation will be to represent each

"For a discussion of the restrictions to the HF functions, see,
e.g., R. E. Watson and A, J. Freeman, Phys. Rev. 120, 1125
(1960); R. K. Nesbet, Revs. Modern Phys. 32, 355 (1961).
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x,' (the superscript e refers to the fact, that these orbi-
tals now are those which minimize the EHF function)
by the orbital pp plus a series of q other orbitals of p
symmetry (P ) to give a complete set of functions. Thus,

corresponding EHF function has the form:

eE„F——fi'I y, 'y, "y,'y, "xi'(mi)xi"(mi)xi'(mo)xi'(mo) I,
Type I

(14)

x,'(m, )=pp(m, )+Q a,„p„(m,),
n=l

X,"(m,) =go(m;)+P a, 'p. (m;).

(12)

If the expansions of Eq. (12) are put back into Eq. (11)
and if we assume that the coeKcients a,„are sufFiciently
small so that terms in a;„' . . can be neglected, then
the EHF function takes the form

+EiiF 40+& {ai ill 4' (mi)4'o(mi)A(mo)A(mo)
I

n=l

+ao.

foal

A(mi)A(mi)4-(mo)|to(mo) I

+ao nl ' &o(m'i)4o(mi)go(mo)0-(mo)
I

yai 0
I

' 'lj/p( m)iy„( m)iy (omg)leap( m)ol }. (13)

It is known" that the minimization of the energy of
such a function comes down, to first order, to the calcu-
lation of a CI function between the one determinant
function and single excited functions. In this case the
excited functions are p —+ p'. In this procedure correc-
tions due to doubly-excited configurations are neglected.

However, the configuration p'p' gives rise to only
three independent functions of 'P symmetry and these
must be used to determine a maximum of four correc-
tions tta, „(i=1, 2, 3) and ai„'].As the starting Pp orbi-
tals all have the same radial parts, the EHF y' orbitals
cannot all be determined to be different and we must
impose some equalities on the radial parts of these
orbitals.

(1) If we assume that the x' orbitals have all the
same radial part, then this implies that all the a;„'s and
a&

' are equal to a single parameter p,„and we find
again the usual condition for self-consistence, that is to
say, the matrix element of the electrostatic Hamiltonian
between the function 0'0 and one of the independent
functions (C i„) which belongs to the configuration p'p'
must be zero. If the function 0 0 is chosen to be the HF
function, then p„=0. Thus for boron where the con-
figuration p' gives rise to only one function of 'P sym-
metry, one cannot obtain, by first order correction, a
p orbital different from the one determined by the usual
Hartree-Fock equations.

(2) We can assume that the p orbitals of n spin will
have different radial parts from the orbital of P spin.
This formulation is equivalent to removing the restric-
tion on the HF function which %atson and Freeman"
and Goodings' have done to form UHF functions. The

'I R„ l.efebpre, Cahiers phys. 381, 1 (&9.~9).

where 0 indicates that the projection is only to be
carried out for 5. Using an expansion similar to Eq.
(12) one finds a first-order equivalence between the
function (14) and a CI function where each p —& p'
excitation is represented by two independent functions.
If the orbitals Pp are the HF orbitals, then it is possible
to show that a '=3a„and in the CI function each
p-+ p' excitation can be represented only by one inde-
pendent function (Co„). (We shall call this calculation
an approximation to EHF function of type I.)

(3) Instead of having all a orbitals with the same
radial part, one can arrange for the n orbitals which
are singly occupied in the HF representation to have a
different radial part from the doubly occupied orbitals.
Thus,

+Eirp —fl
I
4'i'4'i '4&'0& '

Type Iia

Xxi'(m, )x,"(m,)xo'(m2)xo'(mo) I, (15)

where radial part of xl'&radial part of &2'/radial part
of Xl". Or we can arrange that a orbitals with the
same Im, l

values, i.e., which have the same exchange
integrals with the third a orbital, have the same radial
part. Thus

+EHF ="
I
4'i'0'~ "0'o'4'o"

Type IIb

Xxi (mi)xi" (mi)xo'(mo)xi'(mo)
I
. (16)

The CI calculation where each single excitation
p ~ p' is represented by three independent functions
Cl„, 42, 4~ can be considered to be equivalent, to
first order, to formulations IIa or IIb to the EHF func-
tions. As the forms of C ln, C~n and 43„are a particular
choice, they are given explicitly in the Appendix.

III. CALCULATIONS

We have used a program written by R. K. Nesbet
and R. K. Watson for the IBM 704 to calculate the
self-consistent field orbitals for the atomic functions as
a linear combination of analytic functions. This pro-
gram can be used to calculate both HF and UHF
orbitals. For the s orbitals we have used two poly-
nomials each containing three terms multiplied by
different exponential functions. For the p orbitals we
have used several different analytic fits. The energies
of the CI functions have been carefully minimized with
respect to the two exponents of the s functions.

Three types of functions have been used to calculate
the hyperfine constants:

(I) The CI function was built from the HF function
plus all singly excited s ~ s' functions and, for oxygen,
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TABLE II. Magnetic hyper6ne constants for 'P states of Bu (Mc/sec). '

Analytical (1) Numericals
HF function HF function

CI (1)
function

Analytic
(1) UHF
function

Analytic Numerical Projected Projected
(2) UHF UHF (1) UHF (2) UHF
function function function function Exp

0
70.8
70.8

354.0
—24.5285

0
70.74
70.74

353.6—24.53

—3.8
70.8
67.

357.8—24.529

5.1
71.25
76.35

351.15—24.529

—5.9
71.22
65.32

362.0—24.529

8.2
71.31
79.5

348.35

1.7
71..25
72.95

354.55

—1.97
71.22
69.25

358.07

0.11
73.24
73.35

366.09
—24.66

a Analytic basis functions
are (1) is, 2s, 3s (Z =5.0; 1,

b See reference 3.
e See reference 6.

are for 2P (Z =0.8662; 1.3946; 2.7692; 7.3539) from the fit of A. Dalgarno {private communication). The "s" basis orbitals
14); (2) 1s (Z =3.9469; 4.3308; 7,605), 2s (Z =1.1571; 2.0887; 8.682). The numerical constant 2PnPe/I =171.0118a03 Mc/sec.

singly excited p~ p' functions. As in the case of
nitrogen, each s ~ s single excitation gives rise to two
independent functions. We have chosen one of the
functions which has zero matrix element both with the
electrostatic and hyperfine Hamiltonians, so that this
function can be neglected without any change in the
results. In oxygen, when we have used all three func-
tions which correspond to the configuration p'p' this
is the approximation to EHF functions of type II
(a or b). When we have used only one function chosen
in a special way, this is the approximation to EHF
function of ty~e I.

(II) UHF functions have been widely used to study
the hyperfine splitting in paramagnetic atoms and
ions"; it is certainly of interest to study their use for
boron and oxygen. When the HF representation for the
atomic state is a single determinant, there is no diAi-

culty in writing down the corresponding UHF function.
This is so for the state J= 2 of oxygen. But, unfor-

tunately, there is no unambiguous way of defining

functions for J= 1 and J=0. As we must be arbitrary,
we have calculated the hyperfine constant a1, a2', u1'

from the values of n~, nq, and n, obtained from the
state J= 2 and we have assumed that the ratios given
in Table I are still valid. This procedure has at least
the merit to avoid both the difficulties of defining

excited state functions and the manipulation of deter-
minants built on nonorthogonal orbitals. In the UHF
functions we have used for the s orbitals the exponents
determined in (I).

(III) We will also wish to calculate the constants
obtained from projecting out the 'I' function for boron
and the 'I' function for oxygen from the corresponding
UHF functions. Even for the paramagnetic atoms and
ions this has not been rigorously done, as far as we

know, except for I.i'." In general, an exact treatment
would be very tedious as there are in the projected
functions a multitude of determinants built on a series

of nonorthogonal orbitals.
For practical reasons we have limited our calculation

for oxygen to a first-order development of the pro-
jection of the UHF function analogous to the expansion

"See, for example, R. E.Watson and A. J.Freeman, Phys. Rev.
123, 2027 (1961)where an extensive bibliography is given.

"L.M. Sachs, Phys. Rev. 117, 1504 (1960}.

Eq. (13).The contribution of the Fermi contact opera-
tor in this approximation is then simply obtained by
mul. tiplying the value obtained from the UHF function
by a constant factor.""These constants" are, re-
spectively, 1,/3 for 8" a,nd 1/2 for 0". In boron, of
course, only the contribution from the Fermi contact
operator will he changed on projection of the UHF
function.

For the other contributions in the case of 0" the
following first-order development can be made for the
integrals (r ') starting from Eq. (12):

(&,Ir 'l&,)=(0 ~ro'~4o)+2 'Q a; (fpIr '~p„). (17)
n=l

The left-hand side of this equation is calculated from
the UHF orbitals. For the right side, the integrals
(tPp

~

r '
~
lf'p) are obtained from the corresponding HF

calculation and the remaining term is obtained by sub-
straction. The projection of the UHF function is carried
from Eq. (13) and the invariant quantities which one
needs can be expressed as a function of the corrections
which are just the second term on the right-hand side
of Eq. (17).

IV. RESULTS

A. Boron

As boron has only one p electron out, side the s shell
the calculations are much simpler than for oxygen.
From the hyperfine spectra for the V'3/& ' and 'I'&~2

states the contributions to the magnetic constant com-
ing from the p electron (a„) and from the polarization
of the s orbitals (a,) ca,n be deduced. There are the
relations:

ap)p=a~+a~,

C1/g= SC&—8,.

The constants are collected in Table II.

' Compare Appendix II of reference 1.
"From recent work of A. J. Freeman and R, E. Watson

LQuarterly Progress Report, Solid State and Molecular Physics
Group, Massachusetts Institute of Technology, April 15, 1961
(unpublished) j it appears that this approximation introduces an
error of only about 5% for N'4.

R. K. Nesbet, Ann, Phys. (New York} 3, 397 (1958).
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B. Oxygen

The magnetic constants are collected in Table III.
In all cases there are two parameters for the s basis
functions.

In addition to calculating the quantities a(J,J') the
results could also be expressed in terms of the quantities
o.~, exp, and u, which are independent of J and J'. But
we have preferred to give the values of parameters
which have been frequently used by experimentalists
and are defined as follows:

(r-') =)„(2.2)n„

(r—')'= 5),g(2.2)rr~,

(r-')"= —-',),(2.2)n„
.=(P-P.)1)) (22) '

(19)

In the HF representation the integrals (r '), (r ')', and
(r ')" are all equal to (PIr '~P) where p is the HF
orbital. "It should be particularly noted that the con-
tribution u, obtained from projecting UHF function of
types I and II is in much better agreement with experi-
ment than the values determined from the unprojected

"A. Dalgarno (private communication)."If the experimental value of a, is obtained from the values of
a2„u2', and uI and this put back into the equation for u& with the
experimental values of (r ') and (r ')' we find ai' ———90.2 Mc/sec
which is, within experimental error, the value originally obtained.
Thus we can rely on the equations which relate the o(J,J')'s to
different transitions in the resonance spectra (communication
from S. Harvey).

As the value of c,, is extremely sensitive to the basis
set of s orbitals, ' the constants obtained from the func-
tions marked a in Table II have been calculated by
carefully minimizing the energy of the CI function
with respect to the two s exponents (Z's). On. the con-
trary, the value of a„ is hardly sensitive to the choice
of parameters that one uses, provided the basis set is
sufhcient to represent the numerical 2p HF orbital.

We have calculated UHF functions using (1) the
same s parameters as those which minimized the energy
of the CI function and (2) an analytic fit to the nu-
merical 1s and 2s HF orbitals using three analytic 1s
and three 2s functions. " Although the energies are
essentially identical from both functions, the values
of u, are very different and we And it interesting that the
value obtained from the polynomial function is much
closer to the a, obtained from the numerical UHF
function than is the one of fit. In addition, we have
calculated the constants obtained from the projection
of the UHF functions.

Finally, the value of Q for &u has been calculated
using Eq. (5) where u, has been calculated using the CI
function given in Table II and the experimental value
b3~s

——2.695 Mc/sec. ' We have found

Q (8")=0.039 b.

Previously, the value proposed was 0.036 b. '
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function. This is not true for the UHF function where
only the s orbitals are spin polarized.

If Q is deduced from (r ')" using the complete CI
function for n, and the experimental value b2= —10.44
Mc/sec, ' we find

Q= —0.024 b. (20)
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APPENDIX

The functions 4», 4», and 4»„ for oxygen are

c'g„——2 {XI+X2+X3+X4),
C,„=(1/2&2) {—2X2+X3+X4—X5—X6) )

C g„——(1/2+10) {2X&+X4—3Xg—3X5+X6+4X7))

Xi——det
i
1s 18 2s 28 np+ 2p+ 2p 2p, ~,

Xg ——det~1s 18 2s 28 2p+ np+ 2p 2po~,

X3——det~1s 18 2s 28 2p+ 2p+ ep 2po~,

X4=det~1s 1s 2s 28 2p+ 2p+ 2p npo~,

X5——det~ 1s 18 2s 28 eP~ 2p+ 2p 2po ~,

X6——det
~

1s 18 2s 28 eP+ 2p+ 2p 2po ~,

X7=det~1s 18 2s 28 2p+ 2p& happ 2po~.


